

Interpretable Data Analysis with Causality and Explanations

Sudeepa Roy

Joint work with

Lise Getoor, Cynthia Rudin*, Dan Suciu, Alexander Volfovsky*, Babak Salimi, Boris Glavic, Harsh Parikh, Zhengjie Miao, Marco Morucci, M. Usaid Awan, Tianyu Wang, Vittorio Orlandi, Moe Kayali, Yameng Liu, Awa Dieng, Laurel Orr, Qitian Zeng, ...

Presented at

Workshop on Social Science Modeling for Big Data in the World of Machine Learning

for the National Institute of Aging

The National Academies of Sciences, Engineering, and Medicine

October 24, 2019

* Some slides are from Cynthia and Alex!

Data Analysis

- * **Data**
 - * Advances in ML
 - * Computing resources
 - * Interests & applications
(Democratization of Data)

What is Data Analysis?

coursera [Explore ▾](#) For Enterprise | Log In | Sign Up

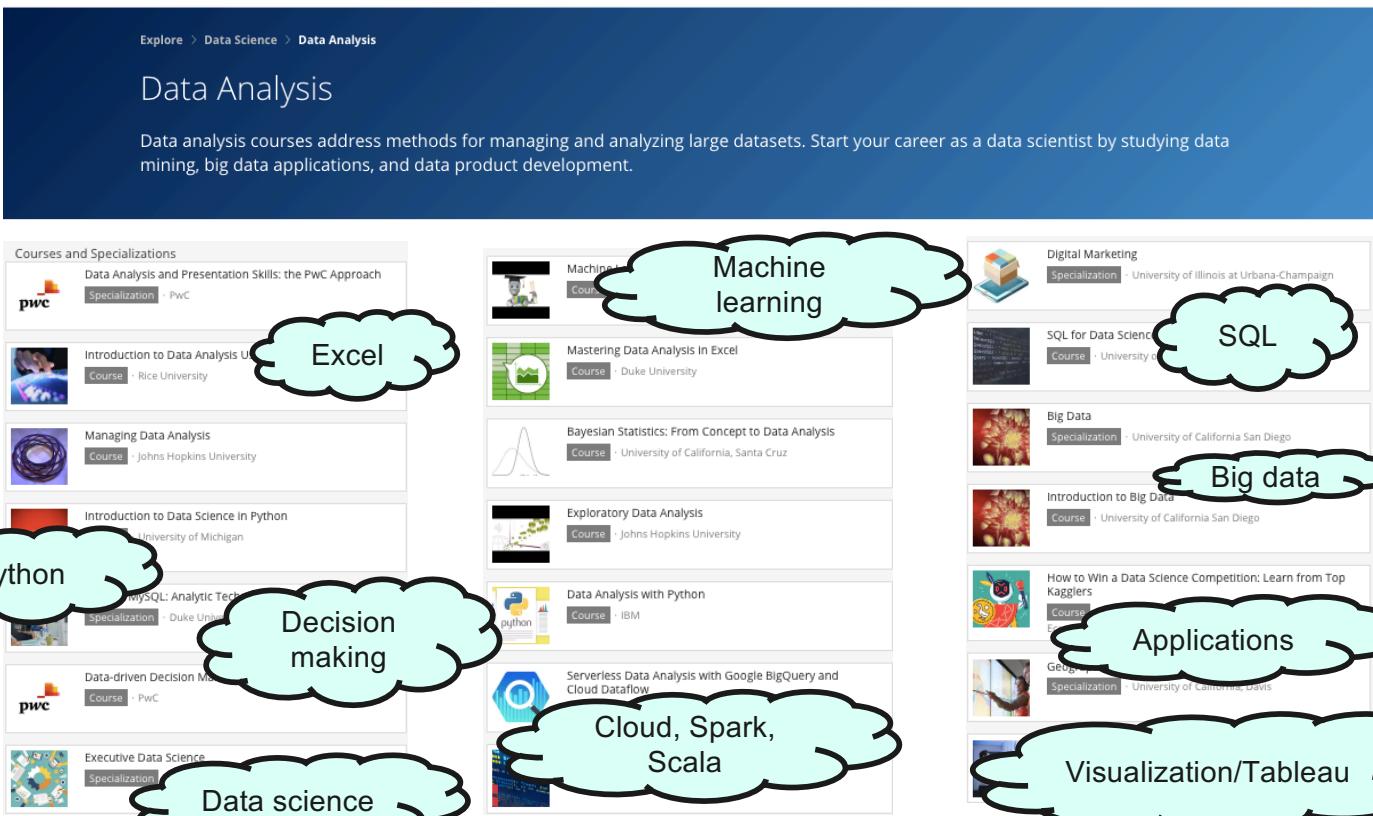
Explore > Data Science > Data Analysis

Data Analysis

Data analysis courses address methods for managing and analyzing large datasets. Start your career as a data scientist by studying data mining, big data applications, and data product development.

Courses and Specializations	
Data Analysis and Presentation Skills: the PwC Approach Specialization · PwC	Machine Learning Course · Stanford University
Introduction to Data Analysis Using Excel Course · Rice University	Mastering Data Analysis in Excel Course · Duke University
Managing Data Analysis Course · Johns Hopkins University	Bayesian Statistics: From Concept to Data Analysis Course · University of California, Santa Cruz
Introduction to Data Science in Python Course · University of Michigan	Exploratory Data Analysis Course · Johns Hopkins University
Excel to MySQL: Analytic Techniques for Business Specialization · Duke University	Data Analysis with Python Course · IBM
Data-driven Decision Making Course · PwC	Serverless Data Analysis with Google BigQuery and Cloud Dataflow Course · Google Cloud
Executive Data Science Specialization · Johns Hopkins University	Big Data Analysis with Scala and Spark Course · École Polytechnique Fédérale de Lausanne
Digital Marketing Specialization · University of Illinois at Urbana-Champaign	
SQL for Data Science Course · University of California, Davis	
Big Data Specialization · University of California San Diego	
Introduction to Big Data Course · University of California San Diego	
How to Win a Data Science Competition: Learn from Top Kagglers Course · National Research University Higher School of Economics	
Geographic Information Systems (GIS) Specialization · University of California, Davis	
Data Visualization with Tableau Specialization · University of California, Davis	

What is Data Analysis?



The screenshot shows the Coursera website's 'Data Analysis' course page. The page features a dark blue header with the Coursera logo, a search bar, and navigation links for 'Explore', 'For Enterprise', 'Log In', and 'Sign Up'. Below the header, the breadcrumb navigation shows 'Explore > Data Science > Data Analysis'. The main title 'Data Analysis' is displayed in a large, bold, white font. A subtext below it reads: 'Data analysis courses address methods for managing and analyzing large datasets. Start your career as a data scientist by studying data mining, big data applications, and data product development.' The page lists several courses and specializations, each with a thumbnail, title, and provider information. Hand-drawn clouds are overlaid on the page, containing the following text labels: 'Data science' (bottom left), 'Python' (left), 'Decision making' (bottom left), 'Excel' (center left), 'Machine learning' (center), 'Cloud, Spark, Scala' (bottom center), 'SQL' (center right), 'Big data' (center right), 'Applications' (bottom right), and 'Visualization/Tableau' (bottom right).

Courses and Specializations

- Data Analysis and Presentation Skills: the PwC Approach
Specialization - PwC
- Introduction to Data Analysis U
Course - Rice University
- Managing Data Analysis
Course - Johns Hopkins University
- Introduction to Data Science in Python
University of Michigan
- MySQL: Analytic Techniques
Specialization - Duke University
- Data-driven Decision Making
Course - PwC
- Executive Data Science
Specialization
- Machine Learning
Course
- Mastering Data Analysis in Excel
Course - Duke University
- Bayesian Statistics: From Concept to Data Analysis
Course - University of California, Santa Cruz
- Exploratory Data Analysis
Course - Johns Hopkins University
- Data Analysis with Python
Course - IBM
- Serverless Data Analysis with Google BigQuery and Cloud Dataflow
Course
- How to Win a Data Science Competition: Learn from Top Kagglers
Course
- Geographic Data Science
Specialization - University of California, Davis

For Enterprise | Log In | Sign Up

Explore > Data Science > Data Analysis

Data Analysis

Data analysis courses address methods for managing and analyzing large datasets. Start your career as a data scientist by studying data mining, big data applications, and data product development.

