

Overseas Buildings Operations (OBO)

Federal Real Property Association

- 1. Setting Green Goals**
- 2. Measuring Green**
- 3. Getting to Green**
 - a. New Construction
 - b. Existing Facilities
- 4. Green-Diplomacy**

Donna McIntire
Sustainability Programs Manager

July 22, 2008

Federal Mandates:

- EPAct 2005, Section 103 - building metering;
- EO 13423 - New & Renovation comply w/ MOU;
- EO 13423 - 15% incorporate MOU by 2015;
- EO 13423 - 16% water use reduction by 2015;
- EO 13423 & EISAct 2007 - 30% energy use reduction in existing facilities by 2015;
- EISAct 2007 - 55% energy use reduction in new construction by 2010 & 100% by 2030;
- EISAct 2007 - Manage stormwater to pre-developed conditions.

Energy Independence and Security Act:

signed by President Bush on Dec. 19, 2007:

- Ø Strengthens national security,
by lessening our dependence on foreign oil
- Ø Reduces global warming
- Ø Lowers energy costs for consumers
- Ø Creates hundreds of thousands of new jobs
and strengthens our economy

For OBO:

By 2011 - 4 yrs evaluate 193 Posts (*75% of OBO's energy consumption 257 Posts*)

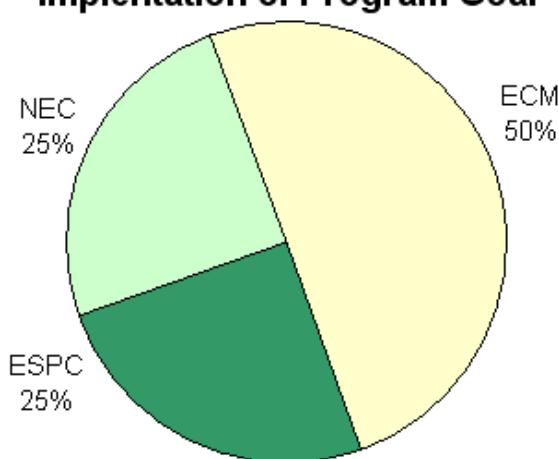
By 2009 - 2 yrs implement life-cycle cost effective measures for evaluated posts

Within 180 days (June 19, 2008) evaluate energy & water of 48 Posts (*25% of 75%*)

2007 Sustainability Survey – 90 reported on energy & water

Setting Green Goals

Facility Audits & Tracking


Goals: ü Audit 75% of facilities = ~193 Posts for water and energy consumption;
ü Web-based Tracking;

4-year Audit Cycle for 193 Posts

Web-Based Tracking of Utilities and Guiding Principles

Post Reporting	FY08	FY09	FY10	FY11	FY12	FY13	FY14	FY15
Complete	90	167	257	257	257	257	257	257
		Total Posts =	257					

Setting Green Goals Project Implementation

Project Implementation

NEC (25%)	FY08	FY09	FY10	FY11	FY12	FY13	FY14	FY15
Target	10	10	8	7	7	7	7	7
Complete		20	28	35	42	49	56	63

Total to replace	180
Completed to date	-56
Under Construction	-34
Total left to replace	90

ESPC (25%)	FY08	FY09	FY10	FY11	FY12	FY13	FY14	FY15
Target	2	3	10	10	10	10	10	10
Complete		5	15	25	35	45	55	65

