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The National Academies Board on Human Systems Integration (BOHSI) has organized this session
exploring the state of the art and research and design frontiers for intelligent systems that support effective
human machine teaming. An important element in the success of human machine teaming is the ability of
the person on the scene to develop appropriate trust in the automated software (including recognizing when
it should not be trusted). Research is being conducted in the Human Factors community and the Artificial
Intelligence (Al) community on the characteristics that software need to display in order to foster
appropriate trust. For example, thereisa DARPA program on Explainable Al (XAl). The Panel brings
together prominent researchers from both the Human Factors and Al communities to discuss the current
state of the art, challenges and short-falls and ways forward in devel oping systems that engender

appropriate trust.
INTRODUCTION

The National Academies Board on Human Systems
Integration (BOHSI) has organized this session exploring the
state of the art and research and design frontiers for intelligent
systems that support effective human machine teaming. The
panel will begin with an introduction by Toby Warden, Board
Director, and Pascale Carayon, Chair of BOHSI.

Over the last decade we have seen dramatic successesin
the ability of machine learning Artificia Intelligence (Al)
software to recognize images, understand and transl ate speech,
play complex games such as Chess and Go at an expert level,
and operate vehicles somewhat autonomously. These
advances have captured the imagination of the general public
and are stimulating a surge of investment by government and
industry. Evidence of thisisarecent Presidential executive
order on maintaining American leadership in Al. The
executive order includes adirective to NIST to support
development of “reliable, robust, and trustworthy systems that
use Al technologies’ (Executive Order issued Feb. 11, 2019).
Envisioned commercial applicationsinclude intelligent digital
assi stants, robotic agents for healthcare and home applications,
and sdlf-driving cars. Envisioned military applicationsinclude
image and video processing systems for intelligence analysis,
ground robots working collaboratively with dismounted
infantry, and operators remotely supervising multiple
heterogeneous unmanned vehicles.

Among the key factors to the success of these Al
applications will be their ability to support the people on the
scenein achieving their goals. The effectiveness of these Al
software cannot be judged based on their performance
operating in isolation, but rather the joint performance of the
individuals on the scene working with the support of the Al
software. Recently the concept of human machine teaming has

been coined to capture this work systems approach. Thereis
consensus that an important element in the success of human
machine teaming is the ability of the person on the scene to
develop appropriate trust in the automated software (Hoffman,
2017). Thisincludes understanding the conditions under
which the softwareislikely to perform well and the conditions
that are likely to be beyond its competence envelope. Some
researchers in the human factors community have adopted the
term ‘calibrated trust’ to refer to this need to foster appropriate
trust that includes knowing when not to trust the software
(e.g., Atkinson, Clancey & Clark, 2014; Lee and See, 2004;
Schaefer et. a, 2016).

Research is being conducted in the Human Factors
community and the Al community on the characteristics that
software systems need to display in order to foster appropriate
trust. One characteristic that has been suggested and actively
researched in the Human Factors community is the need for
Al software to display transparency. The concept of
‘transparency’ also sometimes called ‘ observability’ aswell as
‘apparency’ isintended as a metaphor to convey the ability of
Al software to communicate its actions and plans and the
rationale behind them (e.g., its reasoning process, its
projection of outcomes and associated uncertainties) so asto
foster appropriate trust (Chen, 2018; Woods and Hollnagel,
2006). It isargued that transparent systems enable individuals
on the scene to develop an accurate mental model of the
software system that allows them to understand not only what
itiscurrently doing, but also why it isdoing it and what it will
do next (Endsley, 2017).

In the Al community, the recent focus has been on
developing ‘explainable’ software systems. For example,
thereisalarge ongoing DARPA research program on
Explainable Al (XAl). Thefocus of this programisto
develop methods that allow machine learning systems (e.g.,
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deep learning and neural network systems), which are
currently largely "inscrutable" black boxes, to generate
explanations that will allow users to understand, appropriately
trust and manage the Al software (Hoffman, et al ., 2018;
Mueller, et a., 2019).

