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Data Analysis

* Data

* Advances in ML

* Computing resources

* Interests & applications
(Democratization of Data)
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Results should be understandable

“Why do | see this output?”

“Why do | see an outlier?”
“Why is one value higher than the other?”

[ Decisions / Actions ]

Understand
the Results




[ Decisions / Actions ]

Understand
the Results

Results should be understandable

“Why do | see this output?”

“Why do | see an outlier?”
“Why is one value higher than the other?”

Actions should be interpretable

“How much the prestige of authors matter in the
outcome of a single blind review ?”

“How much drug A has an effect on disease B?”

“How much reducing housing tax encourage
people to buy houses?
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Causal Analysis on “Observational Data”
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Causal Analysis

Aristotle David Hume Karl Pearson  Carl Gustav Hempel Judea Pearl Donald Rubin
(384-322 BC) (1738) (1911) (1965) Graphical Causal  Potential Outcome
Metaphysics A Treatise of The Grammar Aspects of Scientific Models Framework
Human Nature of Science  Explanation and Other Essays
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Causal Analysis

Aristotle David Hume Karl Pearson  Carl Gustav Hempel Judea Pearl Donald Rubin
(384-322 BC) (1738) (1911) (1965) Graphical Causal  Potential Outcome
Metaphysics A Treatise of The Grammar Aspects of Scientific Models Framework
Human Nature of Science  Explanation and Other Essays

A randomized controlled experiment!
(e.g. Clinical Trials)
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Controlled
Experiments
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Controlled
Experiments
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Controlled
Experiments

\ At random

Compute average & &
and take difference

Randomization is crucial

to estimate causal effect

without bias

Drug (treatment) Placebo (control)
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What if we cannot do randomized controlled
experiments?

Due to ethical, time, or cost constraints

e “Does smoking cause lung cancer?”
e “Does growing up in a poor neighborhood make a child earn less as an adult?”

e “Does smoking during pregnancy affect newborn’s health?”

22



What if we cannot do randomized controlled
experiments?

Due to ethical, time, or cost constraints

e “Does smoking cause lung cancer?”
e “Does growing up in a poor neighborhood make a child earn less as an adult?”

e “Does smoking during pregnancy affect newborn’s health?”

Fortunately, we can do

“Observational Causal Studies”
Under certain assumptions

23



Our work: Observational causal studies for

“Big Data”

Existing causal studies work for small, simple data
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Our work: Observational causal studies for

“Big Data”

Existing causal studies work for small, simple data

Large scale data:
e Large number of “units” (n)
e Large number of “features/covariates” (p)
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Our work: Observational causal studies for

“Big Data”

Existing causal studies work for small, simple data

Large scale data:
e Large number of “units” (n)
e Large number of “features/covariates” (p)

Complex data:
e Network effect on homogenous units
o Relational effect on heterogenous units
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Rubin’74

Observational Causal Study setup Rosenbaum-Rubin'g3

Average Treatment Effect ATE = E[Y(1) — Y(0)]

X, Y, T
nxp nx1 nx1
{0,1}
Y = Stroke Assumptions for observational studies:
T = Drug S for migraine 1. SUTVA: Stable Unit Treatment Value Assumption

T, does not affect Y,
Single treatment

2. Strong Ignorability: Y(0), Y(1) L T | X

27




“Matching” in Observational Data

|deally...
o

L 2 4

control treated

control
control treated control treated treated

(1) Find “units” (e.g. patients) with same/similar “confounding covariates”
o e.g.,of same age, gender, height, ethnicity, ...

