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Social platforms like Snapchat and Instagram are

especially popular among those
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A majority of Facebook, Snapchat and Instagram users

visit these platforms on a daily basis
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Characterizing and Predicting Postpartum Depression

Predicting Depression via Social Media from Shared Facebook Data
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Methodological Gaps in Predicting Mental Health
States from Social Media:
Triangulating Diagnostic Signals
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ABSTRACT

A growing body of research is combining social media data
with machine learning to predict mental health states of in-
dividuals. An implication of this research lies in informing
evidence-based diagnosis and treatment. However, obtaining
clinically valid diagnostic information from sensitive patient
populations is challenging. Consequently, researchers have
operationalized characteristic online behaviors as “proxy di-
agnostic signals” for building these models. This paper posits
achallenge in using these diagnostic signals, purported to sup-
port clinical decision-making. Focusing on three commonly
used proxy diagnostic signals derived from social media, we
find that predictive models built on these data, although of-
fer strong internal validity, suffer from poor external validity
when tested on mental health patients. A deeper dive revealsis-
sues of population and sampling bias, as well as of uncertainty
in construct validity inherent in these proxies. We discuss the
methodological and clinical implications of these gaps and
provide remedial guidelines for future research.

CCS CONCEPTS

« Computing methodologies — Supervised learning by
classification; Supervised learning by classification; «
Human-centered computing — Social media.
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1 INTRODUCTION

With rising volumes of data and pervasive use, social media
has been widely adopted as a lens to provide insights into be-
haviors [52], mood [42], psychological traits and states [5, 53],
and social interactions of individuals [56]. For mental health, a
growing body of work, including that in the human computer
interaction (HCI) field, is leveraging naturalistic, unobtrusive
data from social media to predict mental health states of indi-
viduals [21, 25, 28, 29, 31, 34]. Parallel to HCI, in an emergent
field called “digital psychiatry” [100], clinicians are explor-
ing the efficacy of diagnostic predictions from online data
for early diagnosis, evidence-based treatment, and deploying
timely patient-provider interventions [40, 48].

In this line of research, on the methodological front, super-
vised machine learning techniques have gained prominence,
providing promising predictive outcomes of mental health
states [66]. The success of these techniques, however, hinges
on access to ample and high-quality gold standard labels for
model training. In mental health, gold standard labels often
comprise diagnostic signals of people’s clinical mental health
states, for instance, whether an individual might be suffering
from a specific mental illness, or at the cusp of experiencing an
adverse episode like a relapse or suicidal thoughts.

Data Infrastructures in Context

« Augment existing signals

* Incorporate real-time-ness

» Target underserved populations

« Address issues of construct validity and
dataset shift

« Balance theory-driven and data-driven
approaches

 Validate algorithms in the real-world
setting where they will be used

» Talk to privacy and ethics challenges
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Can we predict relapse with social media?

« Schizophrenia affects about 1% of the world’s population
* Up to 80% schizophrenia patients relapse in 5 years

» Challenge: Early identitication of indicators of relapse for
treatment and intervention

Birnbaum, M. L.*, Ernala, S. K.*, Rizvi, A., Arenare, E., Van Meter, A., De Choudhury, M.** and Kane,
J. M.** (2019). Detecting Relapse in Youth with Psychotic Disorders Utilizing Patient-Generated and
Patient-Contributed Digital Data from Facebook. Nature Partner Journals - Schizophrenia. npj
Schizophrenia. * Co-first authors; ** Co-supervising authors

Research supported through a cooperative agreement between Georgia Tech and the Feinstein
Institute, the Zucker Early Treatment Program, and NIMH grant ROTMH117172 (Pl De Choudhury)



Northwell EP Patient

Data Collection

* 110 early psychosis (EP) patients (average age 24 years;

64% temale)
¢ 51 experienced a relapse

¢ Relapse hospitalizations = 124 (Mean = 2.6, Median = 2)

* Full archives of Facebook data

¢ 82% of those eligible agreed to share their Facebook data
¢+ Among those who consented, 100% agreed to share all of

their data

¢ 96,393 self-posts and self-comments spanning a period of
76 months (52,815 from the 51 relapse patients)
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anxiety medication really struggling
e mind racing
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Predicting Relapse

€ past future =
| — ... N ——— ...
onset relapse relapse 77

‘ Conceptual framework for personalized relapse prediction

‘ Temporal chunks of Facebook timeline, punctuated by hospitalizations

* Supervised learning approaches unsuitable
¢ Relapse is a rare event; sparsity of positive examples
¢ Clinical heterogeneity of patients

+ Conceptually no “true” negative examples — anybody can relapse at
some point in the future