Machine learning

SQL

Big data

Applications

Visualization/Tableau

Decision making

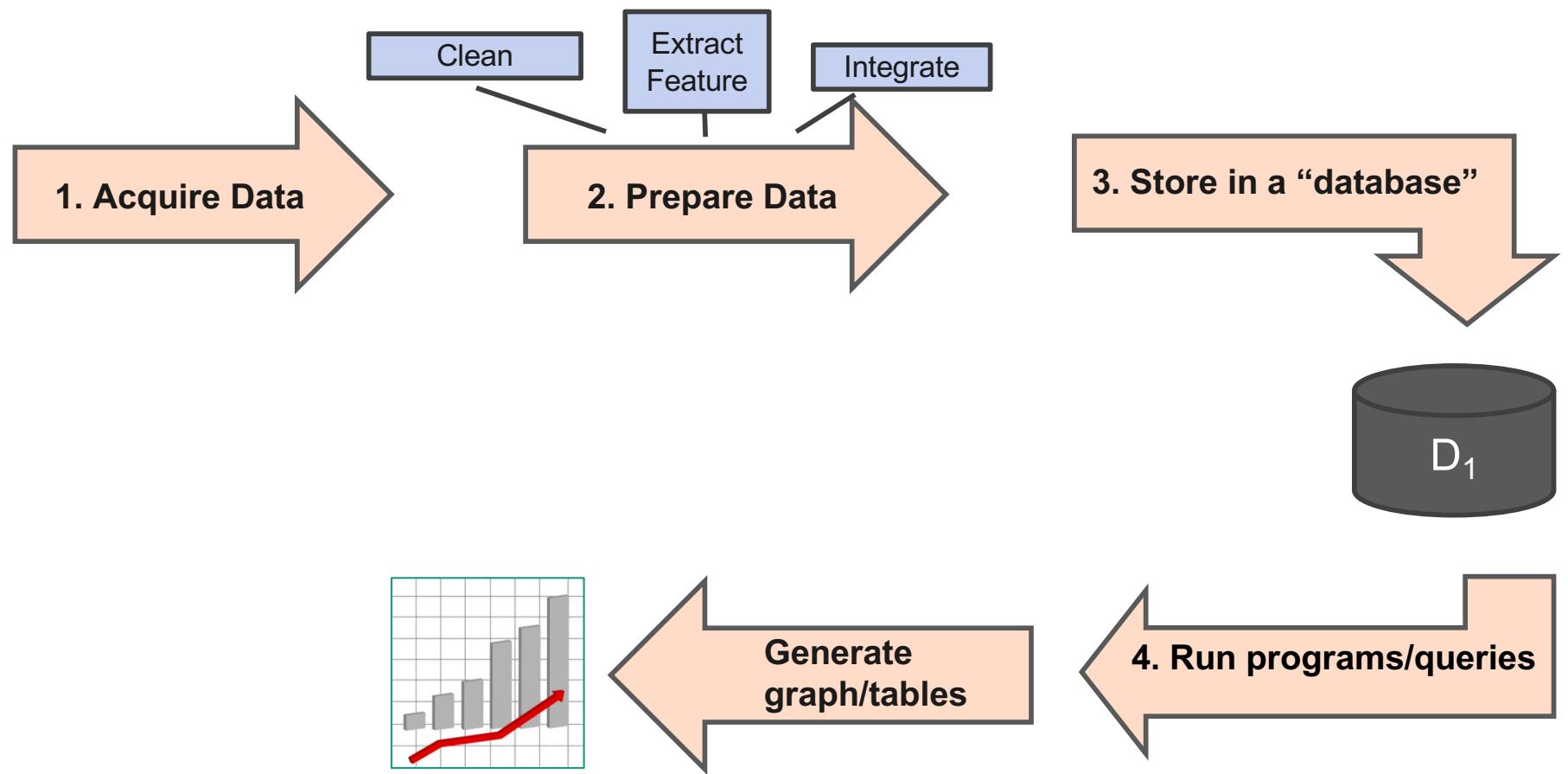
Cloud, Spark, Scala

Excel

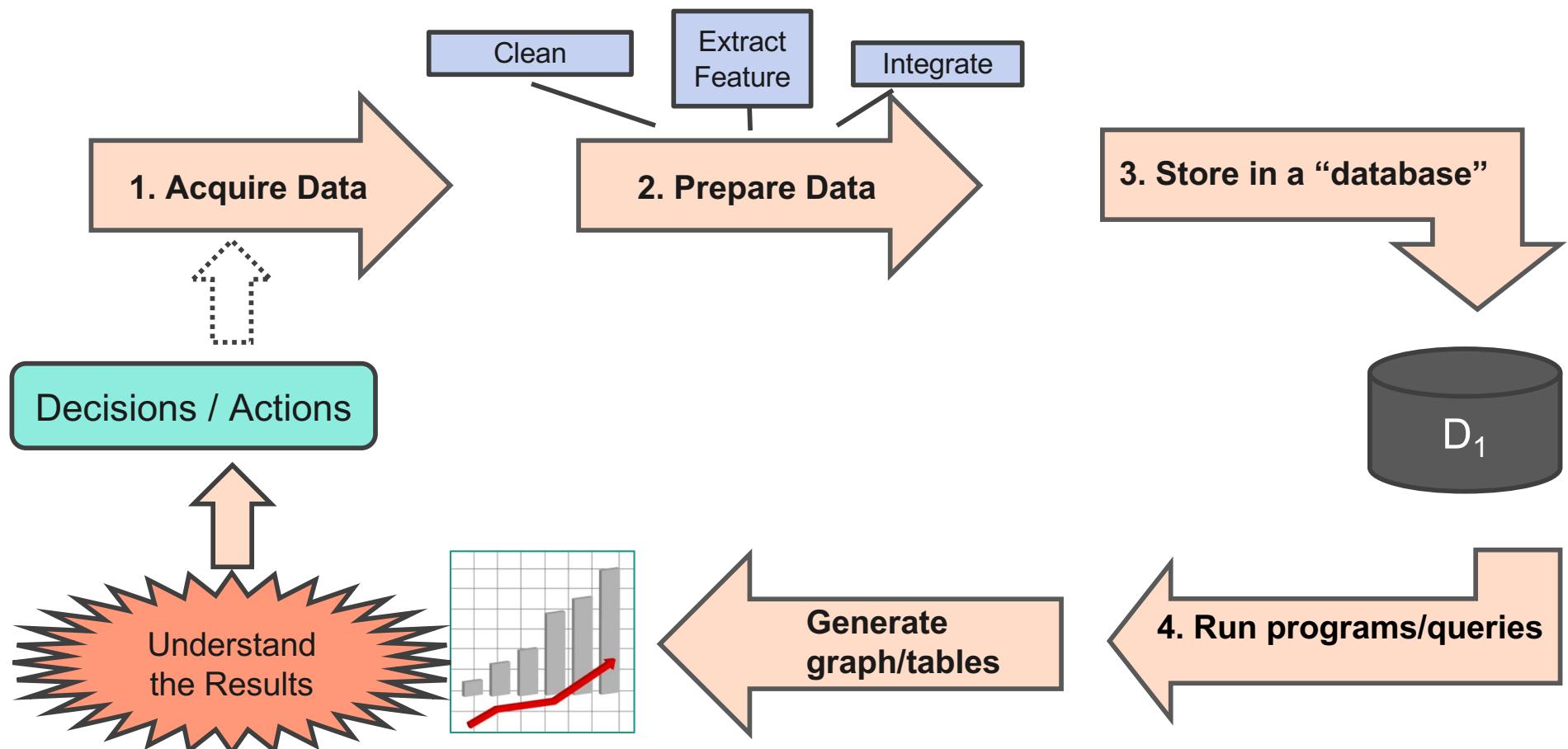
Python

Data science

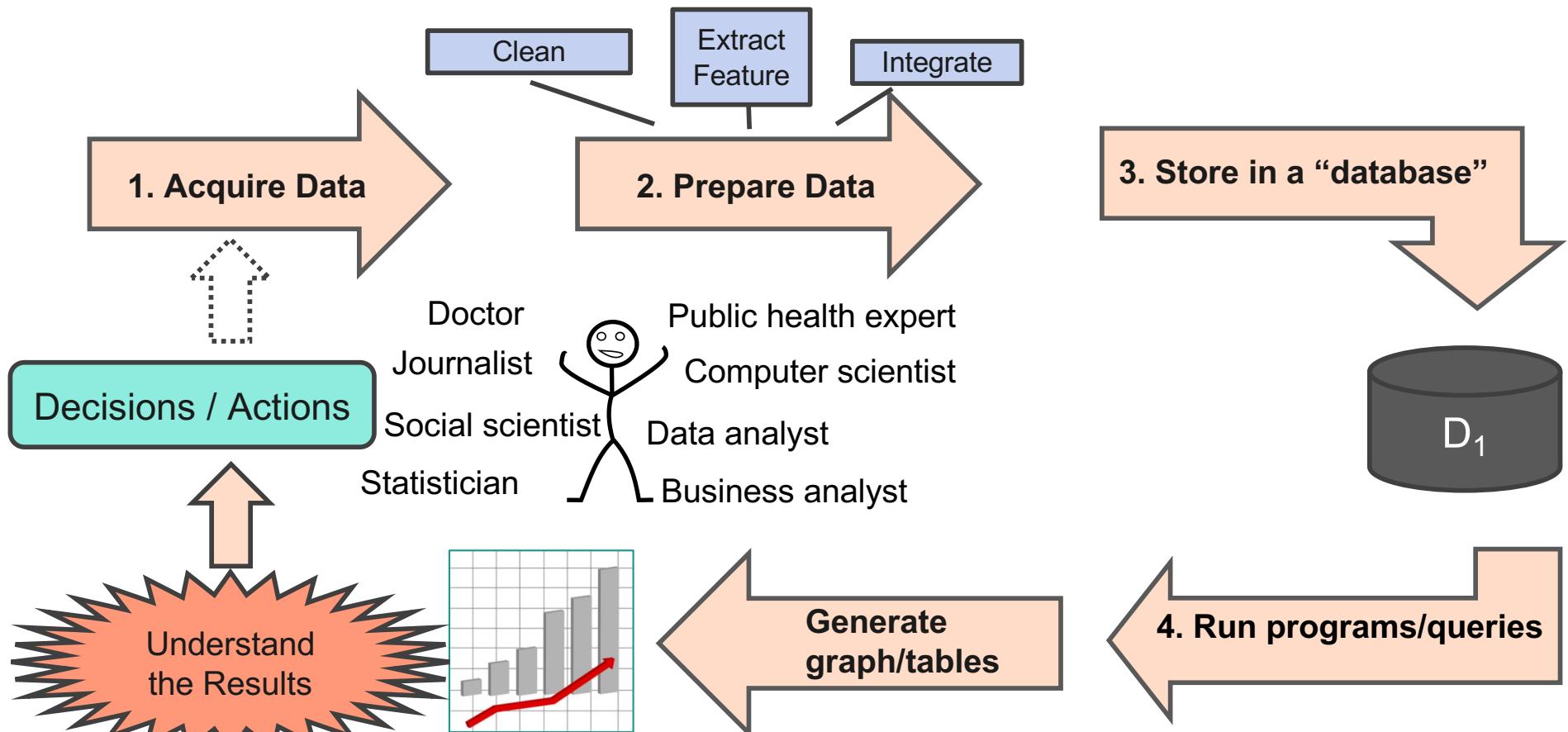
Data Analysis Loop



Data Analysis Loop

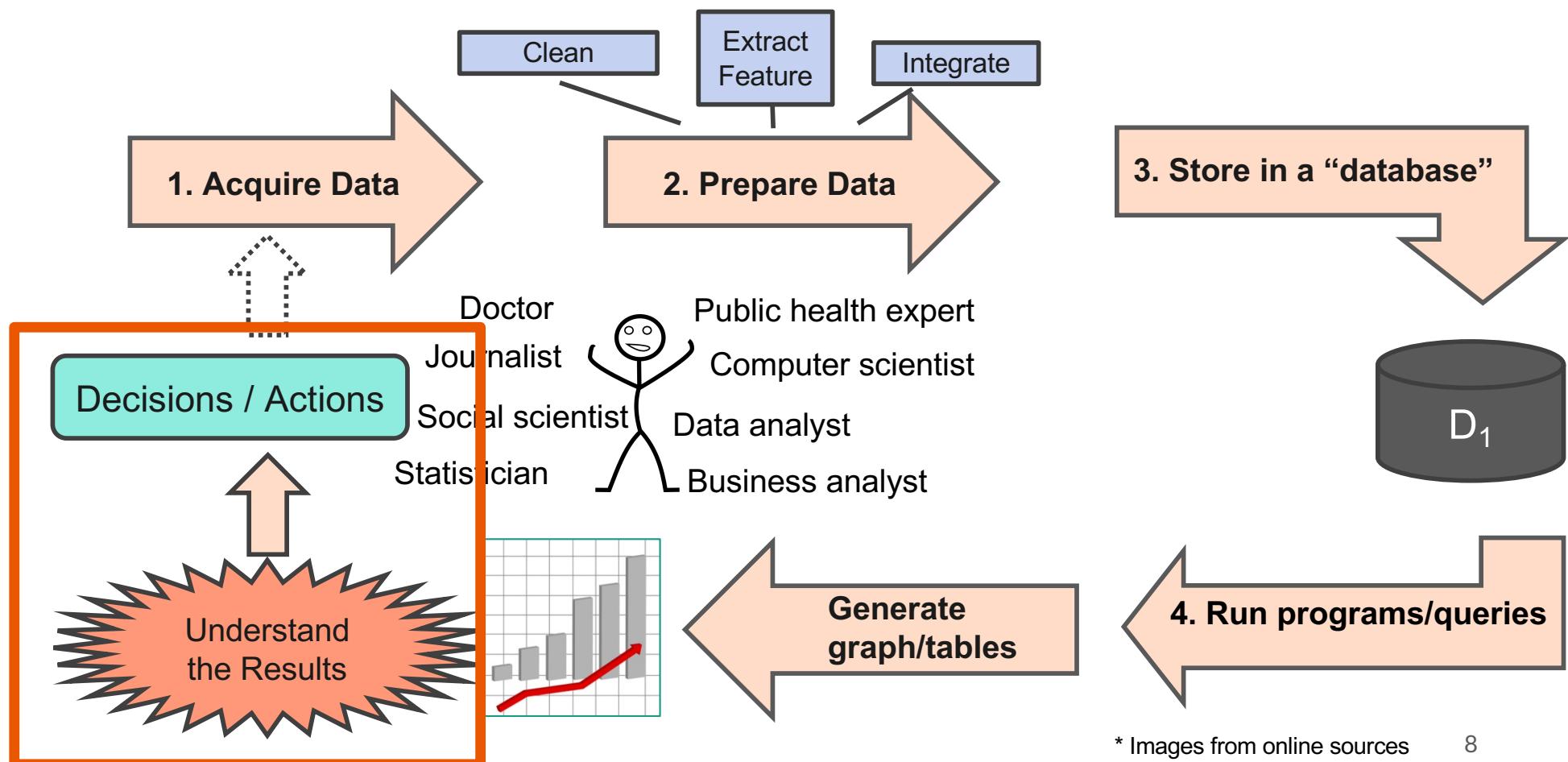


Data Analysis Loop



* Images from online sources

Data Analysis Loop



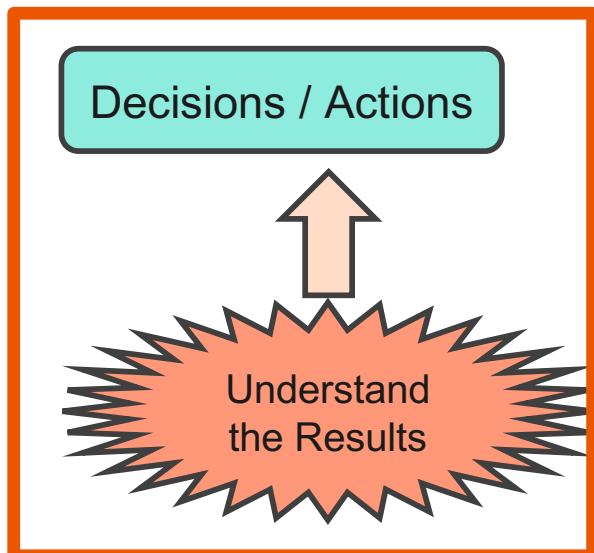
* Images from online sources

Results should be *understandable*

“**Why** do I see this output?”

“**Why** do I see an outlier?”

“**Why** is one value higher than the other?”



Results should be *understandable*

“**Why** do I see this output?”

“**Why** do I see an outlier?”