(2) Make sure all groups have both treated and control units

(3) Estimate the causal effect within each group and take average

28



Rosenbaum-Rubin’83

Exact Matching = Interpretability

There are other methods like “Propensity Score Matching”
® “Match” one(X) = Pr(T = 1| X): need a model, hard to interpret

Go model free - Exact matching to the rescue!
e Highlights overlap between treatment and control populations

e Helps us to find uncertainty and determine what type of additional data must be
collected

® Interpret causal estimates within matched populations as “conditional average
treatment effects (CATE)” in addition to ATE

29



Rosenbaum-Rubin’83

Exact Matching: Good but challenging

“As a method of multivariate adjustment, subclassification has the advantage that it involves
direct comparisons of ostensibly comparable groups of units within each subclass and
therefore can be both understandable and persuasive to an audience with limited statistical
training... ”

30
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e Subclassification = exact matching
e Direct comparisons = individualized effects
e Persuasive = intuitive, uncomplicated, reproducible
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Exact Matching: Good but challenging

“As a method of multivariate adjustment, subclassification has the advantage that it involves
direct comparisons of ostensibly comparable groups of units within each subclass and

therefore can be both understandable and persuasive to an audience with limited statistical
training... ”

e Subclassification = exact matching
e Direct comparisons = individualized effects
e Persuasive = intuitive, uncomplicated, reproducible

“A major problem with subclassification .. is that as the number of confounding variables
increases, the number of sublcasses grows dramatically, so that even with only two
categories per variable, yielding 2P classes for P variables, most subclasses will not contain
both treated and control units.”
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Rosenbaum-Rubin’83

Exact Matching: Good but challenging

“As a method of multivariate adjustment, subclassification has the advantage that it involves
direct comparisons of ostensibly comparable groups of units within each subclass and
therefore can be both understandable and persuasive to an audience with limited statistical
training... ”

e Subclassification = exact matching
e Direct comparisons = individualized effects
e Persuasive = intuitive, uncomplicated, reproducible

“A major problem with subclassification .. is that as the number of confounding variables
increases, the number of sublcasses grows dramatically, so that even with only two
categories per variable, yielding 2P classes for P variables, most subclasses will not contain
both treated and control units.”

e Confounders = variables of potential interest
e Number of subclasses = types of individualized effects
e Empty subclasses = impossible to draw causal conclusions
33



Wang-Morucci-Awan-Liu-Roy-Rudin-Volfovsky’19

FLAME: Fast Large Almost Matching Exactly

Important Covariates Unimportant Covariates
covariates: age, gender, heart conditions, blood pressure, toenail length, eyeball width, etc.
treated patient
Marietta [ 50 F 1011 68 15cm 2cm 10 3 0.... ]

control patient
Lee Ann [ 50 F 1011 68 14cm 1cm 41 56

34



Wang-Morucci-Awan-Liu-Roy-Rudin-Volfovsky’19

FLAME: Fast Large Almost Matching Exactly

Important Covariates Unimportant Covariates
covariates: age, gender, heart conditions, blood pressure, toenail length, eyeball width, etc.
treated patient
Marietta [ 50 F 1011 68 15cm 2cm 10 3 0.... ]
control patient
Lee Ann [ 50 F 1011 68 14cm 1cm 4 1 5 6. ]

® Matc%ltreatment and control units using as many important covariates as
possible

e Handle large datasets
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FLAME: Fast Large Almost Matching Exactly

Important Covariates Unimportant Covariates
covariates: age, gender, heart conditions, blood pressure, toenail length, eyeball width, etc.
treated patient
Marietta [ 50 F 1011 68 15cm 2cm 10 3 0.... ]
control patient
Lee Ann [ 50 F 1011 68 14cm 1cm 4 1 5 6. ]

e Match treatment and control units using as many important covariates as :
possible From learning

e Handle large datasets
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Wang-Morucci-Awan-Liu-Roy-Rudin-Volfovsky’19