Predicting Relapse

€ past future =
onset relapse relapse 77

‘ Conceptual framework for personalized relapse prediction

* Relapse prediction as an anomaly detection problem

¢ In a prospective setting, identify is aberrations in behavior,
deviating from the baseline

¢ Periods of health (1, 2, 3, months) — baseline data
¢ Periods of relapse (1 month before hospitalization) — anomalies

12
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Predicting Relapse

All data (healthy:719, relapse:49)

/\

Training + Validation Unseen test data
(90% healthy) (10% healthy, 100% relapses)

* Testing on healthy + relapse periods
¢ TP FN, FP, TN = (27, 45, 10, 39)

+ Specificity (relapses predicted as relapse) = TN/TN+FP =
39/49 = 0.79

¢ Sensitivity = TP/TP+FN = 27/72 = 0.37



Error analysis: evaluation via clinical
chart review

* Analysis of false negatives (periods of relative health wrongly
predicted as a relapse)

* For 20 out of the 45 false-negative time periods (44%), data
was available from the patient’s medical record.

* |In 18 of these 20 instances, the presence of psychotic
symptoms during periods defined as relative health was
documented

¢ 6 of these participants had known non-adherence to medication
during this time which can contribute to symptomatic exacerbations

14



Takeaways

* This work allows us to go beyond utilizing social media
activity to identity population-based, or group-level
characteristics, associated with mental health status—

nearly exclusively the only approach employed in prior
research.

* With our machine-learning approach, we have
demonstrated that personalized methods to
longitudinally forecast the likelihood of imminent adverse
mental health outcomes, like a relapse, is feasible.



Forecasting Nationwide Suicide Rates

o

* From 1999 through 2017, the age- R
adjusted suicide rate increased 33% E
from 10.5 to 14.0 per 100,000. D
“[ Source: CDC U
W . SUIMIDE
§ °l e v
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Forecasting Nationwide Suicide Rates

* |n spite of the urgency of this public health problem,
there exists a lack of real-time information on suicide
fatality trends to guide prevention efforts.

* The NVSS collects information from death certificates
that are submitted by the more than 2,000 medical
examiner and coroner offices in the U.S.

* Unfortunately, national statistics on suicide rates are
delayed by 1-2 years, depending on the time point at
which data are queried.



Combining Real-Time Datasets

A . Suicide-relevant Health services data
° Goal: BUI|O|IH9 d machlne streams from social streams from

|earning framework to predict media or web clinical sources

suicide death counts in real-time \/

¢ Time series forecasting problem to | Machine Learning Framework:

predict weekly number of suicide - Maximally use the signal from
each data source

¢ Using multiple time series datasets - Combine all signals in an
collected and pre-processed from intelligent and harmonic way
both social media and clinical l
sources

Time series forecasting for weekly
suicide death counts, mimicking
natural data acquisition process




Data Collection

* Social media and web

Method

Google/ Keyword searching from Trend scores of 42 keywords
Youtube Google Trend

Twitter Keyword searching by Number of users who upload at least one
GetOldTweets tweets retrieved by 38 selected keywords

Reddit  All posts in subreddits from Number of posts in the selected 53 subreddits
Pushshift.io

* Clinical/Health services data (provided by CDC)

Essence, Call, Poison



Data Preprocessing and Description

* All datasets encoded as input vectors of weekly granularity

- For the social media and web datasets, we (1) compute weekly time
series from the number of each keywords, then (2) net sum of the time
series of all the keywords

Public POISON 2014-2017 Death counts over all poison control data
:ieganlJ;Ts CALL 2014-2017 - Number of answered Lifeline calls
ESSENCE 2015-2017 - Normalized ESSENCE-REDUCE counts over total ED
visits
Social Google (Health) 2014-2017 - Trend scores (already normalized by Google Trends)
media Youtube 2014-2017 - Trend scores (already normalized by Google Trends)
(Mental health)
Reddit 2014-2017 2,314,533 posts; 638,657 users Normalized posts (by #posts in all subreddits)
Twitter 2015-2017 9,327,472 posts; 5,565,341 users Normalized users (by active #Twitter users)



Overall Architecture

* 2-stage machine learning pipeline framework

* Intermediate prediction stage
¢ One ML model for one data stream

+ Output the intermediate result (number of suicide) based on the given
data stream

* Ensemble stage

g ™\
2-stage Machine Learning Pipeline Framework

Intermediate

............................................

R i .
- 1 1 :
Data accessible ! Intermediate : Suicide
at tthweek — ™ "  — Ensemble stage — Count
i prediction stage ) : at t-th week
—_ I

.
..............................................................................




Overall Architecture

— > Google Trend

— Twitter

.............................................