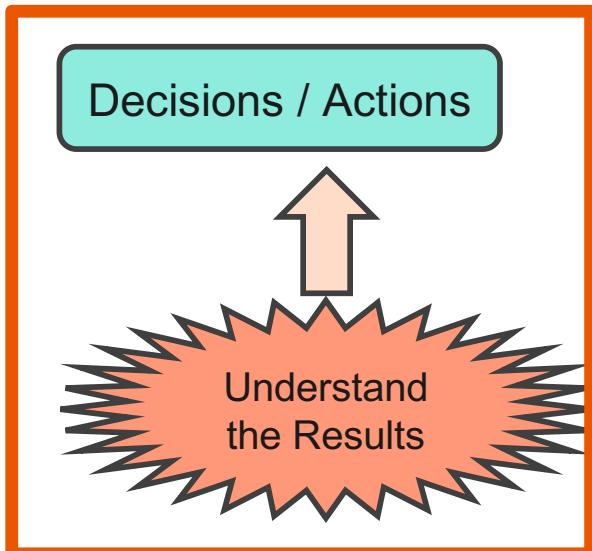
“**Why** is one value higher than the other?”

Actions should be *interpretable*

“**How much** the prestige of authors matter in the outcome of a single blind review ?”

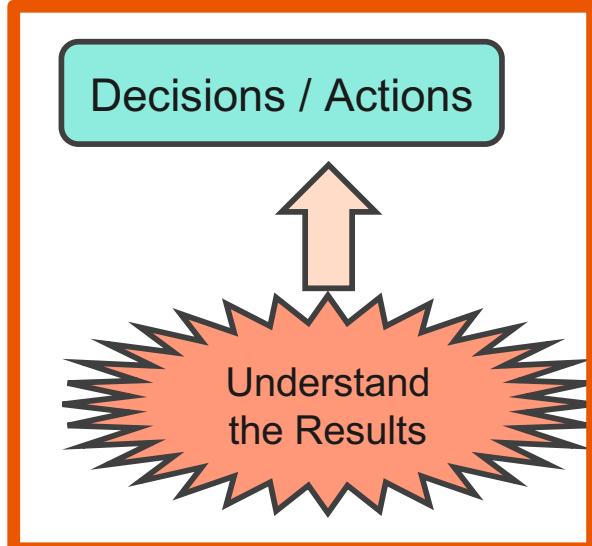
“**How much** drug A has an effect on disease B?”

“**How much** reducing housing tax encourage people to buy houses?



+

Ethics
Debugging
Accountability



Results should be *understandable*

“Why do I see this output?”

“Why do I see an outlier?”

“Why is one value higher than the other?”

Actions should be *interpretable*

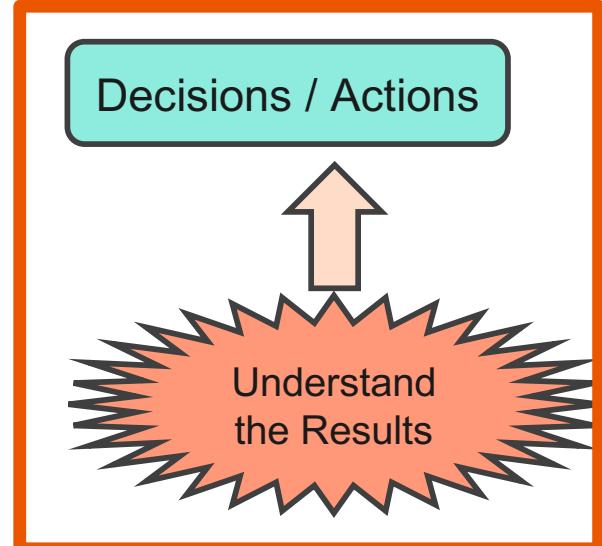
“How much the prestige of authors matter in the outcome of a single blind review ?”

“How much drug A has an effect on disease B?”

“How much reducing housing tax encourage people to buy houses?”

+

Ethics
Debugging
Accountability



*Results should be **understandable***

“Why do I see this output?”

“Why do I see an outlier?”

“Why is one value higher than the other?”

*Actions should be **interpretable***

“How much the prestige of authors matter in the outcome of a single blind review ?”

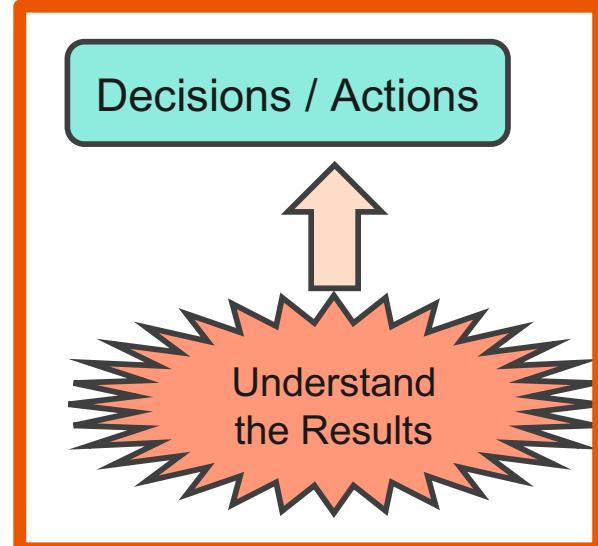
“How much drug A has an effect on disease B?”

“How much reducing housing tax encourage people to buy houses?”

Causality

+

Ethics
Debugging
Accountability



Results should be *understandable*

“Why do I see this output?”

“Why do I see an outlier?”

“Why is one value higher than the other?”

Actions should be *interpretable*

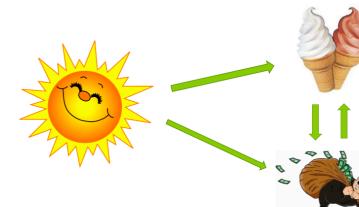
“How much the prestige of authors matter in the outcome of a single blind review ?”

“How much drug A has an effect on disease B?”

“How much reducing housing tax encourage people to buy houses?”

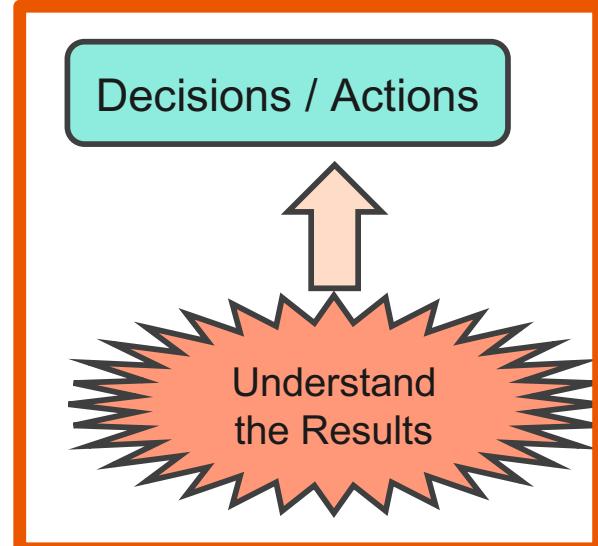
Causality

“Correlation is not causation!”



+

Ethics
Debugging
Accountability



Results should be *understandable*

“Why do I see this output?”

“Why do I see an outlier?”

“Why is one value higher than the other?”

Actions should be *interpretable*

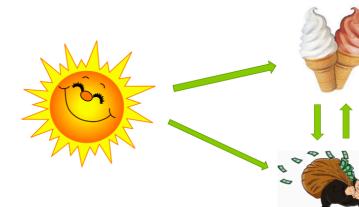
“How much the prestige of authors matter in the outcome of a single blind review ?”

“How much drug A has an effect on disease B?”

“How much reducing housing tax encourage people to buy houses?”

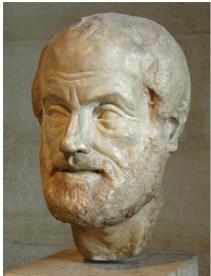
Causality

“Correlation is not causation!”



Causal Analysis on “Observational Data”

Causal Analysis

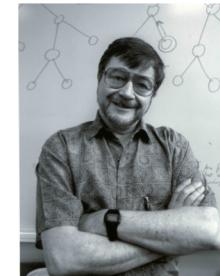


Aristotle
(384-322 BC)
Metaphysics

David Hume
(1738)
A Treatise of
Human Nature

Karl Pearson
(1911)
The Grammar
of Science

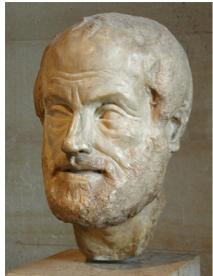
Carl Gustav Hempel
(1965)
Aspects of Scientific
Explanation and Other Essays



Judea Pearl
Graphical Causal
Models

Donald Rubin
Potential Outcome
Framework

Causal Analysis

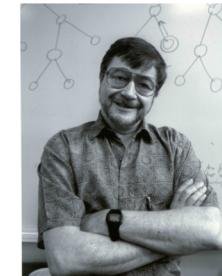


Aristotle
(384-322 BC)
Metaphysics

David Hume
(1738)
A Treatise of
Human Nature

Karl Pearson
(1911)
The Grammar
of Science

Carl Gustav Hempel
(1965)
Aspects of Scientific
Explanation and Other Essays

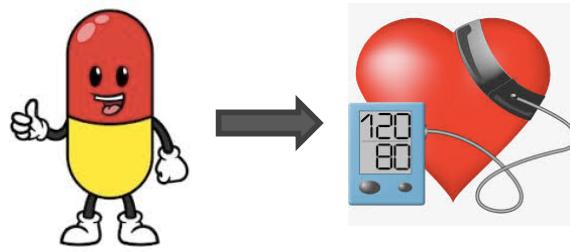


Judea Pearl
Graphical Causal
Models

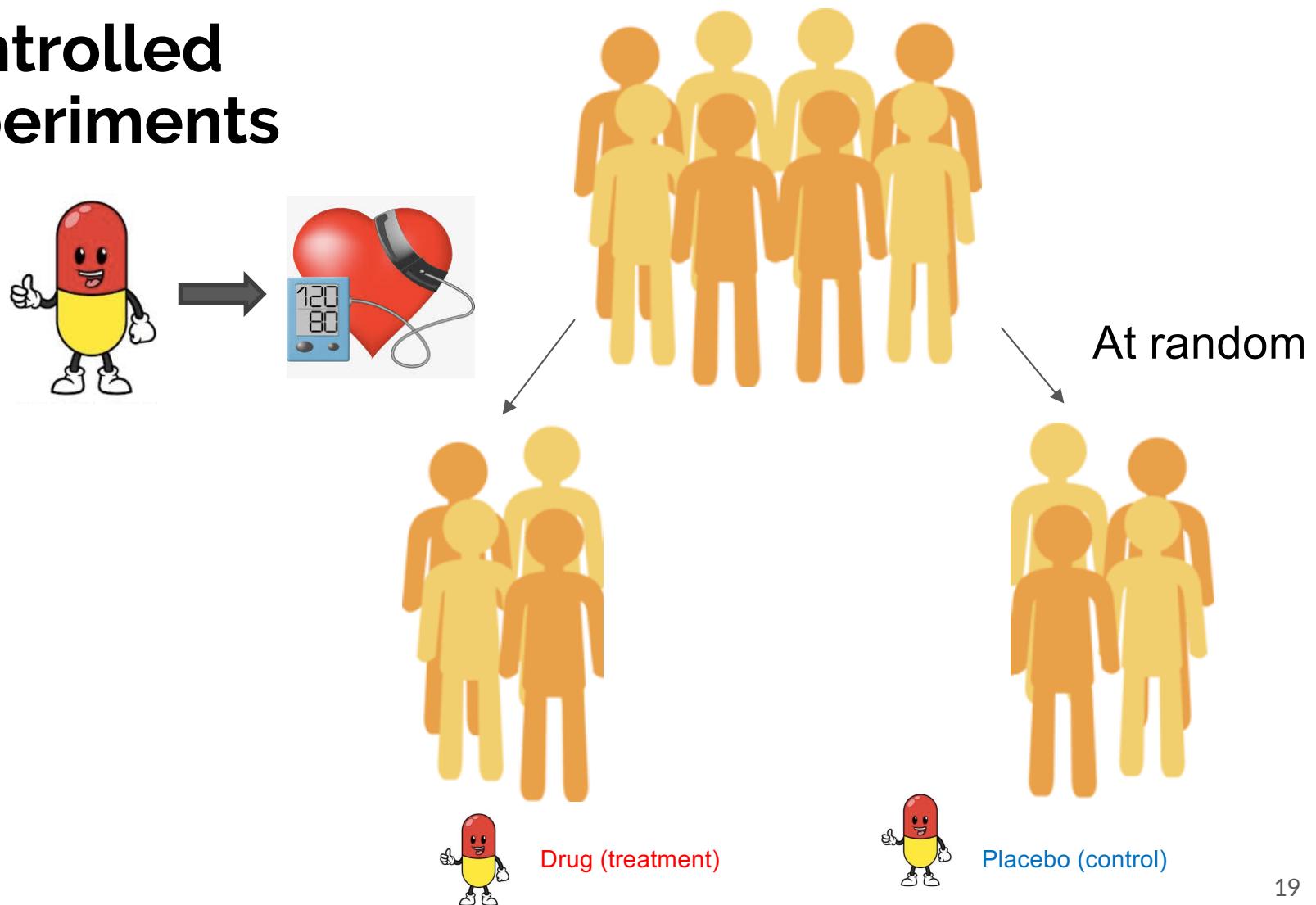
Donald Rubin
Potential Outcome
Framework