This Panel brings together prominent researchers from
both the Human Factors and Al communities to discuss the
current state of the art, challenges and short-falls and ways
forward in devel oping systems that engender appropriate trust.
Panel membersinclude Jessie Chen, Senior Research Scientist
for Soldier Performance US Army Research Laboratory,
William J. Clancey, Florida Institute of Human and Machine
Cognition, Mica Enddey, SA Technologies, Robert Hoffman,
Florida Institute of Human and Machine Cognition, and Marc
Steinberg, Office of Naval Research.

Panelists will provide their perspective on the prospects
and challenges for design of effective Al systemsthat promote
appropriate trust. Among the questions to be addressed
include, Does a computational system need to be explainable
to be useful and usable and/or to promote appropriate trust?
For example, there have been successful computational
systems where the algorithm for generating the solution is
opaque but enough context is provided surrounding the
proposed solution for the user to be able to evaluate the quality
of the solution for themselves (e.g., Roth, et a., 2017; Roth et
al., 2018). Similarly does system ‘transparency’ imply
‘explainability’ ? Related questions include, What kinds of
explanations are needed for appropriate trust and at what
pointsin time? For example, explanations of different forms
may be more or less useful during system development and
debugging by developers, vs. during the training of userson
how the system works, vs. during real-time use when faced
with a particular decisions as to whether to trust the automated
software in a specific situation vs. during a ‘ post mortem’
when trying to understand why the automated software made a
wrong decision.

Panel members will also be asked to discuss ways
forward to get to the desired end state of effective human
machine teaming, and reflections back on ‘lessons |earned’
from earlier waves of Al / automation — that eventually failed
to live up to the hype.

JESSIE CHEN

Jessie Chen and her colleagues developed the Situation
awareness-based Agent Transparency (SAT) framework,
based on Enddley’s Situation Awareness model, to identify the
information requirements for effective human-agent teaming.
Specifically, the SAT framework identifies the required
communications from an intelligent agent to its human
collaborator in order for the human to obtain effective
situation awareness of the agent in its tasking environment. At
thefirst SAT level, the agent provides the operator with the
basic information about its current state and goals, intentions,
and plans. At the second level, the agent reveal s its reasoning
process as well as the constraints/affordances that the agent
considers when planning its actions. At thethird SAT level,
the agent provides the operator with information regarding its
projection of future states, predicted consequences, likelihood

of success/failure, and any uncertainty associated with the
aforementioned projections. Chen and her colleagues are
currently expanding the SAT framework into human-agent
bidirectional transparency to support the agent's planning and
performance. The challengeis to design the user interfaces
that can support bidirectional transparency dynamically, in
real time, while not overwhel ming the human with too much
information and burden.

WILLIAM J. CLANCEY

In the 1970s and 1980s, providing explanations was an
integral design principle for developing medical expert
systems, instructional programs, and assistant programs
(broadly known as “symbolic Al”; Buchanan & Shortliffe,
1984). Research showed that explanation capability was
enhanced by representing processes and subsystemsin a
modular, abstract way as computational models (e.g., in
medicine, we distinguish and separately represent a disease
taxonomy or causal model, the diagnostic reasoning strategy,
and underlying physiological processes; Clancey, 1983; 1989).
We thus devel oped domain-general modeling frameworks,
facilitating not only explanation, but “ software reuse”
(adaptability to new applications) and maintainability. Thus,
like alchemists, in the search to create “intelligent machines’
we invented a computational method for creating and using
scientific and engineering models by which a wide-variety of
professional and everyday activities can be partly automated
(Clancey, 1985; 1992).

