

Small Area Method with Benchmarking Beyond Synthetic Estimation

Aggregate national target $\Theta_t = H_t$ (from state-space model),
 $\underline{\theta}_{t,i}$ target Hog inventory-class vector in domain i , time t ,
 $\rho_{t,i} = \mathbf{1}'\underline{\theta}_{t,i}/\Theta_t$ is **survey fraction in domain i** modeled as

$$\text{logit}(\rho_{t,i}) = b_t' \mathbf{X}_{t,i} + a_{t,i} + e_{t,i} \quad , \quad a_{t,i} \sim (0, \sigma^2) \quad \text{AR(1)?}$$

where covariate $\mathbf{X}_{t,i}$ includes (logit) pork-checkoff slaughter fraction in domain i , maybe also state disease indicator

Assume same fraction applies to all Hog-inventory classes;

$V(e_{t,i})$ known from survey variances. Benchmark $\sum_i \hat{\rho}_{t,i}$ to 1.

Rao and Molina (2015), *Small Area Estimation*, 2nd ed.