Gold standard: A randomized controlled experiment!
(e.g. Clinical Trials)

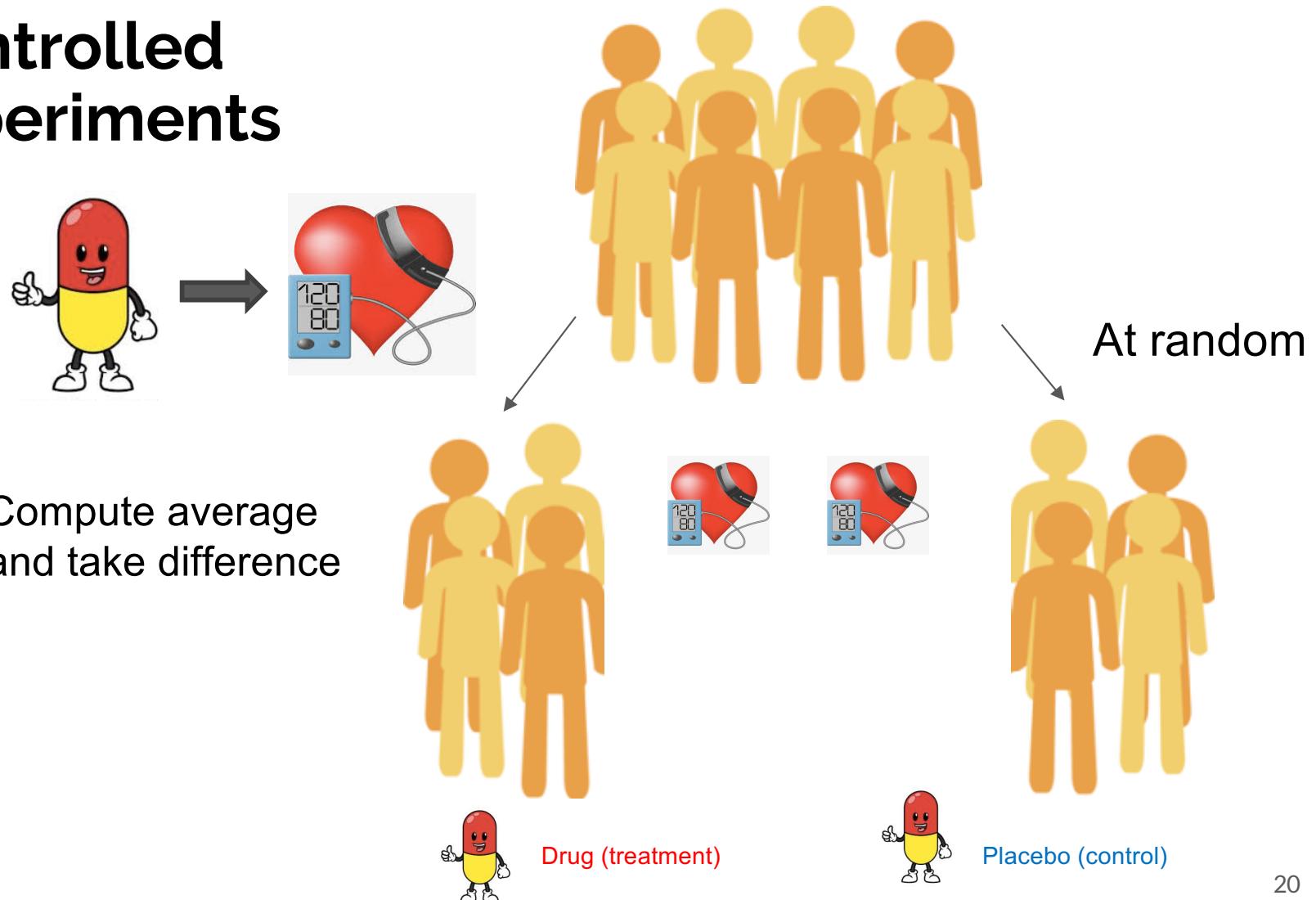
Controlled Experiments



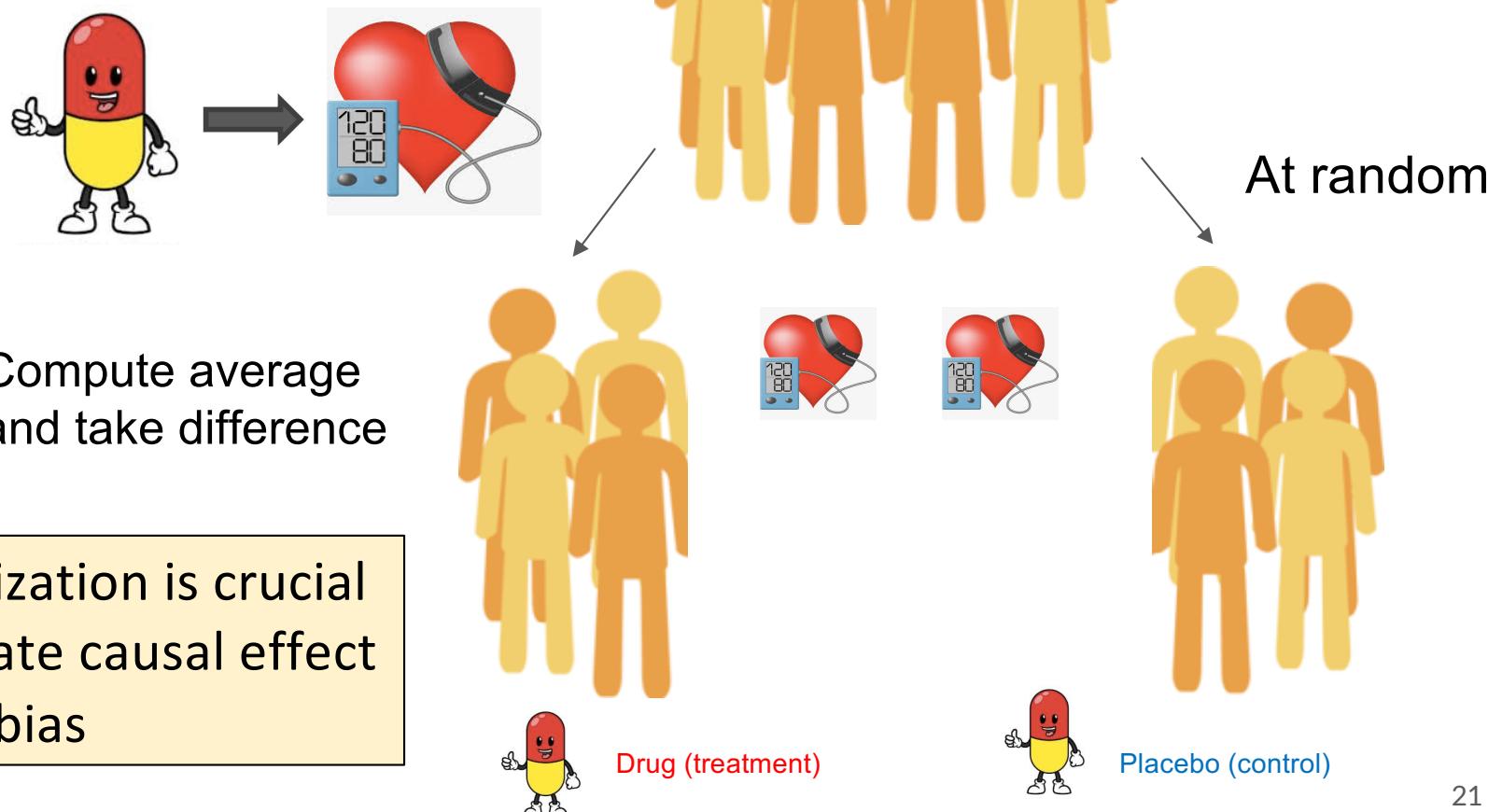
Controlled Experiments



Controlled Experiments



Controlled Experiments



What if we cannot do randomized controlled experiments?

Due to ethical, time, or cost constraints

- “Does smoking cause lung cancer?”
- “Does growing up in a poor neighborhood make a child earn less as an adult?”
- “Does smoking during pregnancy affect newborn’s health?”

What if we cannot do randomized controlled experiments?

Due to ethical, time, or cost constraints

- “Does smoking cause lung cancer?”
- “Does growing up in a poor neighborhood make a child earn less as an adult?”
- “Does smoking during pregnancy affect newborn’s health?”

Fortunately, we can do
“Observational Causal Studies”
Under certain assumptions

Our work: Observational causal studies for “Big Data”

Existing causal studies work for **small, simple data**

Our work: Observational causal studies for “Big Data”

Existing causal studies work for **small, simple data**

Large scale data:

- Large number of “units” (n)
- Large number of “features/covariates” (p)

Our work: Observational causal studies for “Big Data”

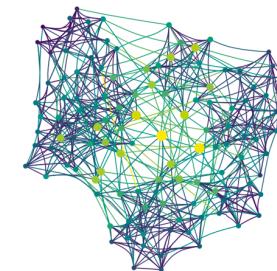
Existing causal studies work for **small, simple data**

Large scale data:

- Large number of “units” (n)
- Large number of “features/covariates” (p)

Complex data:

- Network effect on homogenous units
- Relational effect on heterogenous units



Observational Causal Study setup

Rubin'74
Rosenbaum-Rubin'83

X, Y, T
 $n \times p$ $n \times 1$ $n \times 1$
 $\{0,1\}$

Y = Stroke

T = Drug S for migraine

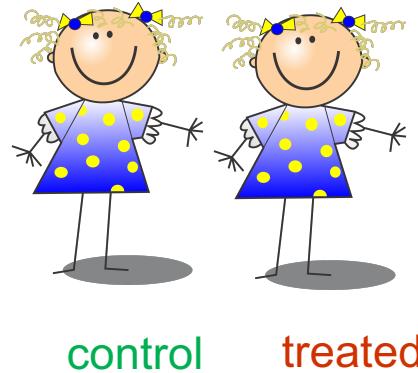
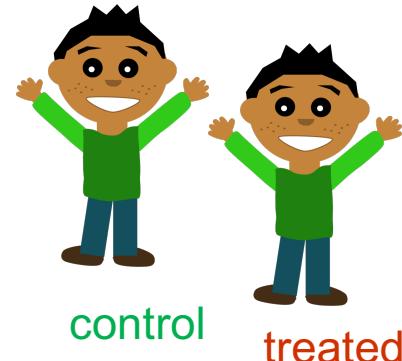
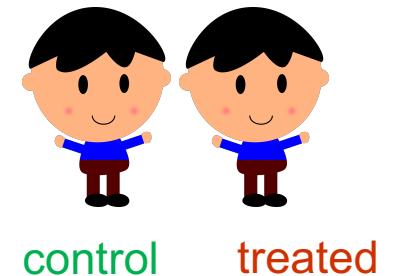
Average Treatment Effect ATE = $E[Y(1) - Y(0)]$

Assumptions for observational studies:

1. **SUTVA:** Stable Unit Treatment Value Assumption
 T_1 does not affect Y_2
Single treatment
2. **Strong Ignorability:** $Y(0), Y(1) \perp\!\!\!\perp T \mid X$

“Matching” in Observational Data

Ideally...



- (1) Find “units” (e.g. patients) with same/similar “**confounding covariates**”
 - e.g., of same age, gender, height, ethnicity, ...
- (2) Make sure all groups have both **treated** and **control** units
- (3) Estimate the causal effect within each group and take average

Exact Matching = Interpretability

There are other methods like “Propensity Score Matching”

- “Match” on $e(X) = \Pr(T = 1 | X)$: need a model, hard to interpret

Go model free - Exact matching to the rescue!

