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The National Academies Board on Human Systems Integration (BOHSI) has organized this session 
exploring the state of the art and research and design frontiers for intelligent systems that support effective 
human machine teaming. An important element in the success of human machine teaming is the ability of 
the person on the scene to develop appropriate trust in the automated software (including recognizing when 
it should not be trusted). Research is being conducted in the Human Factors community and the Artificial 
Intelligence (AI) community on the characteristics that software need to display in order to foster 
appropriate trust.  For example, there is a DARPA program on Explainable AI (XAI).  The Panel brings 
together prominent researchers from both the Human Factors and AI communities to discuss the current 
state of the art, challenges and short-falls and ways forward in developing systems that engender 
appropriate trust.  

INTRODUCTION 

The National Academies Board on Human Systems 
Integration (BOHSI) has organized this session exploring the 
state of the art and research and design frontiers for intelligent 
systems that support effective human machine teaming.  The 
panel will begin with an introduction by Toby Warden, Board 
Director, and Pascale Carayon, Chair of BOHSI. 

Over the last decade we have seen dramatic successes in 
the ability of machine learning Artificial Intelligence (AI) 
software to recognize images, understand and translate speech, 
play complex games such as Chess and Go at an expert level, 
and operate vehicles somewhat autonomously.   These 
advances have captured the imagination of the general public 
and are stimulating a surge of investment by government and 
industry.  Evidence of this is a recent Presidential executive 
order on maintaining American leadership in AI. The 
executive order includes a directive to NIST to support 
development of “reliable, robust, and trustworthy systems that 
use AI technologies” (Executive Order issued Feb. 11, 2019).  
Envisioned commercial applications include intelligent digital 
assistants, robotic agents for healthcare and home applications, 
and self-driving cars.  Envisioned military applications include 
image and video processing systems for intelligence analysis, 
ground robots working collaboratively with dismounted 
infantry, and operators remotely supervising multiple 
heterogeneous unmanned vehicles. 

Among the key factors to the success of these AI 
applications will be their ability to support the people on the 
scene in achieving their goals.  The effectiveness of these AI 
software cannot be judged based on their performance 
operating in isolation, but rather the joint performance of the 
individuals on the scene working with the support of the AI 
software. Recently the concept of human machine teaming has 

been coined to capture this work systems approach. There is 
consensus that an important element in the success of human 
machine teaming is the ability of the person on the scene to 
develop appropriate trust in the automated software (Hoffman, 
2017). This includes understanding the conditions under 
which the software is likely to perform well and the conditions 
that are likely to be beyond its competence envelope. Some 
researchers in the human factors community have adopted the 
term ‘calibrated trust’ to refer to this need to foster appropriate 
trust that includes knowing when not to trust the software 
(e.g., Atkinson, Clancey & Clark, 2014; Lee and See, 2004; 
Schaefer et. al, 2016).  

Research is being conducted in the Human Factors 
community and the AI community on the characteristics that 
software systems need to display in order to foster appropriate 
trust.  One characteristic that has been suggested and actively 
researched in the Human Factors community is the need for  
AI software to display transparency.  The concept of 
‘transparency’ also sometimes called ‘observability’ as well as 
‘apparency’ is intended as a metaphor to convey the ability of 
AI software to communicate its actions and plans and the 
rationale behind them (e.g., its reasoning process, its 
projection of outcomes and associated uncertainties) so as to 
foster appropriate trust (Chen, 2018; Woods and Hollnagel, 
2006).  It is argued that transparent systems enable individuals 
on the scene to develop an accurate mental model of the 
software system that allows them to understand not only what 
it is currently doing, but also why it is doing it and what it will 
do next (Endsley, 2017).  

In the AI community, the recent focus has been on 
developing ‘explainable’ software systems.  For example, 
there is a large ongoing DARPA research program on 
Explainable AI (XAI).  The focus of this program is to 
develop methods that allow machine learning systems (e.g., 
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deep learning and neural network systems), which are 
currently largely "inscrutable" black boxes, to generate 
explanations that will allow users to understand, appropriately 
trust and manage the AI software (Hoffman, et al., 2018; 
Mueller, et al., 2019). 