FLAME: Fast Large Almost Matching Exactly

Important Covariates Unimportant Covariates
covariates: age, gender, heart conditions, blood pressure, toenail length, eyeball width, etc.
treated patient
Marietta [ 50 F 1011 68 15cm 2cm 10 3 0.... ]
control patient
Lee Ann [ 50 F 1011 68 14cm 1cm 4 1 5 6. ]

e Match treatment and control units using as many important covariates as :
possible From learning

e Handle large datasets _ _
Using techniques from data management

37



Optimization Problem for FLAME

Variable Selector Indicator: 6 € {0, 1} P

Matched Group for i on variables  :: v,
MGi(0,8)={i'eS:xy00 =x;00}

Prediction Error on training set
1

PE 0,S) = min — D(x;00) —y,)?
.7'_”9”0( ) f(l)e]:H@Ho |Sl| (Xi,y;)esff ( ) Y )
1
+ min — (f(o) (x;00) — yi)2'
f(O)GJ'_HBHO |SO| (xi,yZi)ESo

Objective:
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Optimization Problem for FLAME

Variable Selector Indicator: 6 € {0, 1} P For every treatment unit, find

Matched Group for i on variables :: 6 The best possible match with at
MGi(0,8)={i'eS:xy00 =x;00} least one control unit
Prediction Error on training set Best = Low predictive error
PEr, (0.5)= min >, (fW(x00)-w)*>  on aholdout set
191 FMeFq, 1S1] s, i

Drop least useful covariate

(0) X;00)— i2- .
2, (Pxio8) ~u) and continue

Xi,Yi)€S0

1
4+ min ——
f(O)e]-"”e”O |SO| (

Objective:

0; s € arg mein PAE].-H‘9||O (0,S) s.t. I e MG;(0,S5) s.t. t; =0
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Efficient exact matching with database
queries

SELECT Age, Race, Gender, State, Education,
((SUM(T*Y)/SUM(T)) — (SUM(1-T)*Y)/(COUNT(*)-SUM(T))) AS ATE
FROM Population
GROUP BY Age, Race, Gender, State, Education
HAVING SUM(T)>=1 AND SUM(T) <= COUNT(*)-1

SQL “Group-by” queries:
Finds all groups of units with the same values of covariates
*very efficiently™

40



Some (insightful) experiments

10 10
y=) qiri+T ) fixi+T-U > LT,
i=1 i=1 i=1...5,y=1..5,7>i

+20 irrelevant covariates, where o; = 3; = 0

x; ~ Bernoulli(0.5) for 1 < i < 10
10 < ¢ < 30, x; ~Bernoulli(0.1) in the control group

x; ~ Bernoulli(0.9) in the treatment group.

20K units, 10K treatment, 10K control (no noise)

41



Estimated Treatment Effect
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(b) Double linear regressors

Regression cannot handle model misspecification
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Accuracy: FLAME beats all other methods

FLAME has
less error

35
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wv o

N
o

Estimated Treatment Effect

Treatment Effect
45 degree line

0

10 20 30
True Treatment Effect

(a) FLAME (Early Stopping)

Estimated Treatment Effect

0

10 20 30
True Treatment Effect

(d) GenMatch

Estimated Treatment Effect

Estimated Treatment Effect

N
w
o

N
(=3
o

=
w
o

=
o
o

50

Treatment Effect

tess L.~ 45 degreeline

10 20 30
True Treatment Effect
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(e) Causal Forest
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(f) Mahalanobis
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Time: FLAME beats all other methods on large data!

On the census dataset with

Small (er) data 30k units ~ 1 million tuples and ~60 covariates

Method Time (seconds) Method Time (hours)
FLAME-bit 27.68 + 0.80 FLAME-bit Crashed
FLAME-db 57.93 + 0.47 FLAME-db 1.37

Causal Forest 52.34 + 1.82 Causal Forest Crashed
1-PSNNM 14.78 £ 0.70 [-PSNNM > 10
Mahalanobis 76.79 + 0.49 Mahalanobis > 10
GenMatch > 150 GenMatch > 10
Cardinality Match > 150 Cardinality Match > 10

FLAME is scalable
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Application: Natality data

- publicly available dataset on 2010 Natality dataset

- 86 variables includes health information of pregnant women and newborns
- causal effect of smoking on risk of child abnormal health conditions