- Highlights overlap between treatment and control populations
- Helps us to find uncertainty and determine what type of additional data must be collected
- Interpret causal estimates within matched populations as “conditional average treatment effects (CATE)” in addition to ATE

Rosenbaum-Rubin'83

Exact Matching: Good but challenging

“As a method of multivariate adjustment, **subclassification** has the advantage that it involves **direct comparisons** of ostensibly comparable groups of units within each subclass and therefore can be both **understandable and persuasive** to an audience with limited statistical training... ”

Exact Matching: Good but challenging

“As a method of multivariate adjustment, **subclassification** has the advantage that it involves **direct comparisons** of ostensibly comparable groups of units within each subclass and therefore can be both **understandable and persuasive** to an audience with limited statistical training... ”

- Subclassification = exact matching
- Direct comparisons = individualized effects
- Persuasive = intuitive, uncomplicated, reproducible

Exact Matching: Good but challenging

“As a method of multivariate adjustment, **subclassification** has the advantage that it involves **direct comparisons** of ostensibly comparable groups of units within each subclass and therefore can be both **understandable and persuasive** to an audience with limited statistical training... ”

- Subclassification = exact matching
- Direct comparisons = individualized effects
- Persuasive = intuitive, uncomplicated, reproducible

“A major problem with **subclassification** .. is that as the number of **confounding variables** increases, the **number of sublasses** grows dramatically, so that even with only two categories per variable, yielding 2^P classes for P variables, most subclasses will not contain both treated and control units.”

Exact Matching: Good but challenging

“As a method of multivariate adjustment, **subclassification** has the advantage that it involves **direct comparisons** of ostensibly comparable groups of units within each subclass and therefore can be both **understandable and persuasive** to an audience with limited statistical training... ”

- Subclassification = exact matching
- Direct comparisons = individualized effects
- Persuasive = intuitive, uncomplicated, reproducible

“A major problem with **subclassification** .. is that as the number of **confounding variables** increases, the **number of sublasses** grows dramatically, so that even with only two categories per variable, yielding 2^P classes for P variables, most subclasses will not contain both treated and control units.”

- Confounders = variables of potential interest
- Number of subclasses = types of individualized effects
- Empty subclasses = impossible to draw causal conclusions

FLAME: Fast Large Almost Matching Exactly

Important Covariates

Unimportant Covariates

covariates: age, gender, heart conditions, blood pressure, toenail length, eyeball width, etc.

treated patient

Marietta [50 F 1 0 1 1 68 1.5cm 2cm 1 0 3 0]

control patient

Lee Ann [50 F 1 0 1 1 68 14cm 1cm 4 1 5 6]

FLAME: Fast Large Almost Matching Exactly

Important Covariates

Unimportant Covariates

covariates: age, gender, heart conditions, blood pressure, toenail length, eyeball width, etc.

treated patient

Marietta [50 F 1 0 1 1 68 1.5cm 2cm 1 0 3 0]

control patient

Lee Ann [50 F 1 0 1 1 68 14cm 1cm 4 1 5 6]

- Match treatment and control units using as many *important* covariates as possible
- Handle large datasets

FLAME: Fast Large Almost Matching Exactly

Important Covariates

Unimportant Covariates

covariates: age, gender, heart conditions, blood pressure, toenail length, eyeball width, etc.

treated patient

Marietta [50 F 1 0 1 1 68 1.5cm 2cm 1 0 3 0]

control patient

Lee Ann [50 F 1 0 1 1 68 14cm 1cm 4 1 5 6]

- Match treatment and control units using as many *important* covariates as possible
- Handle large datasets

From learning

FLAME: Fast Large Almost Matching Exactly

Important Covariates

covariates: age, gender, heart conditions, blood pressure, toenail length, eyeball width, etc.

treated patient

Marietta [50 F 1 0 1 1 68 1.5cm 2cm 1 0 3 0]

control patient

Lee Ann [50 F 1 0 1 1 68 14cm 1cm 4 1 5 6]

- Match treatment and control units using as many *important* covariates as possible From learning
- Handle large datasets Using techniques from data management

Optimization Problem for FLAME

Variable Selector Indicator: $\boldsymbol{\theta} \in \{0, 1\}^p$

Matched Group for i on variables :: $\boldsymbol{\theta}$
 $\mathcal{MG}_i(\boldsymbol{\theta}, \mathcal{S}) = \{i' \in \mathcal{S} : \mathbf{x}_{i'} \circ \boldsymbol{\theta} = \mathbf{x}_i \circ \boldsymbol{\theta}\}$

Prediction Error on training set

$$\begin{aligned}\hat{\text{PE}}_{\mathcal{F}_{\|\boldsymbol{\theta}\|_0}}(\boldsymbol{\theta}, \mathcal{S}) &= \min_{f^{(1)} \in \mathcal{F}_{\|\boldsymbol{\theta}\|_0}} \frac{1}{|\mathcal{S}_1|} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{S}_1} (f^{(1)}(\mathbf{x}_i \circ \boldsymbol{\theta}) - y_i)^2 \\ &\quad + \min_{f^{(0)} \in \mathcal{F}_{\|\boldsymbol{\theta}\|_0}} \frac{1}{|\mathcal{S}_0|} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{S}_0} (f^{(0)}(\mathbf{x}_i \circ \boldsymbol{\theta}) - y_i)^2.\end{aligned}$$

Objective:

$$\boldsymbol{\theta}_{i, \mathcal{S}}^* \in \arg \min_{\boldsymbol{\theta}} \hat{\text{PE}}_{\mathcal{F}_{\|\boldsymbol{\theta}\|_0}}(\boldsymbol{\theta}, \mathcal{S}) \text{ s.t. } \exists \ell \in \mathcal{MG}_i(\boldsymbol{\theta}, \mathcal{S}) \text{ s.t. } t_\ell = 0$$

Optimization Problem for FLAME

Variable Selector Indicator: $\boldsymbol{\theta} \in \{0, 1\}^p$

Matched Group for i on variables :: $\boldsymbol{\theta}$
 $\mathcal{MG}_i(\boldsymbol{\theta}, \mathcal{S}) = \{i' \in \mathcal{S} : \mathbf{x}_{i'} \circ \boldsymbol{\theta} = \mathbf{x}_i \circ \boldsymbol{\theta}\}$

Prediction Error on training set

$$\begin{aligned}\hat{\text{PE}}_{\mathcal{F}_{\|\boldsymbol{\theta}\|_0}}(\boldsymbol{\theta}, \mathcal{S}) &= \min_{f^{(1)} \in \mathcal{F}_{\|\boldsymbol{\theta}\|_0}} \frac{1}{|\mathcal{S}_1|} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{S}_1} (f^{(1)}(\mathbf{x}_i \circ \boldsymbol{\theta}) - y_i)^2 \\ &\quad + \min_{f^{(0)} \in \mathcal{F}_{\|\boldsymbol{\theta}\|_0}} \frac{1}{|\mathcal{S}_0|} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{S}_0} (f^{(0)}(\mathbf{x}_i \circ \boldsymbol{\theta}) - y_i)^2.\end{aligned}$$

Objective:

$$\boldsymbol{\theta}_{i, \mathcal{S}}^* \in \arg \min_{\boldsymbol{\theta}} \hat{\text{PE}}_{\mathcal{F}_{\|\boldsymbol{\theta}\|_0}}(\boldsymbol{\theta}, \mathcal{S}) \text{ s.t. } \exists \ell \in \mathcal{MG}_i(\boldsymbol{\theta}, \mathcal{S}) \text{ s.t. } t_\ell = 0$$

For every treatment unit, find
The best possible match with at
least one control unit

Best = Low predictive error
on a holdout set

Drop least useful covariate
and continue

Efficient exact matching with database queries

```
SELECT Age, Race, Gender, State, Education,  
       ((SUM(T*Y)/SUM(T)) - (SUM(1-T)*Y)/(COUNT(*)-SUM(T))) AS ATE  
  FROM Population  
 GROUP BY Age, Race, Gender, State, Education  
 HAVING SUM(T)>= 1 AND SUM(T) <= COUNT(*) - 1
```

SQL “Group-by” queries:

Finds all groups of units with the same values of covariates
very efficiently

Some (insightful) experiments

$$y = \sum_{i=1}^{10} \alpha_i x_i + T \sum_{i=1}^{10} \beta_i x_i + T \cdot U \sum_{i=1 \dots 5, \gamma=1 \dots 5, \gamma > i} x_i x_\gamma,$$

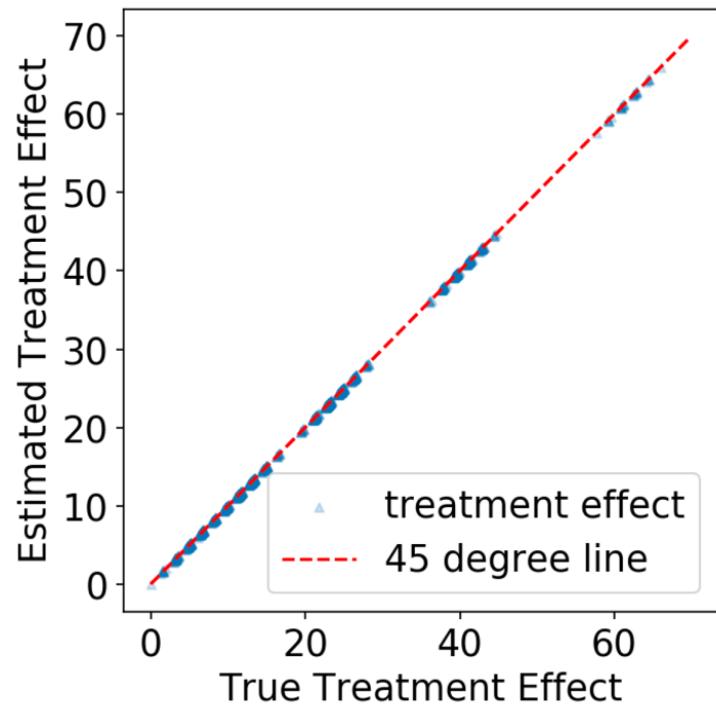
+20 irrelevant covariates, where $\alpha_i = \beta_i = 0$

$x_i \sim \text{Bernoulli}(0.5)$ for $1 \leq i \leq 10$

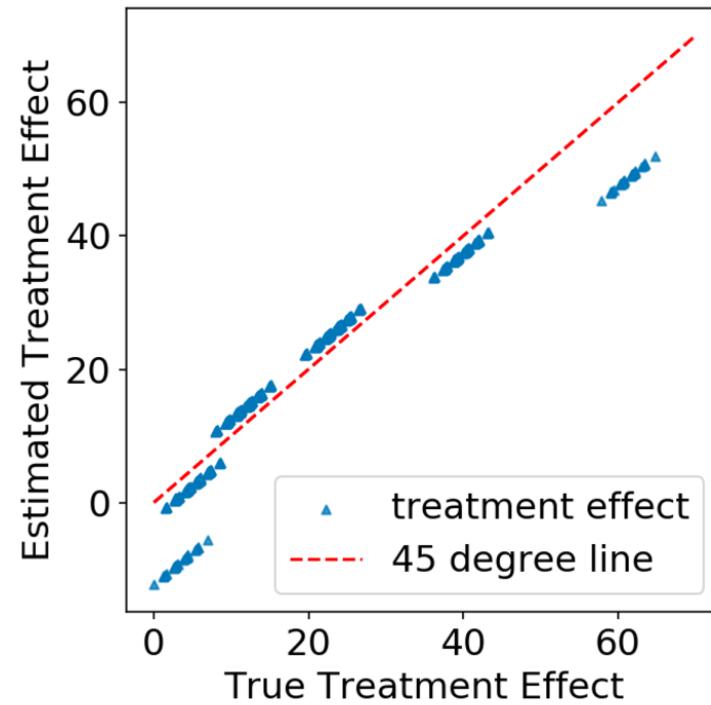
$10 < i \leq 30$, $x_i \sim \text{Bernoulli}(0.1)$ in the control group

$x_i \sim \text{Bernoulli}(0.9)$ in the treatment group.