This Panel brings together prominent researchers from 
both the Human Factors and AI communities to discuss the 
current state of the art, challenges and short-falls and ways 
forward in developing systems that engender appropriate trust.  
Panel members include Jessie Chen, Senior Research Scientist 
for Soldier Performance US Army Research Laboratory, 
William J. Clancey, Florida Institute of Human and Machine 
Cognition, Mica Endsley, SA Technologies, Robert Hoffman, 
Florida Institute of Human and Machine Cognition, and Marc 
Steinberg, Office of Naval Research.  

Panelists will provide their perspective on the prospects 
and challenges for design of effective AI systems that promote 
appropriate trust. Among the questions to be addressed 
include, Does a computational system need to be explainable 
to be useful and usable and/or to promote appropriate trust?  
For example, there have been successful computational 
systems where the algorithm for generating the solution is 
opaque but enough context is provided surrounding the 
proposed solution for the user to be able to evaluate the quality 
of the solution for themselves (e.g., Roth, et al., 2017; Roth et 
al., 2018).  Similarly does system ‘transparency’ imply 
‘explainability’? Related questions include, What kinds of 
explanations are needed for appropriate trust and at what 
points in time?  For example, explanations of different forms 
may be more or less useful during system development and 
debugging by developers, vs. during the training of users on 
how the system works, vs. during real-time use when faced 
with a particular decisions as to whether to trust the automated 
software in a specific situation vs. during a ‘post mortem’ 
when trying to understand why the automated software made a 
wrong decision.  

Panel members will also be asked to discuss ways 
forward to get to the desired end state of effective human 
machine teaming, and reflections back on ‘lessons learned’ 
from earlier waves of AI / automation – that eventually failed 
to live up to the hype. 
 

JESSIE CHEN 
 

Jessie Chen and her colleagues developed the Situation 
awareness-based Agent Transparency (SAT) framework, 
based on Endsley’s Situation Awareness model, to identify the 
information requirements for effective human-agent teaming. 
Specifically, the SAT framework identifies the required 
communications from an intelligent agent to its human 
collaborator in order for the human to obtain effective 
situation awareness of the agent in its tasking environment. At 
the first SAT level, the agent provides the operator with the 
basic information about its current state and goals, intentions, 
and plans. At the second level, the agent reveals its reasoning 
process as well as the constraints/affordances that the agent 
considers when planning its actions. At the third SAT level, 
the agent provides the operator with information regarding its 
projection of future states, predicted consequences, likelihood 

of success/failure, and any uncertainty associated with the 
aforementioned projections. Chen and her colleagues are 
currently expanding the SAT framework into human-agent 
bidirectional transparency to support the agent's planning and 
performance. The challenge is to design the user interfaces 
that can support bidirectional transparency dynamically, in 
real time, while not overwhelming the human with too much 
information and burden. 
 

WILLIAM J. CLANCEY 
 

In the 1970s and 1980s, providing explanations was an 
integral design principle for developing medical expert 
systems, instructional programs, and assistant programs 
(broadly known as “symbolic AI”; Buchanan & Shortliffe, 
1984). Research showed that explanation capability was 
enhanced by representing processes and subsystems in a 
modular, abstract way as computational models (e.g., in 
medicine, we distinguish and separately represent a disease 
taxonomy or causal model, the diagnostic reasoning strategy, 
and underlying physiological processes; Clancey, 1983; 1989). 
We thus developed domain-general modeling frameworks, 
facilitating not only explanation, but “software reuse” 
(adaptability to new applications) and maintainability. Thus, 
like alchemists, in the search to create “intelligent machines” 
we invented a computational method for creating and using 
scientific and engineering models by which a wide-variety of 
professional and everyday activities can be partly automated 
(Clancey, 1985; 1992).  