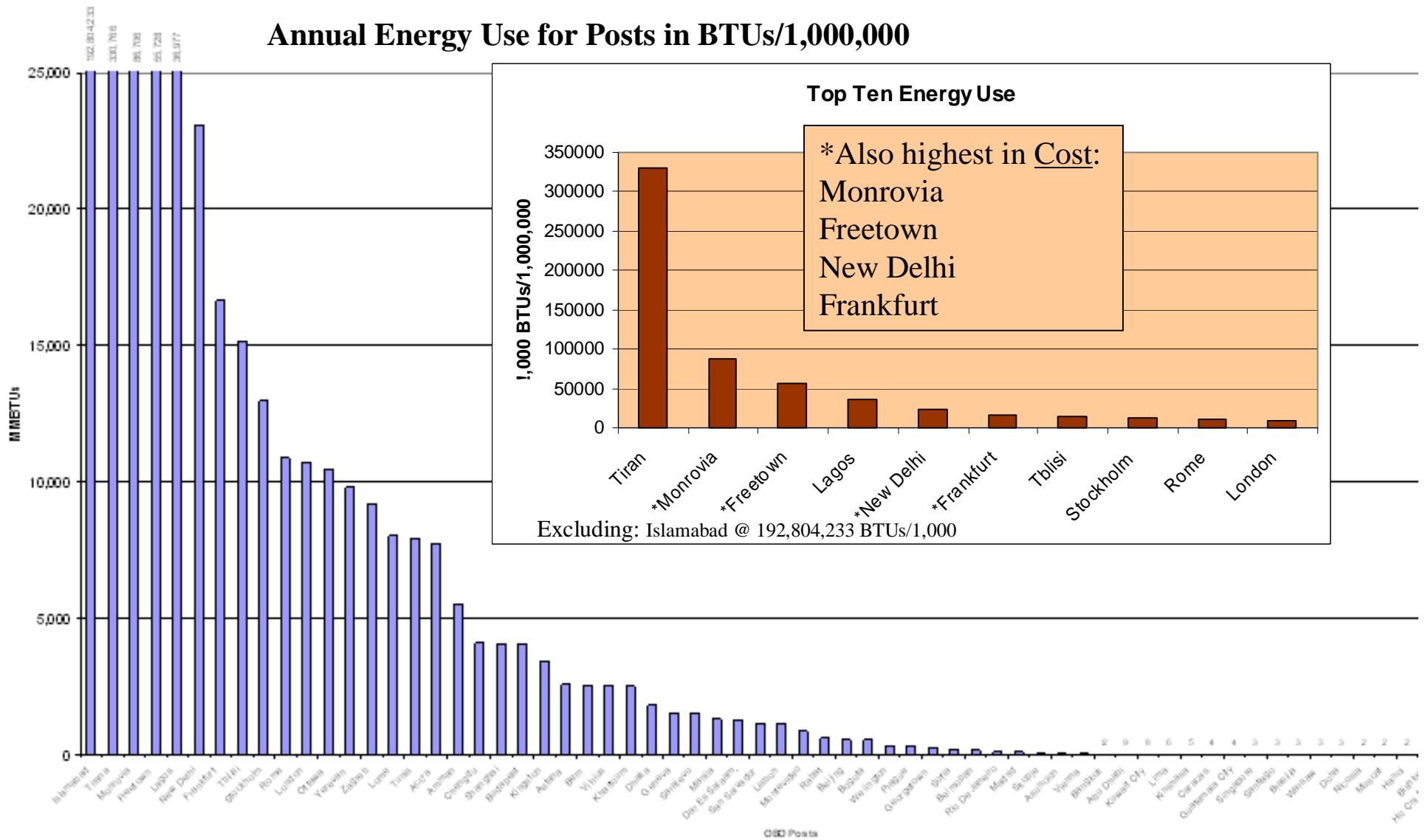
Measuring Green Sustainability Database

Sensitive But Unclassified

Sustainability Data

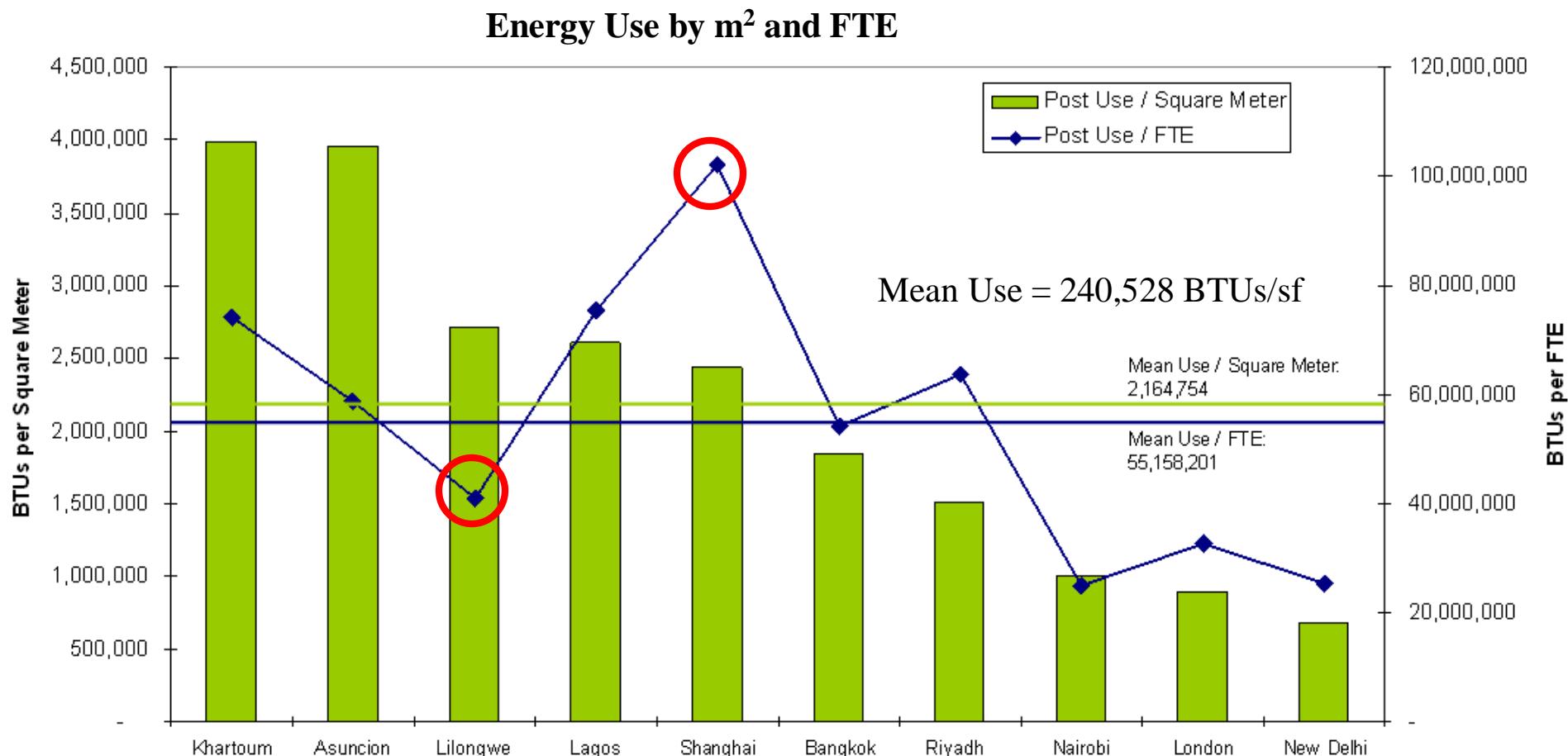
Collection, Storage, & Reporting

Collection, Storage, & Reporting FINAL SUMMARY REPORT JANUARY 10, 2008



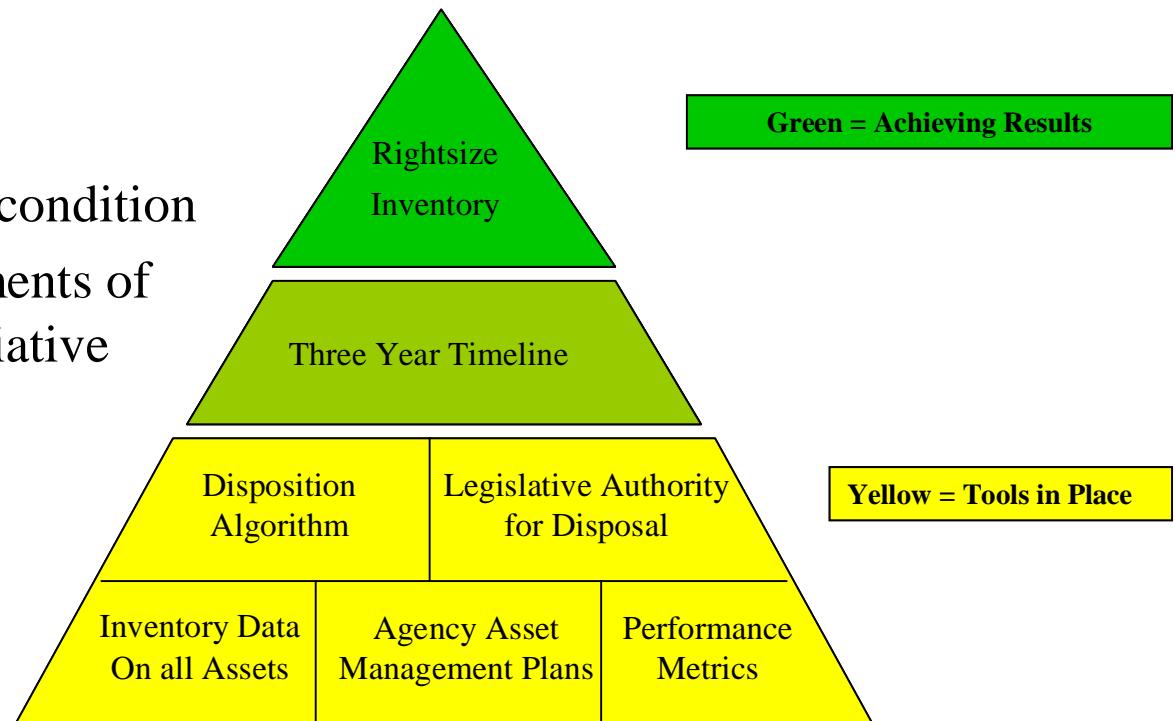
JACOBS

U.S. DEPARTMENT OF STATE
Bureau of Overseas Buildings Operations



Measuring Green Energy Use by Post for 2007

Measuring Green Energy Use by m² & FTE



Measuring Green PMA Federal Real Property Initiative

Focuses on achievements in four key areas:

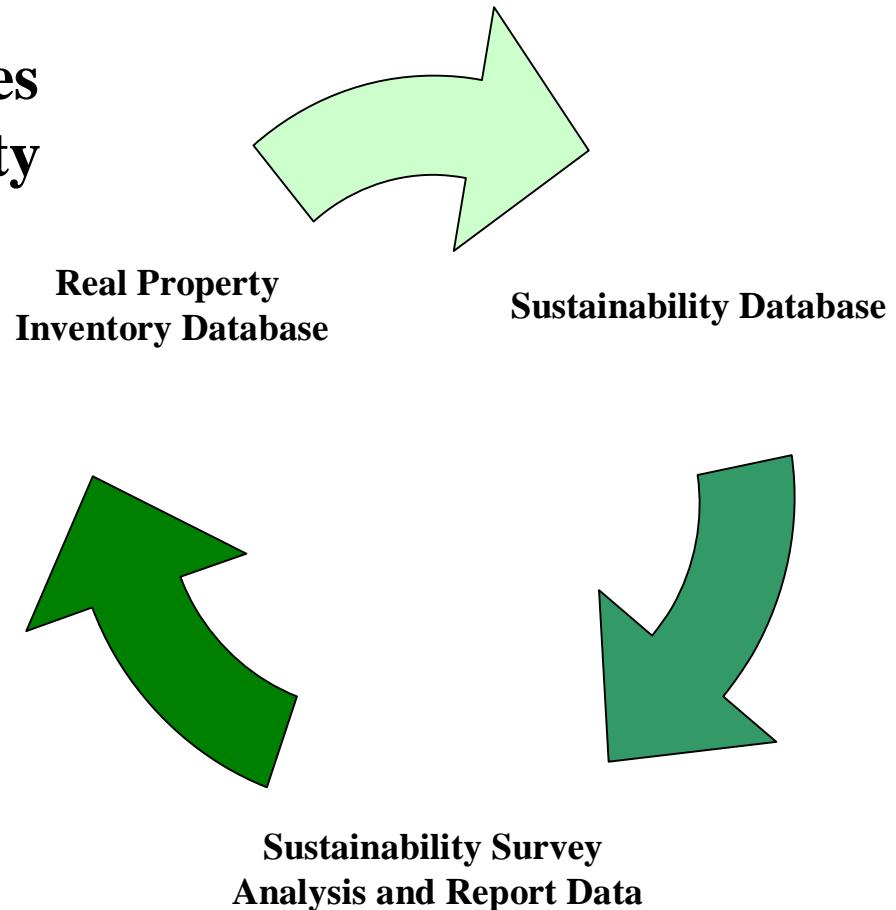
- Eliminating surplus assets
- Operating at the right cost
- Ensuring critical assets in condition
- Compliance with requirements of Federal Real Property Initiative

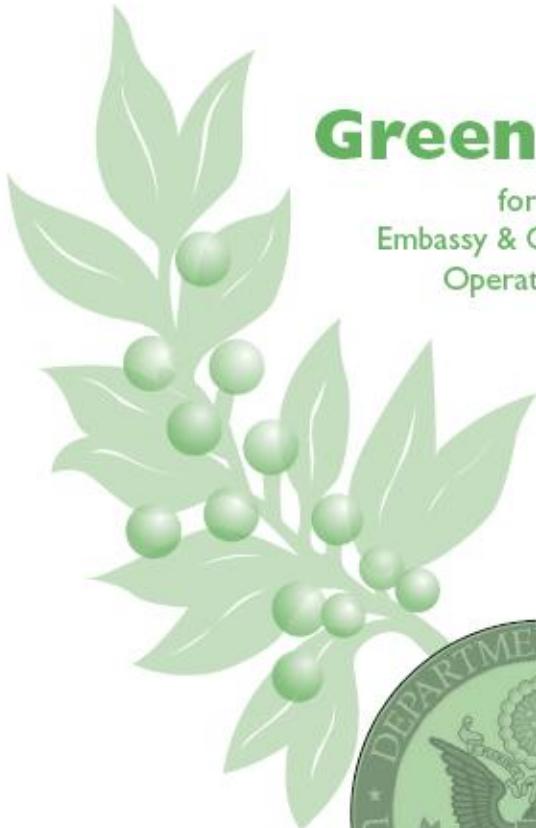
Inventory Data and Performance Measures are tracked through OBO's Real Property Inventory Database and then reported to the Federal Real Property Profile (FRPP), maintained by GSA

Measuring Green PMA Federal Real Property Initiative

	Data Element		Data Element		Data Element
1	Real Property Type	9	Utilization	17	State
2	Real Property Use	10	Value	18	Country
3	Legal Interest	11	Condition Index:	19	County
4	Status	12	Mission Dependency	20	Congressional District
5	Historical Status	13	Annual Operating Costs	21	Zip Code
6	Reporting Organization	14	Main Location	22	Installation/Sub-Installation ID
7	Using Organization	15	Real Property Unique ID	23	Restrictions
8	Size	16	City	24	Disposition
25	Applicability of Executive Order to Asset				
26	Meets Sustainability Goals of the Executive Order				

Currently 24 data elements in FRPP. 2 new elements to be added per EO 13423.