20K units, 10K treatment, 10K control (no noise)



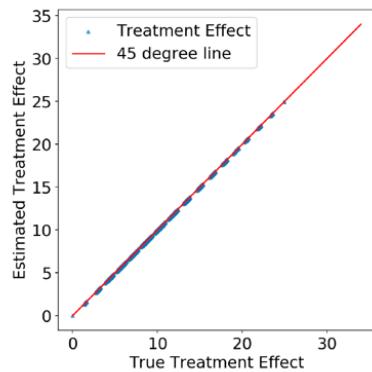
(a) FLAME



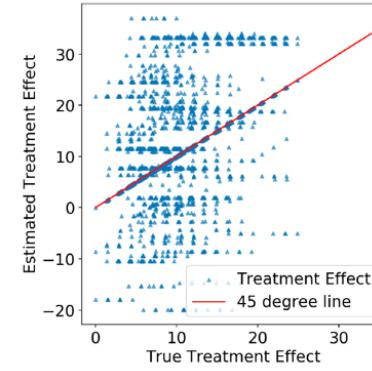
(b) Double linear regressors

Regression cannot handle model misspecification

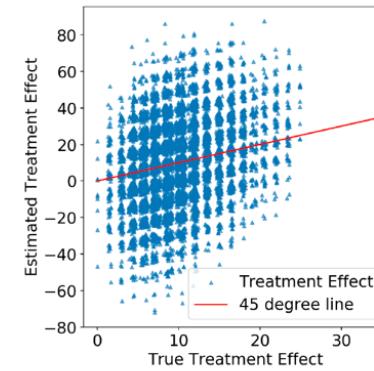
Accuracy: FLAME beats all other methods



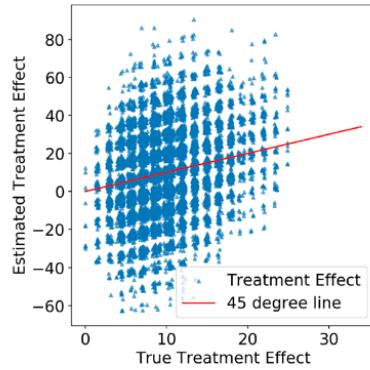
(a) FLAME (Early Stopping)



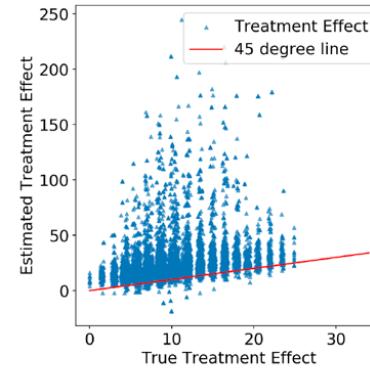
(b) FLAME (Run Until No More Matches)



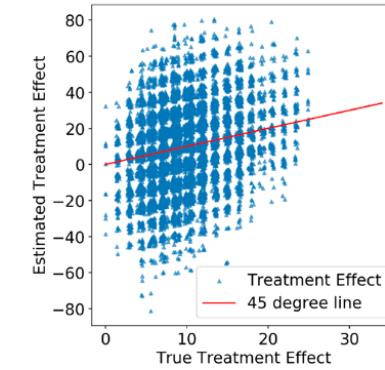
(c) 1-PSNNM



(d) GenMatch



(e) Causal Forest



(f) Mahalanobis

FLAME has less error

Time: FLAME beats all other methods on large data!

Small (er) data 30k units

Method	Time (seconds)
FLAME-bit	27.68 ± 0.80
FLAME-db	57.93 ± 0.47
Causal Forest	52.34 ± 1.82
1-PSNNM	14.78 ± 0.70
Mahalanobis	76.79 ± 0.49
GenMatch	> 150
Cardinality Match	> 150

On the census dataset with
~ 1 million tuples and ~60 covariates

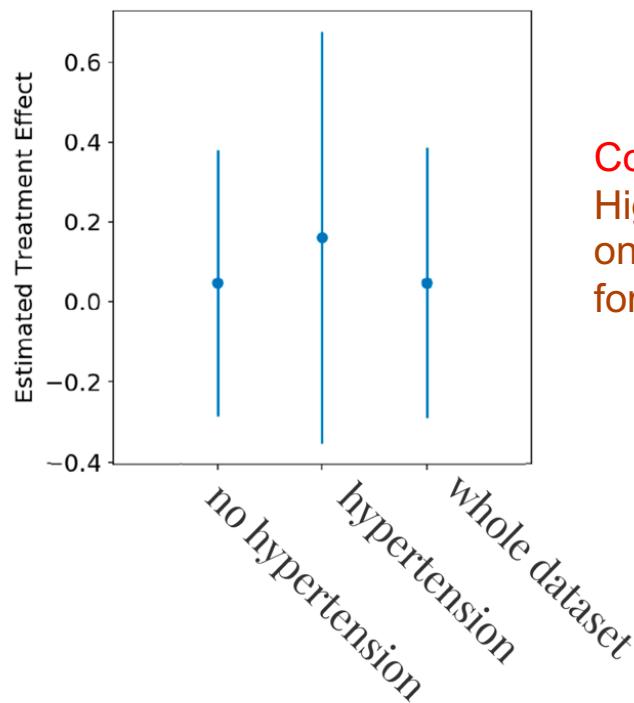
Method	Time (hours)
FLAME-bit	Crashed
FLAME-db	1.37
Causal Forest	Crashed
1-PSNNM	> 10
Mahalanobis	> 10
GenMatch	> 10
Cardinality Match	> 10

FLAME is scalable

Application: Natality data

- publicly available dataset on 2010 Natality dataset
- 86 variables includes health information of pregnant women and newborns
- causal effect of smoking on risk of child abnormal health conditions
- 204,886 treated units, 1,985,524 control. 10% used as holdout

Public data from CDC
~4 million tuples



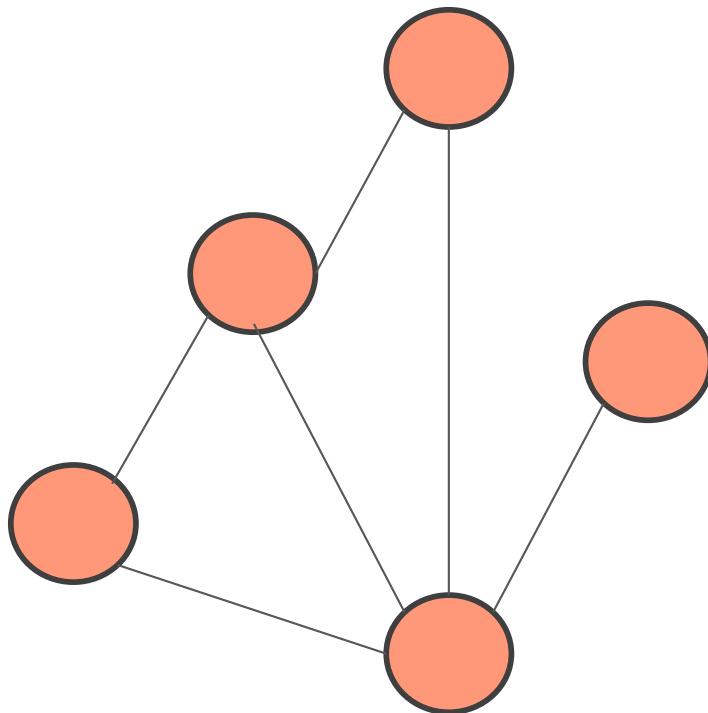
Conditional Average Treatment Effect (CATE)
Higher causal effect
on smoking during pregnancy
for mothers with hypertension

Extensions of FLAME

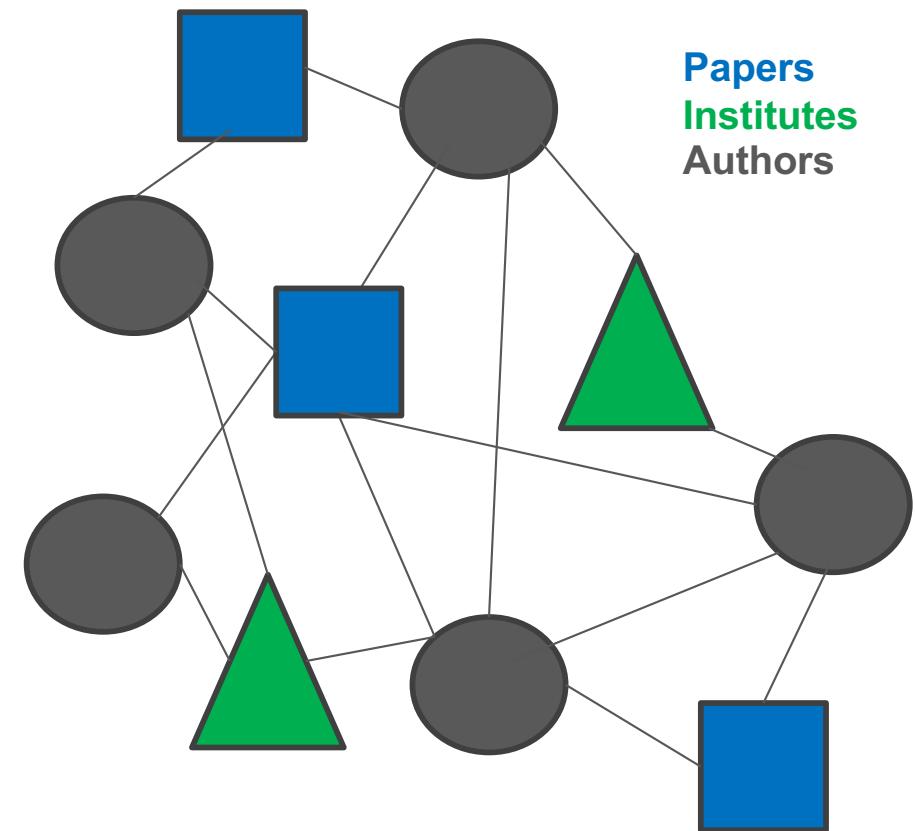
- FLAME is greedy, DAME (Dynamic Almost Exact Matching) finds **optimal solution by an exhaustive search** – but efficiently, by ideas from data mining
 - Worse running time than FLAME, but better quality matches
- Extension to **instrumental variables**
- **Takeaway:** FLAME and DAME leverage ideas from ML + databases
 - Scalable
 - Accurate
- **Ongoing:** continuous covariates, time series data, ...

All these on a single “table”
with “Independent Units”

Complex Data

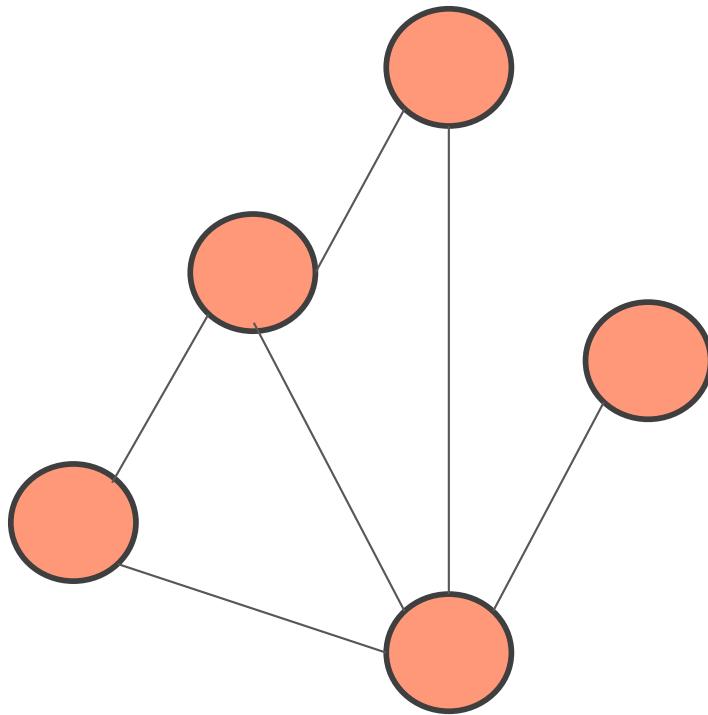


Student sharing rooms in college dorms
“homogenous units”



“heterogenous units”