Disappointingly, commercially prevalent software today, 
such as the common “map navigation” apps on a phone, 
mostly ignore these well-established and documented 
modeling methods and explanation principles. Furthermore, 
these programs increasingly incorporate data analysis 
algorithms (aka “neural networks”) that derive associations 
people may find difficult to relate to familiar features, causal 
relations, and narratives by which they understand the world. 
Addressing the need for explanation, the DARPA Explainable 
AI (XAI) Program properly emphasizes reconfiguring data 
analysis algorithms so automated interpretations, plans, 
advice, etc. are understandable and trustworthy.  

Meanwhile, since the late 1980s workplace studies of 
model-based automation (e.g., autopilot, office workflow; 
Luff et al., 2002) suggest that people benefit from interactive 
tools that fit how they think about and do their work. A well-
established “work system design” methodology addresses this 
need by combining participatory design and participant 
observation to iteratively develop practical tools in the context 
of use (Greenbaum & Kyng, 1991)—a process that reveals 
and constrains what kind of explanation and hence what kind 
of computational methods are appropriate. Besides this 
contextual approach to tool building, we do well to consider 
other shortcomings of early “symbolic AI” systems that pose 
challenges and opportunities for the success of today’s “neural 
networks.” 

 
 
 
 

Proceedings of the Human Factors and Ergonomics Society 2019 Annual Meeting 632



 
 

MICA R. ENDSLEY 
 

The ability of operators to successfully interact with 
automated and autonomous agents to carry out joint goals in 
complex systems is highly dependent on their ability to 
understand what the autonomy is doing, what it is projected to 
do in the near future, and its limitations for successful 
performance (Endsley, 2017).  The need for both an accurate 
mental model of the automation in general and an accurate 
situation model of its behavior in real time affects not only 
operators’ level of trust in the system, but also the level of 
shared situation awareness (SA) which is critical for allowing 
the automation and the human operator to operate successfully 
as a team.  

Historically, explainability methods were employed to 
provide improved understandability of logic based AI. These 
methods sought to tell users how the system arrived at a 
particular conclusion or recommendation (usually by revealing 
the rules that had been executed), providing a limited 
understanding of the inner workings of the system. With the 
move towards learning algorithms as the favored method 
underlying today’s AI, DARPA is rightly working to expand 
this approach to better derive logic from inherently opaque AI 
techniques to fulfill this same function.  While there have been 
some successes at deriving rules from neural networks, for 
example, explainability approaches generally suffer from 
being incomplete, non-real-time, and often non-user-centric, 
with explanations being both vague and overly complex.  

On the other hand, research shows that what people really 
need to interact effectively with automation is to understand in 
real time what the automation is doing currently and why (e.g. 
what is its current goal and tasking, what state is it in, what 
does it think is happening based on its sensors?), what will it 
do next (e.g. what is it planning to do?), and what are the 
limits of its performance (e.g. can it handle the present and 
upcoming operational conditions, or do I need to intervene?).  
This level of system understanding requires a significant 
amount of automation transparency.  

While explainability and transparency are somewhat 
complimentary, transparency differs in that (1) it is provided 
in real-time to support dynamic decision making, (2) it is 
generally an inherent property of the automation interface 
displayed to the operator on an ongoing basis, and (3) it 
encompasses more of the needs of the human operator, 
providing the SA required to interact with automation to 
achieve successful oversight and interaction with the 
autonomy. Systems supporting high levels of SA provide 
understandability and predictability of the automation, 
understanding of key states and mode transitions, and 
understanding of system reliability (e.g. how well it is 
functioning, its confidence level in fused information, or 
system assessments), as well as its robustness (meaning its 
ability to handle current and upcoming situations).   

While transparency is important with all automated 
systems, it will become even more important with learning 
based AI where the internal system model and capabilities 
may be constantly evolving and changing.  This creates the 

need not just for system explainability and recurrent operator 
training, but also the development of system interfaces that 
provide ongoing, continuous reinforcement and automation 
understanding through automation transparency.  

 
ROBERT HOFFMAN 

 
This topic triggers a consideration of our terminology. 