**FRPP will track success in meeting the
15% goal by 2015 through these elements.**


Measuring Green PMA Federal Real Property Initiative

OBO's Sustainability Database uses Property IDs from Real Property Inventory Database

- Post data tracked in database by Property ID
- Sustainability data will be sent back to the Real Property Inventory Database to track progress for the Federal Real Property Initiative.

**The data from the sustainability reports will be reported in
two elements in the Real Property Inventory Database**

GreenGuide for Embassy & Consulate Operations

"I encourage our missions to use this timely and valuable guide to address energy and sustainability challenges at our facilities overseas, in response to federal mandates and in support of greater environmental stewardship. Regular adherence to the guidance provided here will allow Overseas Buildings Operations to participate in and forward the Department of State's platform of eco-diplomacy."

Patrick R Kennedy
Under Secretary of Management
Department of State

First
Edition

OBO GreenGuide for Posts

SITE

Natural wetland systems have often been described as the "earth's kidneys" because they filter pollutants from water that flows through on its way to receiving lakes, streams and oceans. Because these systems can improve water quality, engineers and scientists construct systems that imitate the functions of natural wetlands.

WATER

The Saguaro is the ultimate water harvester—sucking up as much water as possible when it rains. The trunk and arms are pleated like an accordion and can expand or contract with the amount of water taken in. Saguaro roots extend to a diameter of 100 feet (for a 50-foot-high Saguaro) at a depth of only inches. Tiny hairs absorb even concentrated drizzle or mist.

MATERIAL

The gecko can support his entire body with one toe. Biomimicry scientists are studying the microscopic hairs (setae) gecko's toes as a model for developing the first dry, self-cleaning adhesive.

INDOOR ENVIRONMENT

Termites have designed their structure to perfectly balance the raging heat of the day and the bitter cold of the night naturally ventilating their environment to an even 70 °F.

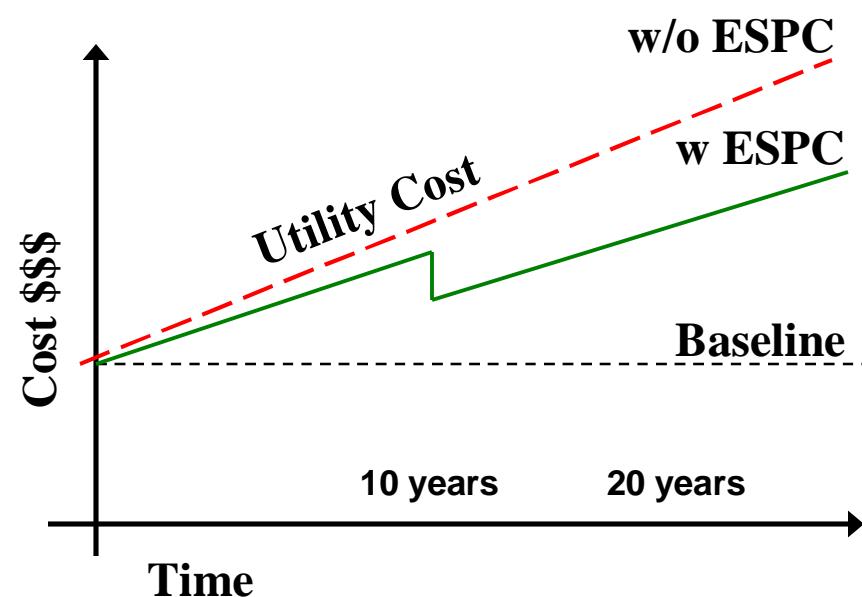
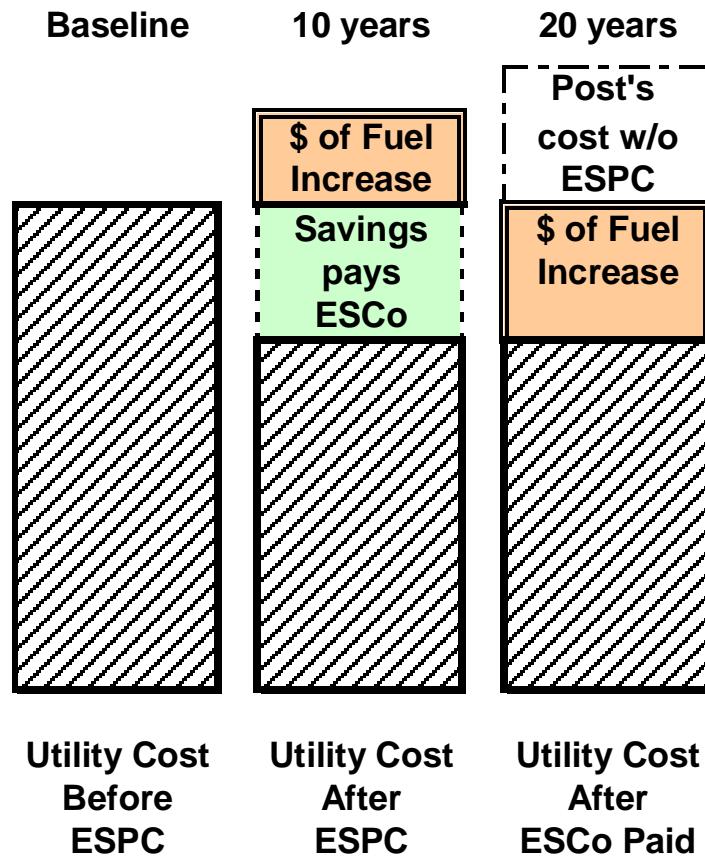
TRANSPORTATION

Ruby-Throated Hummingbirds fly 27 miles per hour on their 10.5 hour migration flight across the Gulf of Mexico without refueling.

That is fuel efficiency worth mimicking.

Getting to Green Sustainability Studies & Reports

Studies and reports support both new and existing facilities:



- Wind
- Vegetative Roofs
- Sustainable Lighting
- Water Resources
- Photovoltaics
- ***Coming soon:***
 - Metering
 - LED

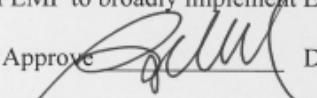
Getting to Green Energy Savings Performance Contracting (ESPC)

ESPC - private funding paid by project energy savings over time.