Homogenous units on a network

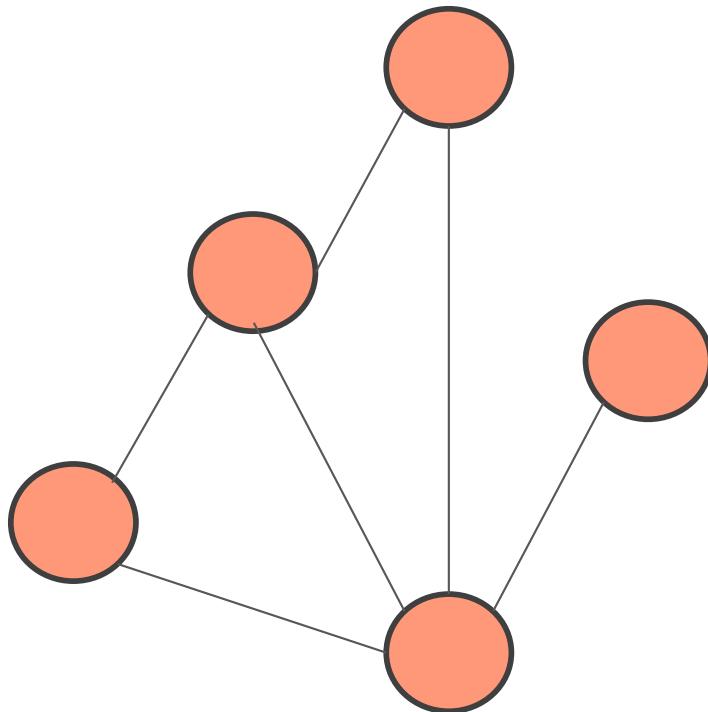


Student sharing rooms in college dorms
“homogenous units”

Basic assumptions like SUTVA do not hold

For two neighbors 1 and 2:
Interference T_1 affects Y_2
Contagion Y_1 affects Y_2
Entanglement $T_1 = T_2$

Homogenous units on a network



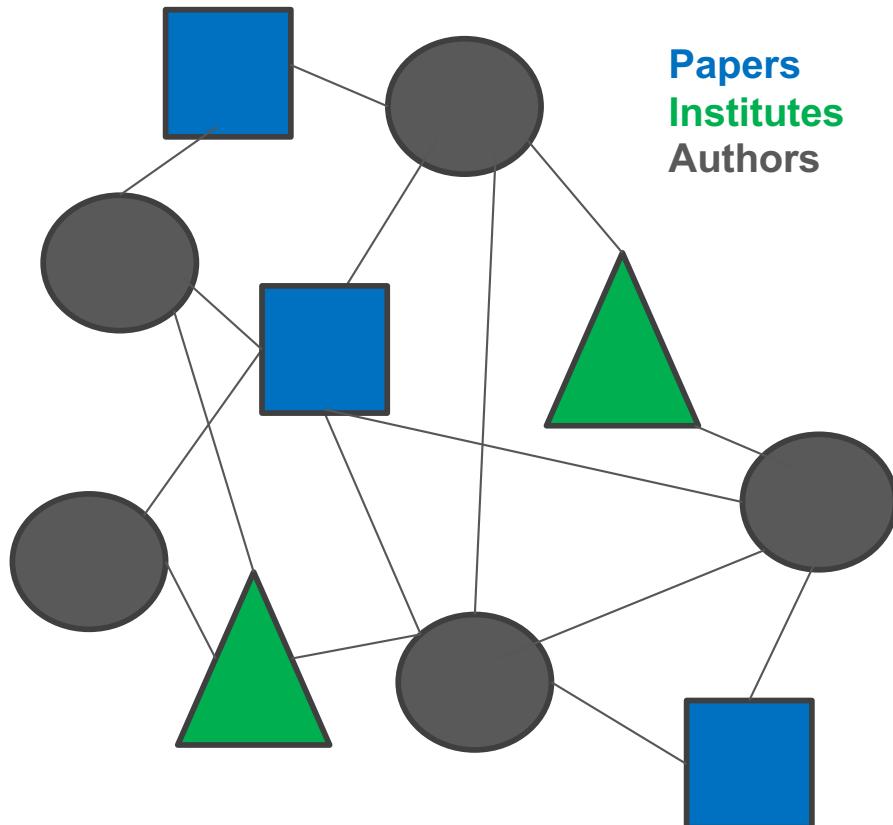
Student sharing rooms in college dorms
“homogenous units”

Basic assumptions like SUTVA do not hold

For two neighbors 1 and 2:
Interference T_1 affects Y_2
Contagion Y_1 affects Y_2
Entanglement $T_1 = T_2$

Our (initial) work:
• Matching on neighborhood structure
on experimental data
• Match on all possible subgraphs, use FLAME

Heterogenous relational data



“heterogenous units”

Multiple tables:

Papers(pid, venue, year, title, ...)

Institute(iid, city, country, rank)

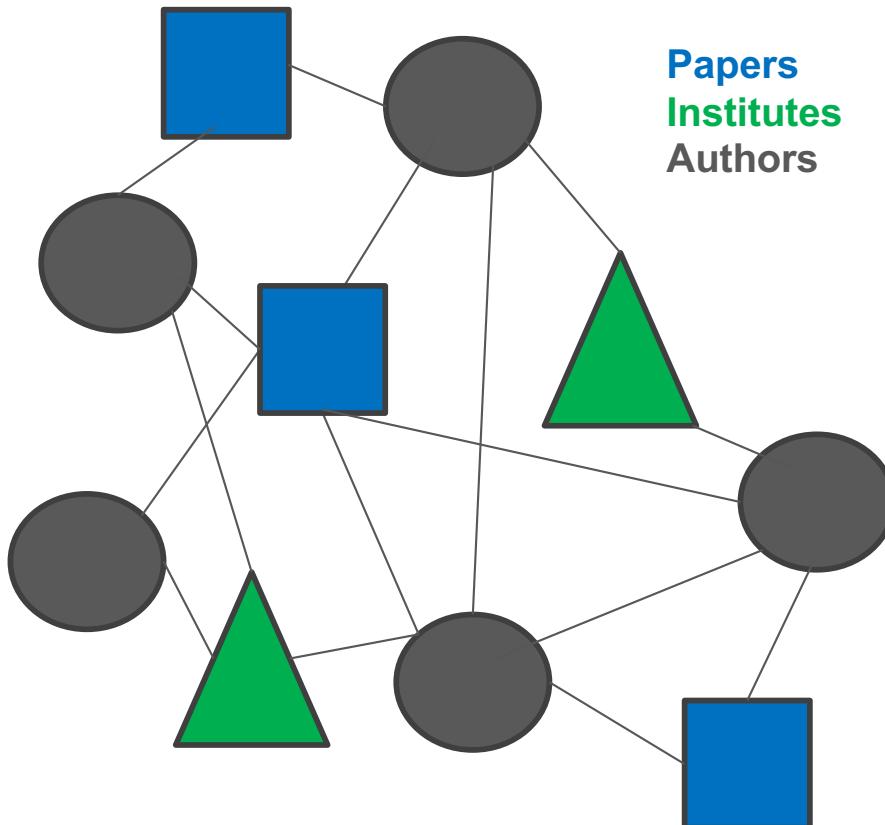
Authors(aid, name, position)

Affiliation(aid, iid)

Wrote(aid, pid)

Review(pid, rid, is-single-blind, score)

Heterogenous relational data



“heterogenous units”

Multiple tables:

Papers(pid, venue, year, title, ...)

Institute(iid, city, country, rank)

Authors(aid, name, position)

Affiliation(aid, iid)

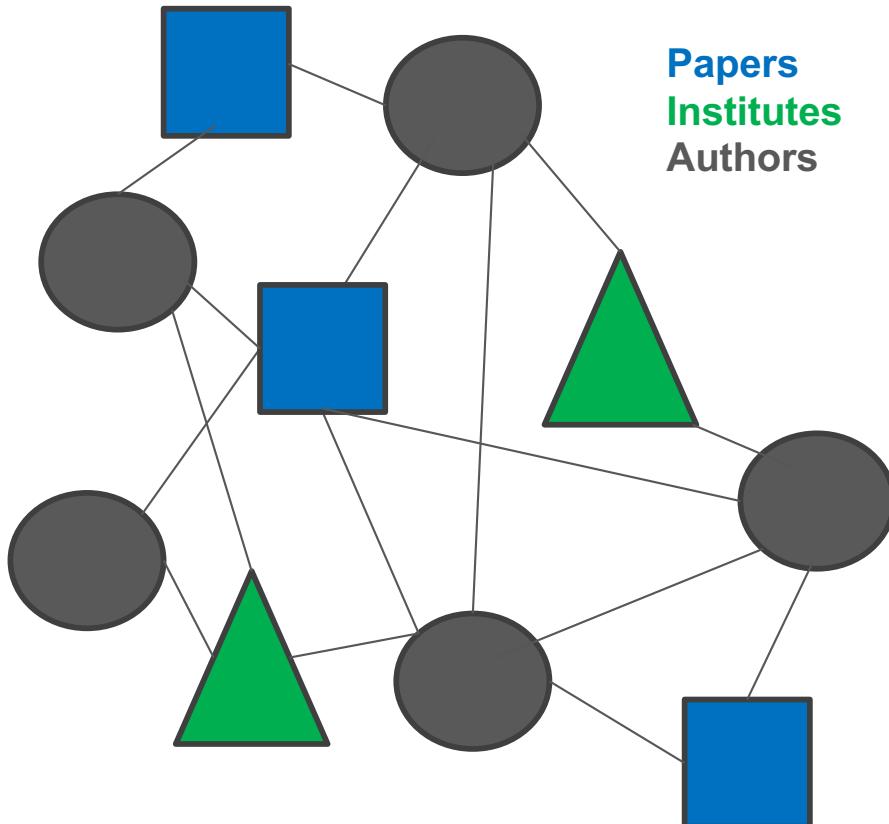
Wrote(aid, pid)

Review(pid, rid, is-single-blind, score)

Does institutional rank (prestige) causally affect Scores received by papers in reviews?

- For single-blind reviews?
- For double-blind reviews?

Heterogenous relational data



“heterogenous units”

Multiple tables:

Papers(pid, venue, year, title, ...)

Institute(iid, city, country, rank)

Authors(aid, name, position)

Affiliation(aid, iid)

Wrote(aid, pid)

Review(pid, rid, is-single-blind, score)

From two tables

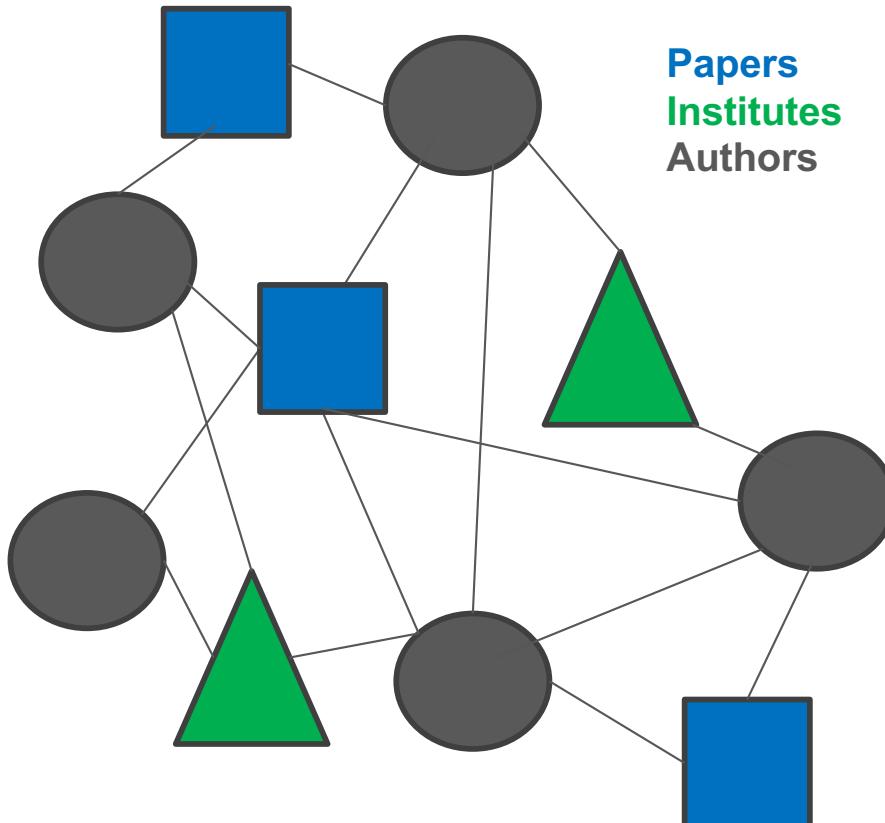
T

Y

Does institutional rank (prestige) causally affect Scores received by papers in reviews?

- For single-blind reviews?
- For double-blind reviews?

Heterogenous relational data



“heterogenous units”

Multiple tables:

Papers(pid, venue, year, title, ...)