Intermediate

predicted values Deep Neural Network Suicide
ot (DNN) : Count

o POISON

— ESSENCE

Y Y

Intermediate Prediction Stage Ensemble Stage



Training, Validating, and Test sets

_ Google, Youtube, Reddit, - Twitter, Essence

52 weeks interval Call, Poison 1 week interval

—— H
—— H.
—— H
— H

)

- Ground-truth _ Ground-truth
e | D )
I

- o - - - - -

[ ) — )
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| L | | |
| | |

2014 2015

- Train set (Learning features) [:] Validation set (Learning features) [:] Test set (Learning features)
- Train set (Target variables) S Validation set (Target variables) E

2016 2017 2014 2015 2016 2017

Test set (Target variables)



Training, Validating, and Test sets
- ] L)

52*%3 = 156 weeks interval Ground'TrUth

I ) )

I | | I I | I | —
" 2010 " 2011 2012 T o203 ' 2014 ' 2015 1 2006 | 2017

- Train set (Learning features) [:] Validation set (Learning features) S Test set (Learning features)
- Train set (Target variables) :] Validation set (Target variables) [: Test set (Target variables)




Prediction Results (Unit Models) Ground truth: 14.47
Category Source Model Parameter set RMSE SMAPE | Pearson | Predicted | Rate Error
Rate (%)
Simple Linear Regression Linear Regression 98.542 10.099 0.704 13.09 9.54
Naive ML Baseline Support Vector C: 10, epsilon: 0.1, 75.274 7.222 0.750 13.59 6.08
Regressor gamma: 0.01, kernel: poly
Baseline Holt-Winter Seasonal period: 52 84.087 8.477 0.759 13.29 8.15
Trend: None, Damped:
False,
Seasonal: multiplicative
Clinical POISON ElasticNet alpha: 1.0, I1_ratio: 0.1 177.184 20.891 0.686 11.73 18.94
Sources CALL ElasticNet alpha: 1.0, 11_ratio: 0.1 55.934 4.802 0.496 14.54 0.48
ESSENCE Linear Regression - 54.353 4.882 0.511 14.41 0.41
Social Google (Health) Random Forest Number of estimators: 500,  82.757 7.729 0.588 13.44 7.12
Media Min. Samples of split: 2,
Min. Samples of leaf: 4
Youtube Support Vector C: 10, epsilon: 0.1, 87.505 8.160 0.467 13.49 6.77
(Mental health) Regressor gamma: 0.1, kernel: poly
Reddit Support Vector C: 100, epsilon: 0.1, 223592  27.099 0.564 10.99 24.05
Regressor gamma: 0.01, kernel:
Sigmoid
Twitter Support Vector C: 100, epsilon: 0.1, 72.640 6.709 0.389 13.65 5.67
Regressor gamma: 1, kernel: rbf




Prediction Results (Ensemble Model) cround truth: 14.47

Categor | Source Model Parameter set RMSE SMAPE | Pearson | Predicte | Rate Error
y d (%)
Rate

Simple Linear Linear Regression 98.542 10.099 0.704 13.09 9.54
Regression
Naive ML Baseline Support Vector C: 10, epsilon: 0.1, 75.274 7.222 0.750 13.59 6.08
Regressor gamma: 0.01, kernel:
poly
Baseline Holt-Winter Seasonal period: 52 84.087 8.477 0.759 13.29 8.15
Trend: None, Damped:
False,
Seasonal: multiplicative
Clinical Source Only 114.818 12.428 0.768 12.76 11.82
Social Media Only 54.582 5.117 0.573 14.44 0.21
Baseline + Clinical Source 42.337 3.752 0.810 14.78 214
Baseline + Social Media 81.132 7.635 0.737 13.41 7.33
Clinical Source + Social Media 48.330 4.326 0.790 14.27 1.38
Baseline + Clinical Source + Social Media 41.832 3.766 0.801 14.43 0.28



Comparison with Baseline

I Prediction Result (RMSE:84.09, SMAPE:8.48, PEARSON:0.76, SPEARMAN:0.72)

Prediction Result (RMSE:41.83, SMAPE:3.77, PEARSON:0.80, SPEARMAN:0.82)
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Takeaways

The first comprehensive study to predict suicide
mortality in the US, harnessing diverse real-time
datasets, including online data.

* Practical use and deployment at CDC
+ Beyond the seasonal component

¢ Could be predict when there is likely to be an upturn in suicide
fatalities?
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The path forward...



What improvements to these
research infrastructure are needed?

* Algorithmic performance for real world translation
* Trust, interpretability, transparency of the algorithms
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What are the future research
needs?

Addressing the gap between analytics and interventions

Social media is not a source of clinical information
information

Consumer voice
Negative repercussions
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What types of training are most
important for this type of research?

* Skill acquisition
¢ Burden to public health workers
* Digital navigators
* Building social science in the computing curricula
* Ethics awareness/literacy and training
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