DOS – DOE MOU:

OBO & DOE/FEMP signing Memorandum of Understanding to procured ESPCs for the Department

United States Department of State
JUL - 7 2008 Washington, D.C. 20520


ACTION MEMO FOR DIRECTOR, AD INTERIM SHINNICK

FROM: OBO/PE – Joseph Toussaint

SUBJECT: Memorandum of Understanding (MOU) with Department of Energy's Federal Energy Management Program (DOE/FEMP) to support Energy Savings Performance Contracting (ESPC)

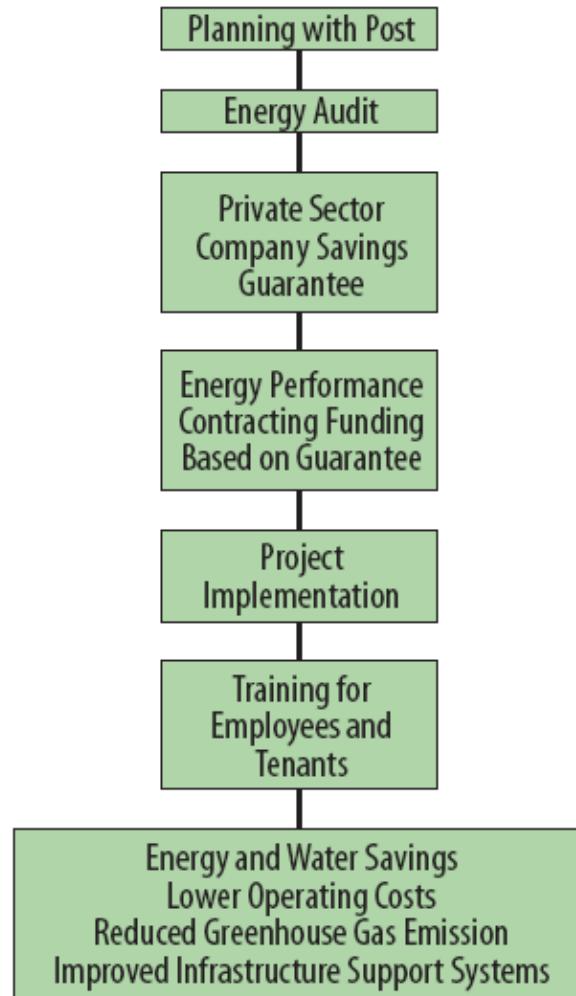
Recommendation

That you approve the attached MOU to support work with DOE/FEMP to broadly implement ESPC projects for OBO facilities.

Approve Disapprove _____

Background

The President's recent focus on energy- and water-related conservation compels the Department to comply with increasingly more stringent requirements in the operation and maintenance of its facilities. The Energy Independence and Security Act (EISA) signed by President Bush on December 19, 2007 recommended use of ESPCs to achieve the targets without the use of appropriated funds. OBO intends to ramp-up the use of ESPCs in an effort to meet the requirements of EISA, Executive Order 13423 - Strengthening Federal Environmental, Energy, and Transportation Management signed in January 2007, and other federal mandates. DOE/FEMP has developed a very useful program to assist agencies implement ESPCs. OBO has already used this alternative funding method on five projects.

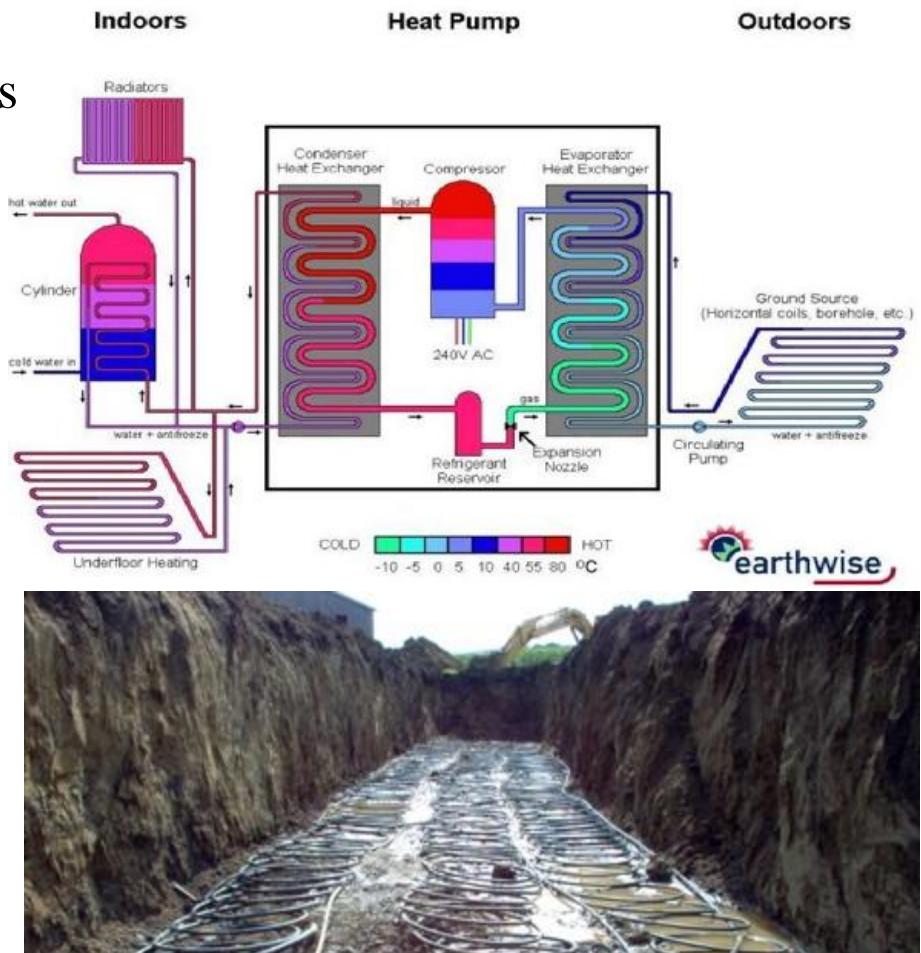


Getting to Green – Existing Facilities Energy Savings Performance Contracting (ESPC)

ESPC - private funding paid by project energy savings over time.