Institute(iid, city, country, rank)

Authors(aid, name, position)

Affiliation(aid, iid)

Wrote(aid, pid)

Review(pid, rid, is-single-blind, score)

From two tables

T

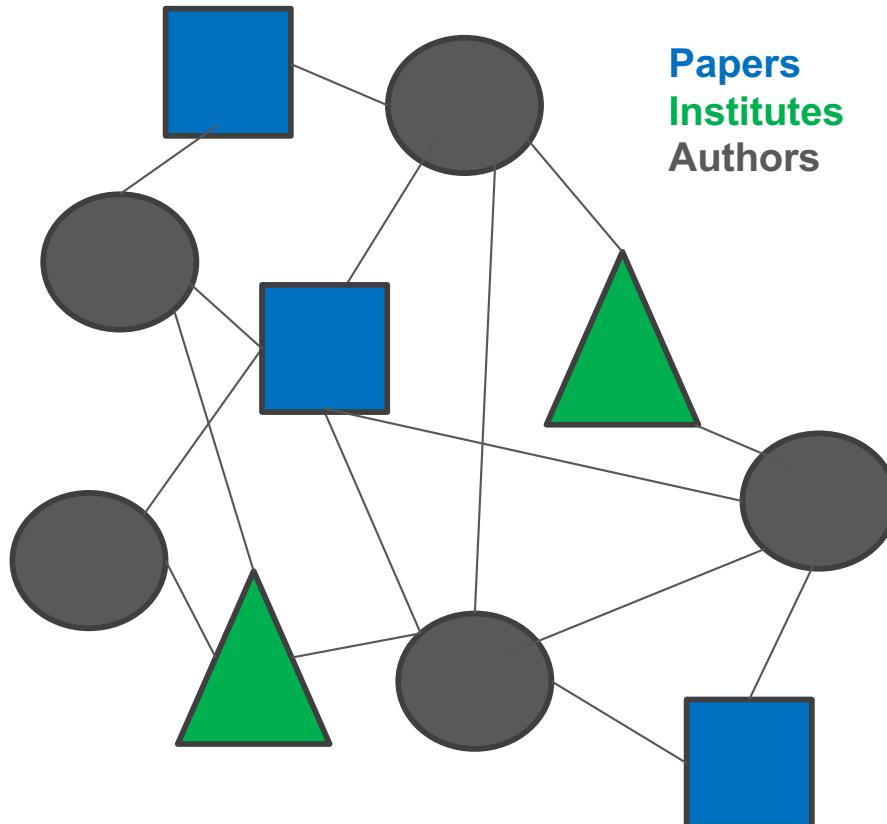
Y

Does institutional rank (prestige) causally affect Scores received by papers in reviews?

- For single-blind reviews?
- For double-blind reviews?

Doctors – Patients – Disease - Treatment - Cost ..

Heterogenous relational data



Multiple tables:

Papers(pid, venue, year, title, ...)

Institute(iid, city, country, rank)

Authors(aid, name, position)

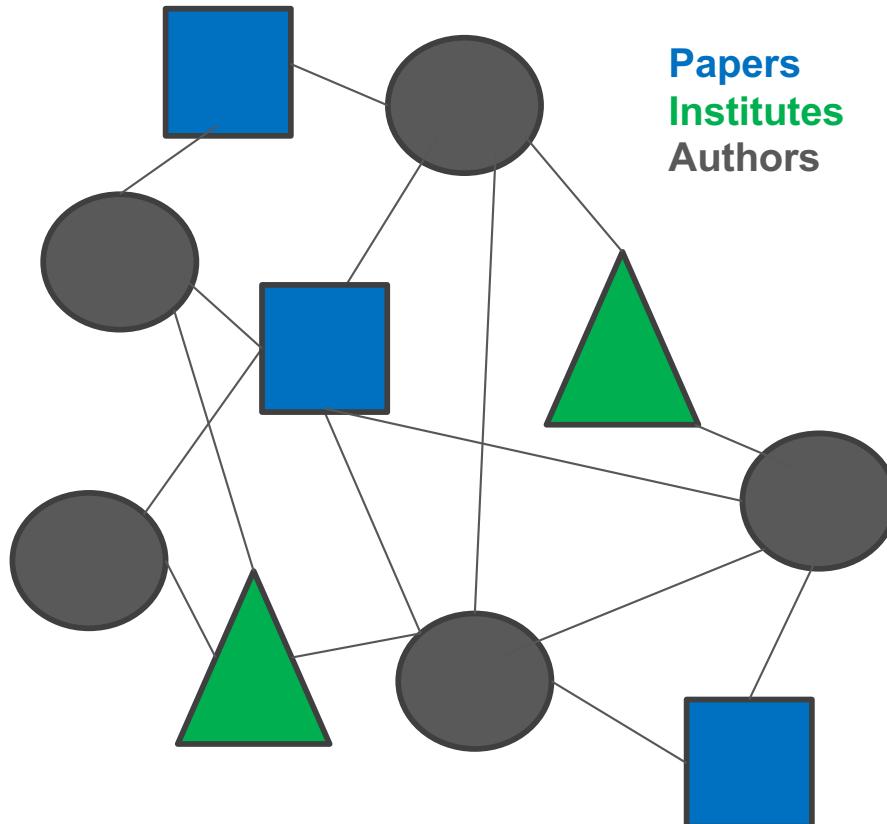
Affiliation(aid, iid)

Wrote(aid, pid)

Review(pid, rid, is-single-blind, **score**)

- Need to find the right set of “unified” units
By multiple levels of “mapping”
- Need to find the right set of covariates
Using “causal graphs”

Heterogenous relational data



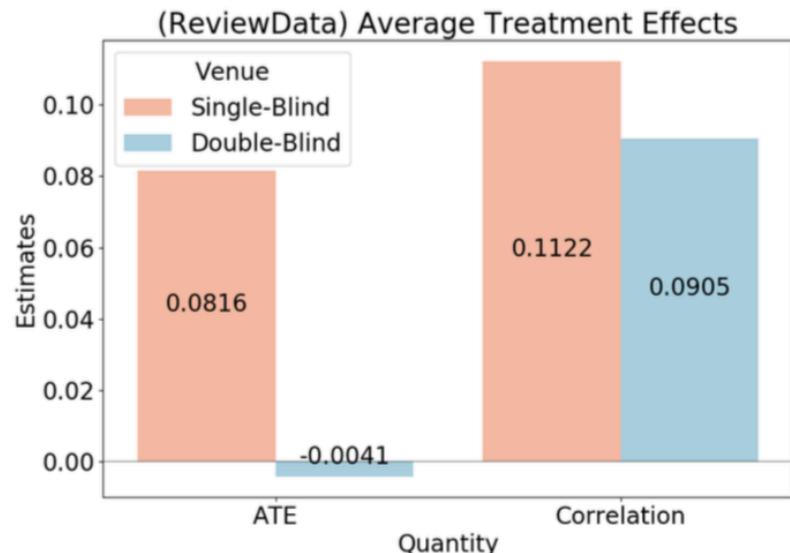
“heterogenous units”

Multiple tables:
Papers(pid, venue, year, title, ...)
Institute(iid, city, country, rank)
Authors(aid, name, position)
Affiliation(aid, iid)
Wrote(aid, pid)
Review(pid, rid, is-single-blind, score)

- Need to find the right set of “unified” units
By multiple levels of “mapping”
- Need to find the right set of covariates
Using “causal graphs”

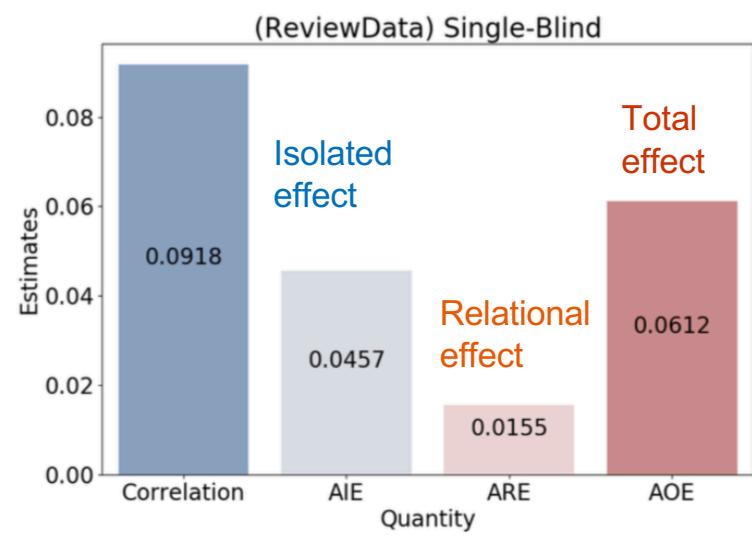
We do all these “declaratively”

Sample results



Causation vs. Correlation

(a)



(b)

Isolated, relational, and total effect

Explaining Results Motivated by Causality

Results should be *understandable*

Explanations

“**Why** do I see this output?”

“**Why** do I see an outlier?”

“**Why** is one value higher than the other?”

Y is a “cause” of Z if we can change Z by manipulating Y

Results should be *understandable*

Explanations

“**Why** do I see this output?”

“**Why** do I see an outlier?”

“**Why** is one value higher than the other?”

Y is a “cause” of Z if we can change Z by manipulating Y

A **subset of input** is an explanation to user’s question if we can change the results by “**manipulating**” this subset

- and provide a compact description of the subset as the explanation (e.g., a predicate)

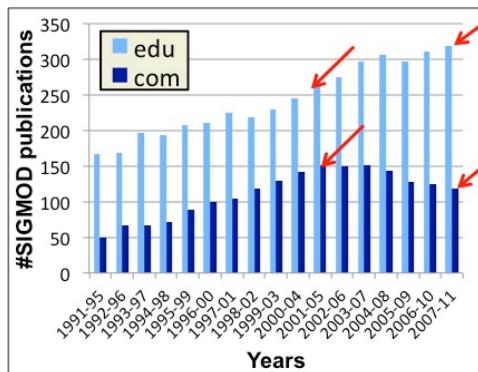
Explanations: Examples

Roy-Suci- SIGMOD'14
Roy-Orr-Suci - PVLDB'15
Miao-Zeng-Glavic-Roy - SIGMOD'19

Intervention

If these patterns were not there, situation would change

Q. Why industry SIGMOD papers reduced compared to academia?



Counterbalance

A “low” outlier can be explained by a “high” outlier

- Many papers from Bell Labs, IBM around 2000
- Either they are not active (intervention)

Or

- They shifted focus (counterbalance)

	Explanations
1	inst = ibm.com
2	inst = bell-labs.com
3	name = Rajeev Rastogi
4	inst = ucla.edu
5	name = Hamid Pirahesh
6	inst = asu.edu
7	name = Rakesh Agrawal

What next?

- What improvements to the research infrastructure are needed?
 - A joint research agenda in addition to helping each other's agenda
 - Platform to facilitate cross-disciplinary collaboration
 - One of the key challenges is writing our papers is finding an application and a good dataset
 - Easy access to data
 - Discussion board?
 - More frequent workshops like this

What next?

- What types of training are most important for this type of research?
 - Rigorous training in computer science, machine learning, artificial intelligence, statistics, maths, programming, algorithms, ...
 - Ability to understand problems in an application domain and communicate with domain experts
 - Back and forth contributions

Applications ⇒ Methodology ⇒ Application ⇒ Methodology
(decision making/policy?)

What next?

- What are the future research needs (methods, analyses and interventions, etc.)?
 - Model all the complexity in the data (constraints, structure, continuous/discrete features, incompleteness/uncertainty in noisy data)
 - Make data analysis interpretable ... and accessible.. to a broad range of data scientists and domain experts from technical and non-technical background

Joint work with

1R01EB025021-01

CAREER
IIS-1552538
IIS-1703431

Cynthia Rudin
Duke CS

Alexander Volfovsky
Duke Statistics

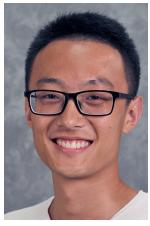
Lise Getoor
UCSC

Dan Suciu
UW

Babak Salimi
UW

Boris Glavic
IIT Chicago

**Harsh
Parikh**



**Tianyu
Wang**

**Marco
Morucci**

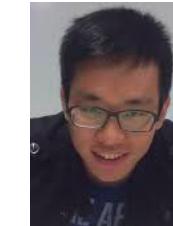
**M. Usaid
Awan**

**Vittorio
Orlandi**

**Zhengjie
Miao**

**Yameng
Liu**

**Moe
Kayali, UW**



**Qitian
Zeng, IIT**

**Laurel
Orr, UW**

And many others..

* Code available online