- 204,886 treated units, 1,985,524 control. 10% used as holdout

. 06]
i
Public data from CDC g 4 Conditional Average Treatment Effect (CATE)
~4 million tuples Y Higher causal effect
£ ! on smoking during pregnancy
T 00 1 ! for mothers with hypertension
£
@ -0.2
-0.4 T T 6 Lp
“% s D, %,
Yy €
e o, %
%, Uy,
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Dieng-Liu-Roy-Rudin-Volfovsky — AISTATS19
Awan-Liu-Morucci-Roy-Rudin-Volfovsky — UAI'19

Extensions of FLAME

FLAME is greedy, DAME (Dynamic Almost Exact Matching) finds
optimal solution by an exhaustive search — but efficiently, by ideas
from data mining

o Worse running time than FLAME, but better quality matches

Extension to instrumental variables
Takeaway: FLAME and DAME leverage ideas from ML + databases

e Scalable

« Accurate
Ongoing: continuous covariates, time series data, ...
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All these on a single “table”
with “Independent Units”

47



Complex Data

Papers
Institutes
Authors

Student sharing rooms in college dorms

“homogenous units” “heterogenous units”

48



Morucci-Awan-Orlandi-Roy-Rudin-Volfovsky’19

Homogenous units on a network

Basic assumptions like SUTVA do not hold

For two neighbors 1 and 2:
Interference T1 affects Y2
Contagion Y1 affects Y2
Entanglement T1 =T2

Student sharing rooms in college dorms

“homogenous units”

49



Morucci-Awan-Orlandi-Roy-Rudin-Volfovsky’19

Homogenous units on a network

Basic assumptions like SUTVA do not hold

For two neighbors 1 and 2:
Interference T1 affects Y2
Contagion Y1 affects Y2
Entanglement T1 =T2

Our (initial) work:

« Matching on neighborhood structure

on experimental data

* Match on all possible subgraphs, use FLAME

Student sharing rooms in college dorms

“homogenous units”
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Salimi-Kayali-Parikh-Getoor-Roy-Suciu’19

Heterogenous relational data

Papers .
Institutes Multiple tables:

Authors Papers(pid, venue, year, title, ...)
Institute(iid, city, country, rank)
Authors(aid, name, position)
Affiliation(aid, iid)

Wrote(aid, pid)

Review(pid, rid, is-single-blind, score)

“heterogenous units” 51



Salimi-Kayali-Parikh-Getoor-Roy-Suciu’19

Heterogenous relational data

Papers
Institutes
Authors

Multiple tables:

Papers(pid, venue, year, title, ...)
Institute(iid, city, country, rank)
Authors(aid, name, position)
Affiliation(aid, iid)

Wrote(aid, pid)

Review(pid, rid, is-single-blind, score)

Does institutional rank (prestige) causally affect
Scores received by papers in reviews?

« For single-blind reviews?
« For double-blind reviews?

“heterogenous units” 52



Salimi-Kayali-Parikh-Getoor-Roy-Suciu’19

Heterogenous relational data

From two tables

Papers

Institutes Multiple tables: 1/
Authors Papers(pid, venue, year, title, /£.)
Institute(iid, city, country, rank)
Authors(aid, name, position)
Affiliation(aid, iid) Y
Wrote(aid, pid) |
Review(pid, rid, is-single-blind, score)

Does institutional rank (prestige) causally affect
Scores received by papers in reviews?

« For single-blind reviews?
« For double-blind reviews?

“heterogenous units” 53



Salimi-Kayali-Parikh-Getoor-Roy-Suciu’19

Heterogenous relational data

From two tables

Papers
Institutes Multiple tables: 1/
)

Authors Papers(pid, venue, year, title,
Institute(iid, city, country, rank)
Authors(aid, name, position)
Affiliation(aid, iid) Y
Wrote(aid, pid) |
Review(pid, rid, is-single-blind, score)

Does institutional rank (prestige) causally affect
Scores received by papers in reviews?

« For single-blind reviews?
« For double-blind reviews?