- **Recommended** by *Energy Independence and Security Act*
- **Assistance** by DOE/FEMP pre-competed Energy Savings Contractors (ESCo)
- **Contract support** by OBO/OP/AM at 1% of project cost funded by project
- **Bundle** strategies to achieve reasonable payback period
- **Post Management of Contractor Payment** - lower O&M and utility costs pay the ESCo over time

How an ESPC typically works



Getting to Green – Existing Facilities Energy Savings Performance Contracting (ESPC)

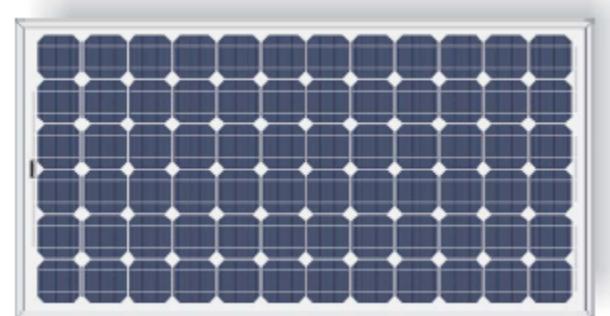
Examples of OBO ESPCs

- Mexico City: Lighting, motors, & controls
1999- \$0.58M 9-yr contract;
- Seoul: Geothermal heat pumps
2001- \$12.5M 19-yr contract;
- Santo Domingo: Lighting and controls
2005- \$0.72M 10-yr contract;
- Dhaka: Gas turbine generators
2007- \$0.72M 11-yr contract;

Geothermal Heat Pump System

Getting to Green – Existing Facilities ESPC Photovoltaic Projects

Photovoltaics: OBO Prioritization Listing by Payback:


Rank	FY NEC	Post	Country	kW PV	Project Cost (Total)	Annual Savings	Simple Payback (Years)	Utility Rate \$/kWh
1	10	N'Djamena	Chad	300	\$3,085,000	\$1,955,088	2	\$1.21
2		Abuja - NOX	Nigeria	125	\$1,085,000	\$671,104	2	-
3		Rangoon	Burma	250	\$2,585,000	\$671,882	4	-
4	09	Monrovia	Liberia	500	\$4,085,000	\$1,106,718	4	-
5	10	Santo Domingo	Dominican Rep	500	\$4,085,000	\$1,043,485	4	\$0.40
6	05	Kigali	Rwanda	419	\$4,275,000	\$973,385	5	\$0.45
7	05	Port-Au-Prince	Haiti	339	\$4,390,000	\$889,466	5	-
8	06	Harare	Zimbabwe	569	\$4,637,000	\$863,245	6	\$0.15
8		Windhoek	Namibia	750	\$6,085,000	\$1,083,239	6	\$0.40
9	06	Djibouti	Djibouti	569	\$4,637,000	\$821,817	6	\$0.40
10	07	Ouagadougou	Burkina Faso	569	\$4,637,000	\$770,991	6	\$0.40
11	07	Johannesburg	South Africa	569	\$4,637,000	\$767,662	6	\$0.30
12		Kabul	Afghanistan	250	\$2,085,000	\$344,801	6	-
13		Athens	Greece	404	\$2,711,000	\$557,506	6	\$0.12
14	09	Valletta	Malta	105	\$925,000	\$142,267	7	\$0.30
15	06	Beirut	Lebanon	569	\$4,637,000	\$706,291	7	\$0.30
16		Freetown	Siera Leon	500	\$5,085,000	\$747,574	7	-
17		Frankfurt	Germany	33	\$299,500	\$49,648	7	\$0.14
18	06	Khartoum	Sudan	347	\$2,861,000	\$402,951	7	\$0.40
19	08	Juba	Sudan	1000	\$11,085,000	\$1,569,768	7	-
20		Dushanbe	Tajikistan	300	\$3,085,000	\$402,110	8	\$0.25
21	09	Malabo		200	\$1,685,000	\$220,673	8	-
22		Managua	Nicaragua	569	\$5,775,000	\$705,489	8	\$0.20
22	06	Brazzaville	Congo	569	\$4,637,000	\$549,338	9	\$0.15
23		Phnom Penh	Cambodia	198	\$2,065,000	\$240,313	9	-
24		Conakry	Guinea	300	\$2,485,000	\$289,633	9	-

Getting to Green – Existing Facilities ESPC Photovoltaic Projects

Photovoltaics: = ~\$4.2M First Cost w/ \$168M Savings

- **Economic benefits:** Passive power production with no fuel cost
 - 4-year payback for new construction depending on utility/fuel costs
 - Supplement prime power source – reducing generators in prime plant
 - Reduces electrical source use during peak load
 - LOW Maintenance – Passive system only requires periodic cleaning
 - Modular and able to be phased
- **System:** PV Panels, Inverters, & Mounting
 - Installation on large open roof areas
- **Other benefits:**
 - Increased security through independence/control of power source

Typical PV Panel

**OBO's Photovoltaic Installation
Geneva, Switzerland**

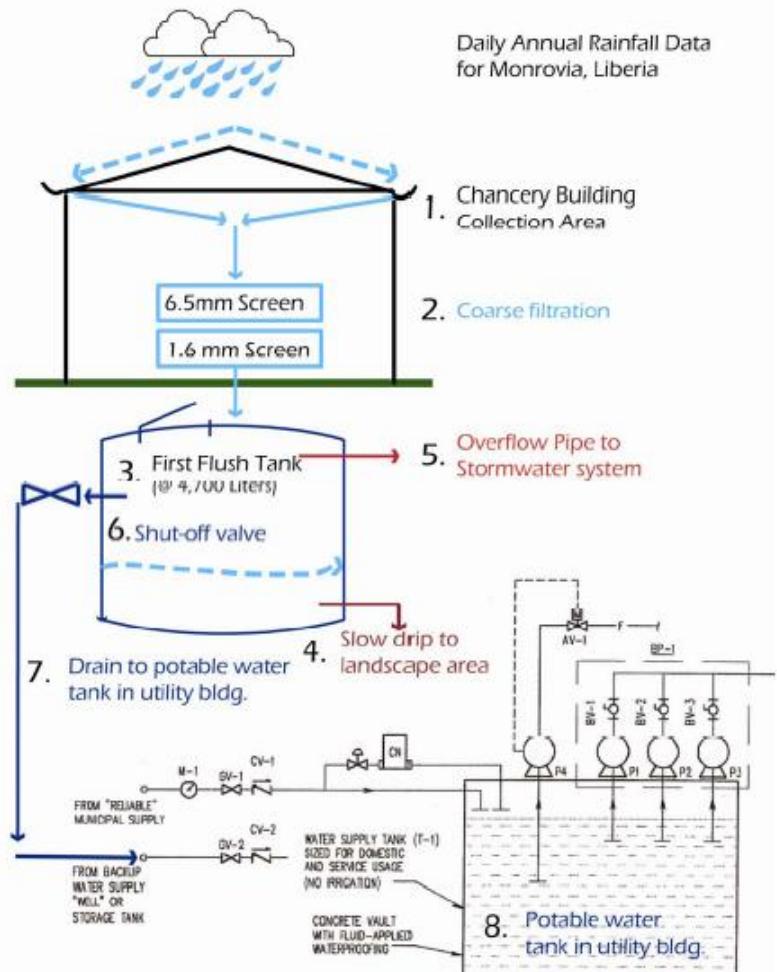
Getting to Green – Existing Facilities ESPC - MagLev Chiller Projects