First, machines can never be “team players” in the sense of 
engaging in genuine collaboration. Machines can in some 
respects and in some contexts act as if they are cooperating. 
But when it becomes apparent to "users" that their capacity for 
negotiating and engaging in common ground is limited by 
their lack of inferencing capabilities and lack of world 
knowledge, the teaminess might dissolve. Second, with regard 
to the interpretability of Deep Nets and Machine Learning 
systems, “transparency" is perhaps a misuse of a metaphor. (If 
something cannot be seen, it cannot be understood.) What is 
needed is machine “apparency.” Third, calibration is perhaps 
an inappropriate metaphor for trust, if only because it attempts 
to reduce the human to the machine. (This is obviously ironic.) 
But even more important is that calibration feeds into the view 
that: (1) trust is a single state, (2) trust develops, and (3) as it 
develops it converges—or we want it to converge—on some 
metrical point on a scale of trust. In fact, trusting is a 
continuous dynamic of multiple relations. It does not develop, 
it morphs, and it is always manifest as some mixture of 
justified and unjustified trust and justified and unjustified 
mistrust in the various functionalities and affordances that a 
machine possesses (Hoffman, 2018). 

The XAI field is characterized by terminology abuse. 
“Heat maps” are said to show what the machine “pays 
attention to.” Deep Nets are said to “recognize” objects or 
actions that bear a human semantics. The “interpretability” of 
explanations means something in computational formalisms 
that is entirely different from its psychological meaning. 
Growing sensitivity to the potentially misleading nature of the 
jargon can only strengthen the XAI enterprise.  

The core XAI concept is that an explanation capability 
could be added onto or into an AI system, enabling it to 
explain how it works and thereby engender appropriate trust 
and reliance. Initially, many XAI researchers held a tacit 
premise, that the property of "being an explanation” is a 
property of statements, and that statements are spoon fed to 
the user, who groks them, and then behaves appropriately. The 
initial concept was that the challenges of explanation could be 
solved without recourse to user models, knowledge bases, and 
symbolic inference. 

The initial experimentation concept was to run large 
numbers of Mechanical Turkers in two conditions: 
Explanation versus No explanation, and show that the 
explanations helped. As the Phase 1 work proceeded, the 
approach to experimentation design, and explanation concepts 
was considerably enriched. AI researchers are now developing 
more reasonable and interesting experiments, including 
smaller-scale studies to target particular effects. Researchers 
are utilizing more refined experimental designs, including an 
awareness of the need for control conditions.  Value is seen in 
the use of psychometrically-validated judgment scales (see 
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Hoffman, et al., 2018). On the other hand, there are issues 
regarding the utilization of parametric statistical testing, such 
as whether the data even conform to the assumptions of 
traditional tests. Additionally, the quest for statistical 
significance drives the desire to simply increase the sample 
size. Hence, some effects are being found that may be 
statistically significant but may not be practically significant. 

The importance of the users’ “mental models” has been 
acknowledged and some XAI researchers are attempting to 
reveal and study them. On the other hand, judgment and self-
report data are sometimes devalued by the mere mention of 
the word “subjective, reflecting a belief in the mythical 
subjective-objective distinction.  This engenders a hesitation 
to actually ask the research participants questions about how 
they are reasoning. This is especially the case for studies that 
rely on Mechanical Turk. Researchers can shy away from 
conducting post hoc interviews on the argument that it is 
difficult and time consuming to analyze the results. 

Most of the explanations that are being machine-
generated are local (Why did it decide that?) and not global 
(How does it work?). The means through which explanations 
are generated and provided are limited. However, some XAI 
researchers are coming to see explaining as a continuous, 
interactive dialog process. Additionally, some researchers are 
generating explanation systems that enable users to explore 
the boundary conditions of the competence envelope of the 
AI/XAI systems. 