Disappointingly, commercially prevalent software today,
such as the common “map navigation” apps on a phone,
mostly ignore these well-established and documented
modeling methods and explanation principles. Furthermore,
these programs increasingly incorporate data analysis
algorithms (aka “neural networks") that derive associations
people may find difficult to relate to familiar features, causal
relations, and narratives by which they understand the world.
Addressing the need for explanation, the DARPA Explainable
Al (XAl) Program properly emphasizes reconfiguring data
analysis algorithms so automated interpretations, plans,
advice, etc. are understandabl e and trustworthy.

Meanwhile, since the late 1980s workplace studies of
model -based automation (e.g., autopilot, office workflow;
Luff et al., 2002) suggest that people benefit from interactive
toolsthat fit how they think about and do their work. A well-
established “work system design” methodology addresses this
need by combining participatory design and participant
observation to iteratively develop practical tools in the context
of use (Greenbaum & Kyng, 1991)—a process that reveals
and constrains what kind of explanation and hence what kind
of computational methods are appropriate. Besides this
contextual approach to tool building, we do well to consider
other shortcomings of early “symbolic Al” systems that pose
challenges and opportunities for the success of today’s “ neural
networks.”



Proceedings of the Human Factors and Ergonomics Society 2019 Annua Meeting 633

MICA R. ENDSLEY

The ability of operators to successfully interact with
automated and autonomous agents to carry out joint goalsin
complex systems is highly dependent on their ability to
understand what the autonomy is doing, what it is projected to
do in the near future, and its limitations for successful
performance (Endsley, 2017). The need for both an accurate
mental model of the automation in general and an accurate
situation model of its behavior in real time affects not only
operators’ level of trust in the system, but also the level of
shared situation awareness (SA) which iscritical for allowing
the automation and the human operator to operate successfully
asateam.

Historically, explainability methods were employed to
provide improved understandability of logic based Al. These
methods sought to tell users how the system arrived at a
particular conclusion or recommendation (usually by revealing
the rules that had been executed), providing a limited
understanding of the inner workings of the system. With the
move towards learning algorithms as the favored method
underlying today’s Al, DARPA isrightly working to expand
this approach to better derive logic from inherently opaque Al
techniques to fulfill this same function. While there have been
some successes at deriving rules from neural networks, for
example, explainability approaches generally suffer from
being incomplete, non-real-time, and often non-user-centric,
with explanations being both vague and overly complex.

On the other hand, research shows that what people really
need to interact effectively with automation isto understand in
real time what the automation is doing currently and why (e.g.
what isits current goal and tasking, what stateisit in, what
does it think is happening based on its sensors?), what will it
do next (e.g. what isit planning to do?), and what are the
limits of its performance (e.g. can it handle the present and
upcoming operational conditions, or do | need to intervene?).
Thislevel of system understanding requires a significant
amount of automation transparency.

While explainability and transparency are somewhat
complimentary, transparency differsinthat (1) it is provided
in real-time to support dynamic decision making, (2) itis
generally an inherent property of the automation interface
displayed to the operator on an ongoing basis, and (3) it
encompasses more of the needs of the human operator,
providing the SA required to interact with automation to
achieve successful oversight and interaction with the
autonomy. Systems supporting high levels of SA provide
understandability and predictability of the automation,
understanding of key states and mode transitions, and
understanding of system reliability (e.g. how well itis
functioning, its confidence level in fused information, or
system assessments), as well as its robustness (meaning its
ability to handle current and upcoming situations).

While transparency isimportant with all automated
systems, it will become even more important with learning
based Al where the internal system model and capabilities
may be constantly evolving and changing. This creates the

need not just for system explainability and recurrent operator
training, but also the development of system interfaces that
provide ongoing, continuous reinforcement and automation
understanding through automation transparency.