MagLev Chillers = \$.5M First Cost w/ \$19M Savings (7-yr payback)

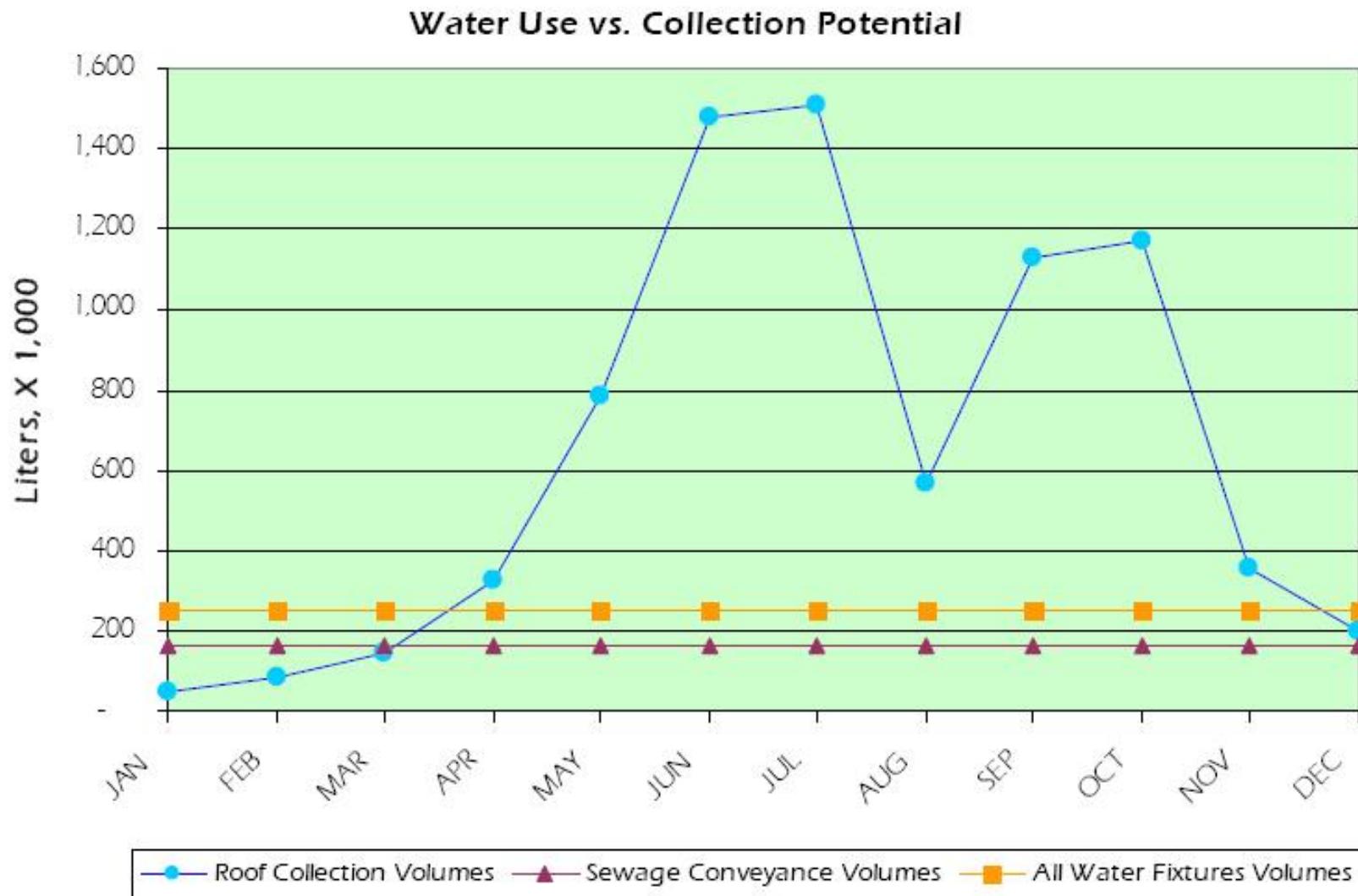
- **Economic benefits:** Variable speed high efficiency modular cooling capacity with lower utility/fuel cost.
 - Reduces Power Usage – 1 k - 0.5 kW/ton of cooling
 - 6-7-yr payback – depending on utility/fuel costs
 - Lower Maintenance – oil free magnetic bearings reduce wear and maintenance
 - Modularity - additional capacity at minimum cost
 - No Cooling Tower – reduces water usage and minimizes chemical usage
- **System:** Compressors, condensers and controls
 - Low noise, frictionless bearings, variable frequency drive, permanent magnet rotors, compact.
 - Projects currently initiated Tokyo and Geneva
- **Savings:**
 - Reduction of generator size and fuel consumed in prime power plants.
 - Adjustable capacity Minimum production during low demand and subsequently low energy usage.
 - Modules can be added to match increasing loads.