 
MARC STEINBERG 

“Teaming” between people and systems containing AI is 
a popular concept among researchers today, but this term is 
often used loosely to cover a broad range of collaborative 
possibilities with different implications relative to the division 
of human/machine roles, responsibilities, relationships, and 
functions. This is an important distinction as achieving 
comparable capabilities to high functioning adult human teams 
with the addition of AI peer members will likely require 
solving some of the hardest problems in AI and may not be 
feasible for decades.  However, many currently proposed ideas 
in teaming will require AI with much more readily achievable 
capabilities. Thus, it appears likely that we will see a broad 
spectrum of different types of hybrid human/AI “teams” that 
will open up increasingly as technology and cultural 
acceptance advances and that will require appropriate human 
factors methods, tools, and processes. This will be particularly 
the case if we imagine a future that sees the fielding of AI 
methods on large scales and in a great diversity of embedded, 
perceptive, and persistent devices.   

Within the various intelligent systems communities, there 
has been a substantial increase of interest in incorporating the 
human element in a positive way. However, there is often a 
mismatch between what the more algorithm and device 
focused engineering and computer science communities want, 
and what can be provided from communities like human 
factors, psychology, and neuroscience.   Some of the most 
popular things that these communities would like are "turn-
key" models of humans that have good predictive power in 
particular contexts, models of humans "internal states," and 

actionable algorithm design guidance.   However, there often 
is not a simple answer to these requests.  There is a group of 
human factors researchers in high reliability applications that 
bring expertise across safety, health, physiology, 
organizational design, operations in off nominal and degraded 
conditions, and broad types of performance. However, due to 
the nature of these types of applications, the use of AI 
technology has often been conservative and domain specific.   
On the other hand, the Human Computer Interaction (HCI) 
community has explored many inventive computational 
methods and devices, but has focused more narrowly on a 
subset of human factors issues that is not sufficient for 
systems involved in more consequential decisions and actions.  
There is not yet an integrated community that can support 
tailorable processes and tools to fill the spectrum between the 
expensive, and difficult to apply ones of high assurance 
systems, and the more lightweight ones needed in many fast 
moving applications involving AI.   

There is a need for more thinking about these issues in the 
context of end-to-end systems and with a deeper 
understanding of the human systems integration issues. First, 
there has been a long running argument that more human-like 
AI will inherently provide benefits in this regard.   Secondly, 
there are a number of researchers that have argued for use of 
particular AI methods that may have some more natural 
translation into a form that supports understandability and 
transparency like natural language or visual display. Similarly, 
less well understood methods could potentially be converted 
to more easily understandable implementations. There has also 
been a recent growth of research on systems that attempt to 
implement more human-understandable plans and behaviors 
even if the underlying algorithm is somewhat more opaque 
and difficult to understand. Finally, there is a growing research 
area approaching these problems at a more meta-cognitive 
level. This includes both direct explanation mechanisms as 
well as techniques to assess things like in situ performance 
and broader proficiency across many similar environments or 
tasks.  Finally, at a more practical level, field implementations 
have long developed effective decision aids to simulate and 
predict system behaviors and sensitivities and explore 
alternative scenarios and counterfactuals that particularly 
support highly skilled users.  The sum total of these methods 
provides potential avenues for investigation, but there are 
many open human factors and human systems integration 
issues that have been explored only at a limited or fairly 
superficial level to date, and are in need of more multi-
disciplinary research.     

 
 

THE NATIONAL ACADEMIES BOARD ON HUMAN-
SYSTEMS INTEGRATION 

 
This panel is organized by the National Academies Board 

of Human Systems Integration (BOHSI). The National 
Academies of Sciences, Engineering and Medicine (NASEM) 
known as the “National Academies” in short, is a private, non-
profit organization that is tasked with providing independent 
and non-partisan advice on all matters related to science, 
engineering and medicine to Congress and the federal 
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government since its inception in 1863. The National 
Academies currently comprises the National Academy of 
Sciences (NAS), the National Academy of Engineering (NAE) 
and the National Academy of Medicine (NAM). BOHSI, 
formerly known as the Committee on Human-Systems 
Integration and even earlier as the Committee on Human 
Factors, was established to better equip the National 
Academies in its efforts to assist the federal government on 
issues of national policy that involve human factors and 
human-systems integration. Housed within the Division of 
Behavioral and Social Sciences and Education, BOHSI is a 
standing board of the NAS and is sponsored by a coordinated 
consortium of several federal agencies and other organizations 
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