“hete rogenOUS un itS” Doctors — Patients — Disease - Treatment - Cost ..



Heterogenous relational data

Papers .
Institutes Multiple tables:

Authors Papers(pid, venue, year, title, ...)
Institute(iid, city, country, rank)
Authors(aid, name, position)
Affiliation(aid, iid)

Wrote(aid, pid)

Review(pid, rid, is-single-blind, score)

* Need to find the right set of “unified” units
By multiple levels of “mapping”

* Need to find the right set of covariates
Using “causal graphs”

“heterogenous units” 55



Heterogenous relational data

Papers
Institutes
Authors

“heterogenous units”

Multiple tables:

Papers(pid, venue, year, title, ...)
Institute(iid, city, country, rank)
Authors(aid, name, position)
Affiliation(aid, iid)

Wrote(aid, pid)

Review(pid, rid, is-single-blind, score)

* Need to find the right set of “unified” units
By multiple levels of “mapping”

* Need to find the right set of covariates
Using “causal graphs”

We do all these “declaratively”



Sample results

(ReviewData) Average Treatment Effects

Estimates

Venue
0.10 Single-Blind
Double-Blind
0.08
)
+ 0.06 0.1122
£
'::J, 0.04 0.0816 9:0905
0.02
0.00 -0.0041
ATE Correlation
Quantity

(a) /‘

Causation vs. Correlation

(ReviewData) Single-Blind

0.00

Correlation

Total
effect

Isolated
effect

Relational
0.0457 effect

0.0155

AIE ARE
Quantity

(b)

Isolated, relational, and total effect
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Explaining Results Motivated by Causality
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Results should be understandable

“Why do | see this output?”
) “Why do | see an outlier?”
Explanations “Why is one value higher than the other?”

Y is a “cause” of Z if we can change Z by manipulating Y
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Results should be understandable

“Why do | see this output?”
) “Why do | see an outlier?”
Explanations “Why is one value higher than the other?”

Y is a “cause” of Z if we can change Z by manipulating Y

A subset of input is an explanation to user’s question if we can change
the results by “manipulating” this subset

and provide a compact description of the subset as the explanation (e.g., a
predicate)

60



Intervention

Explanations: Examples

If these patterns were not
there, situation would change

Q. Why industry SIGMOD papers reduced
compared to academia?

BoRNN W W
u o u o o
o o o o o

#SIGMOD publications
o
o

edu
B com

Years

P4

Counterbalance

Explanations

inst = ibm.com

inst = bell-labs.com

name = Rajeev Rastogi

Or

inst = ucla.edu

name = Hamid Pirahesh

inst = asu.edu

N|jfoju (b |W[IN|EK

name = Rakesh Agrawal

Roy-Suciu- SIGMOD’14
Roy-Orr-Suciu — PVLDB’15
Miao-Zeng-Glavic-Roy — SIGMOD’19

A “low” outlier can be
explained by a “high” outlier

Many papers from Bell Labs, IBM around
2000

Either they are not active (intervention)

They shifted focus (counterbalance)

61



What next?

e What improvements to the research infrastructure are needed?

O

O

A joint research agenda in addition to helping each other’s agenda

Platform to facilitate cross-disciplinary collaboration

One of the key challenges is writing our papers is finding an
application and a good dataset

Easy access to data
Discussion board?

More frequent workshops like this
62



What next?

e What types of training are most important for this type of
research?

o Rigorous training in computer science, machine learning, artificial
intelligence, statistics, maths, programming, algorithms, ...

o Ability tounderstand problems in an application domain and
communicate with domain experts

o Back and forth contributions

Applications = Methodology = Application = Methodology ....

(decision making/policy?)
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What next?

What are the future research needs (methods, analyses and
interventions, etc.)?

o Model all the complexity in the data (constraints, structure,
continuous/discrete features, incompleteness/uncertainty in noisy data)

o Make data analysis interpretable ... and accessible.. to a broad range of
data scientists and domain experts from technical and non-technical

background
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