ROBERT HOFFM AN

Thistopic triggers a consideration of our terminology.
First, machines can never be “team players’ in the sense of
engaging in genuine collaboration. Machines can in some
respects and in some contexts act asif they are cooperating.
But when it becomes apparent to "users" that their capacity for
negotiating and engaging in common ground is limited by
their lack of inferencing capabilities and lack of world
knowledge, the teaminess might dissolve. Second, with regard
to the interpretability of Deep Nets and Machine Learning
systems, “transparency” is perhaps a misuse of a metaphor. (If
something cannot be seen, it cannot be understood.) What is
needed is machine “apparency.” Third, calibration is perhaps
an inappropriate metaphor for trust, if only because it attempts
to reduce the human to the machine. (Thisis obviously ironic.)
But even more important is that calibration feeds into the view
that: (1) trust isasingle state, (2) trust develops, and (3) as it
developsit converges—or we want it to converge—on some
metrical point on ascale of trust. In fact, trustingisa
continuous dynamic of multiple relations. It does not develop,
it morphs, and it is always manifest as some mixture of
justified and unjustified trust and justified and unjustified
mistrust in the various functionalities and affordances that a
machine possesses (Hoffman, 2018).

The XAl field is characterized by terminology abuse.
“Heat maps’ are said to show what the machine “ pays
attention to.” Deep Nets are said to “recognize” objects or
actions that bear a human semantics. The “interpretability” of
explanations means something in computational formalisms
that is entirely different from its psychological meaning.
Growing sensitivity to the potentially misleading nature of the
jargon can only strengthen the XAl enterprise.

The core XAl concept is that an explanation capability
could be added onto or into an Al system, enabling it to
explain how it works and thereby engender appropriate trust
and reliance. Initially, many XAl researchers held atacit
premise, that the property of "being an explanation” isa
property of statements, and that statements are spoon fed to
the user, who groks them, and then behaves appropriately. The
initial concept was that the challenges of explanation could be
solved without recourse to user models, knowledge bases, and
symbolic inference.

Theinitial experimentation concept wasto run large
numbers of Mechanical Turkersin two conditions:
Explanation versus No explanation, and show that the
explanations helped. Asthe Phase 1 work proceeded, the
approach to experimentation design, and explanation concepts
was considerably enriched. Al researchers are now developing
more reasonabl e and interesting experiments, including
smaller-scale studies to target particular effects. Researchers
are utilizing more refined experimental designs, including an
awareness of the need for control conditions. Valueisseenin
the use of psychometrically-validated judgment scales (see
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Hoffman, et a., 2018). On the other hand, there are issues
regarding the utilization of parametric statistical testing, such
as whether the data even conform to the assumptions of
traditional tests. Additionally, the quest for statistical
significance drives the desire to smply increase the sample
size. Hence, some effects are being found that may be
statistically significant but may not be practically significant.

The importance of the users’ “mental models’ has been
acknowledged and some XAl researchers are attempting to
reveal and study them. On the other hand, judgment and self-
report data are sometimes deval ued by the mere mention of
the word “subjective, reflecting a belief in the mythical
subj ective-objective distinction. This engenders a hesitation
to actually ask the research participants questions about how
they are reasoning. Thisis especialy the case for studies that
rely on Mechanical Turk. Researchers can shy away from
conducting post hoc interviews on the argument that it is
difficult and time consuming to analyze the results.

Most of the explanations that are being machine-
generated are local (Why did it decide that?) and not global
(How does it work?). The means through which explanations
are generated and provided are limited. However, some XAl
researchers are coming to see explaining as a continuous,
interactive dialog process. Additionally, some researchers are
generating explanation systems that enable usersto explore
the boundary conditions of the competence envel ope of the
Al/XAI systems.

MARC STEINBERG

“Teaming” between people and systems containing Al is
a popular concept among researchers today, but thistermis
often used loosely to cover a broad range of collaborative
possibilities with different implications relative to the division
of human/machine roles, responsibilities, relationships, and
functions. Thisis an important distinction as achieving
comparable capabilities to high functioning adult human teams
with the addition of Al peer members will likely require
solving some of the hardest problemsin Al and may not be
feasible for decades. However, many currently proposed ideas
in teaming will require Al with much more readily achievable
capabilities. Thus, it appears likely that we will see a broad
spectrum of different types of hybrid human/Al “teams’ that
will open up increasingly as technology and cultural
acceptance advances and that will require appropriate human
factors methods, tools, and processes. This will be particularly
the case if we imagine a future that sees the fielding of Al
methods on large scales and in a great diversity of embedded,
perceptive, and persistent devices.

Within the various intelligent systems communities, there
has been a substantial increase of interest in incorporating the
human element in a positive way. However, thereis often a
mismatch between what the more algorithm and device
focused engineering and computer science communities want,
and what can be provided from communities like human
factors, psychology, and neuroscience. Some of the most
popular things that these communities would like are "turn-
key" models of humans that have good predictive power in
particular contexts, models of humans "internal states," and

actionable algorithm design guidance. However, there often
isnot a simple answer to these requests. Thereisagroup of
human factors researchersin high reliability applications that
bring expertise across safety, health, physiology,
organizational design, operationsin off nominal and degraded
conditions, and broad types of performance. However, due to
the nature of these types of applications, the use of Al
technology has often been conservative and domain specific.
On the other hand, the Human Computer Interaction (HCI)
community has explored many inventive computational
methods and devices, but has focused more narrowly on a
subset of human factors issues that is not sufficient for
systemsinvolved in more consequential decisions and actions.
Thereisnot yet an integrated community that can support
tailorable processes and tools to fill the spectrum between the
expensive, and difficult to apply ones of high assurance
systems, and the more lightweight ones needed in many fast
moving applicationsinvolving Al.

There isaneed for more thinking about these issuesin the
context of end-to-end systems and with a deeper
understanding of the human systems integration issues. First,
there has been along running argument that more human-like
Al will inherently provide benefitsin thisregard. Secondly,
there are a number of researchers that have argued for use of
particular Al methods that may have some more natural
trandation into aform that supports understandability and
transparency like natural language or visual display. Similarly,
less well understood methods could potentially be converted
to more easily understandable implementations. There has also
been arecent growth of research on systems that attempt to
implement more human-understandabl e plans and behaviors
even if the underlying algorithm is somewhat more opague
and difficult to understand. Finally, thereis a growing research
area approaching these problems at a more meta-cognitive
level. Thisincludes both direct explanation mechanisms as
well as techniques to assess things like in situ performance
and broader proficiency across many similar environments or
tasks. Finally, at amore practical level, field implementations
have long developed effective decision aids to simulate and
predict system behaviors and sensitivities and explore
alternative scenarios and counterfactual s that particularly
support highly skilled users. The sum total of these methods
provides potential avenues for investigation, but there are
many open human factors and human systems integration
issues that have been explored only at alimited or fairly
superficial level to date, and are in need of more multi-
disciplinary research.

THE NATIONAL ACADEMIESBOARD ON HUMAN-
SYSTEMSINTEGRATION

This pandl is organized by the National Academies Board
of Human Systems Integration (BOHSI). The National
Academies of Sciences, Engineering and Medicine (NASEM)
known as the “National Academies’ in short, isaprivate, non-
profit organization that is tasked with providing independent
and non-partisan advice on all matters related to science,
engineering and medicine to Congress and the federal
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government since its inception in 1863. The National
Academies currently comprises the National Academy of
Sciences (NAS), the National Academy of Engineering (NAE)
and the National Academy of Medicine (NAM). BOHSI,
formerly known as the Committee on Human-Systems
Integration and even earlier as the Committee on Human
Factors, was established to better equip the National
Academiesin its efforts to assist the federal government on
issues of national policy that involve human factors and
human-systems integration. Housed within the Division of
Behavioral and Social Sciences and Education, BOHS| isa
standing board of the NAS and is sponsored by a coordinated
consortium of several federal agencies and other organizations
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