High Efficiency Compressor

**OBO's MagLev Chillers
Tokyo, Hong Kong**


Getting to Green – New Construction Budget Recommendations

Energy & Sustainable Design Program (ESDP)		Primary recommendations for project cost				
Project	Budget	Item A	Item B	Item C	Item D	Item E
		LEED Certification	Photovoltaics	Wind Power	LED Site Lighting	Sustain. Lighting
FY10 TOTAL 1st Cost	\$14,423,626		\$27,134	\$5,770,000	\$0	\$1,240,000
FY10 TOTAL Savings	\$65,657,037		\$52,990	\$11,377,078	\$0	\$27,586,180
Asuncion	\$1,677,284	\$3,484				\$210,000
Paraguay	\$0					
50-Year Savings	\$4,759,914	\$13,210				\$1,322,961
NEC LRBP Budget	\$132,100,000	9,248gsm or 99,5456gsf = (\$2,489 + \$995)	128 - year payback			12.67 - year payback
Bujumbura	\$2,558,506	\$2,526	\$1,685,000			\$210,000
Burundi	\$0					
50-Year Savings	\$7,466,430	\$10,510	\$2,351,000			\$1,322,961
NEC LRBP Budget	\$105,100,000	6,705gsm or 72,172gsf = (\$1,804 + \$722)	12 - year payback			12.67 - year payback
The Hague	\$894,668	\$2,645				\$210,000
Netherlands	\$0					
50-Year Savings	\$4,017,882	\$13,640				\$1,322,961
NEC LRBP Budget	\$136,400,000	7,019gsm or 75,552gsf = (\$1,889 + \$756)	53 - year payback			12.67 - year payback
Jakarta	\$2,190,443	\$8,396				\$170,000
Indonesia	\$500,000					


Getting to Green – New Construction Initial Planning Survey (IPS)

Monrovia, Liberia NEC				
	First Cost	Payback	NPV	Include?
1. Rainwater Collection				
Sewage Conveyance Only	\$ (438,000)	4.42	\$ 1,547,735	
100% Potable Water	\$ (40,000)	-0.75	\$ 3,385,479	Y
2. Potable Water Options				
Option 1	\$ (6,979)	-0.77	\$ 879,217	
Option 2	\$ (19,219)	-0.73	\$ 1,950,614	
Option 3	\$ (19,669)	-0.75	\$ 2,370,549	
Option 4	\$ (19,984)			Y
3. Envelope				
Window Shading	\$ (223,244)	11.89	\$ 212,930	Y
Eliminate Wall Insulation	\$ 17,646	-1.94	\$ 480,535	Y
Window Film	\$ (19,460)	15.23	\$ 11,084	Y
Temperature Set Points	\$ -	-0.98	\$ 1,250,329	Y
Demand Control Ventilation	\$ (20,000)	-0.63	\$ 1,441,483	Y
4. PV Energy				
Scenario A: Site Arrays	\$ (3,000,000)	13.72	\$ 2,138,603	
Scenario B: Point-Of-Use Arrays	\$ (1,350,000)	12.80	\$ 1,116,529	
5. Wind Energy Options				
Scenario A: 30 kW	\$ (120,040)	15.44	\$ 39,572	
Scenario B: 45 kW	\$ (296,300)	15.22	\$ 102,778	
Secenario C: 330 kW	\$ (734,000)	12.13	\$ 479,971	
6. Waste Heat				
Adsorption Chiller	\$ (120,250)	1.02	\$ 1,253,243	Y
Enthalpy Wheel	\$ (36,184)	0.18	\$ 791,503	Y
7. Lighting				
New Luminaires	\$ (14,615)	-0.82	\$ 2,282,533	Y
Occupancy Sensors	\$ (31,707)	0.81	\$ 370,934	Y
Daylight Sensors	\$ (72,724)	1.19	\$ 607,910	Y
TOTAL ALL YES MEASURES	\$ (580,522)	2.10	\$ 12,087,963	

Getting to Green – New Construction Initial Planning Survey (IPS)

Getting to Green – New Construction FY08 Projects LEED Certified

Sustainable Sites				Possible Points	14	3	6	6	Materials & Resources			Possible Points	13
1	1	1	1	Prereq 1: Construction Activity Pollution Prevention		1	1	1	Prereq 1: Storage & Collection of Recyclables				
				Credit 1: Site Selection	1				Credit 1.1: Building Reuse: Maintain 75% of Existing Walls, Floors, & Roof				1
				Credit 2: Developmental Density & Community Connectivity	1				Credit 1.2: Building Reuse: Maintain 50% of Existing Walls, Floors, & Roof				1
				Credit 3: Brownfield Redevelopment	1				Credit 1.3: Building Reuse: Maintain 50% Shear & 50% Interior Non-Structural Element				1
				Credit 4.1: Alternative Transportation: Public Transportation Access	1	1			Credit 2.1: Construction Waste Management: Divert 50% From Disposal				1
				Credit 4.2: Alternative Transportation: Bicycle Storage & Changing Rooms	1		1		Credit 2.2: Construction Waste Management: Divert 75% From Disposal				1
				Credit 4.3: Alternative Transportation: Low Emitting & Fuel Efficient Vehicles	1			1	Credit 3.1: Materials Reuse: 5%				1
				Credit 4.4: Alternative Transportation: Parking Capacity	1				Credit 3.2: Materials Reuse: 10%				1
				Credit 5.1: Site Development: Protect or Restore Habitat	1	1			Credit 4.1: Recycled Content: 10% (post-consumer + 10 pre-consumer)				1
				Credit 5.2: Site Development: Maximize Open Space	1		1		Credit 4.2: Recycled Content: 20% (post-consumer + 10 pre-consumer)				1
				Credit 6.1: Stormwater Design: Quality Control	1	1			Credit 5.1: Regional Materials: 10% Extracted, Processed, & Manufactured Regionally				1
				Credit 6.2: Stormwater Design: Quality Control	1		1		Credit 5.2: Regional Materials: 20% Extracted, Processed, & Manufactured Regionally				1
				Credit 7.1: Heat Island Effect: Non-Roof	1			1	Credit 6: Rapidly Renewable Materials				1
				Credit 7.2: Heat Island Effect: Roof	1				Credit 7: Certified Wood				1
				Credit 8: Light Pollution Reduction	1								
Water Efficiency				Possible Points	4	6	2	6	Indoor Environmental Quality			Possible Points	15
1	2			Prereq 1: Water Efficient Landscaping: Reduce by 50%		1			Prereq 1: Minimum IAQ Performance				
				Credit 1.1: Water Efficient Landscaping: No Potable Water Use or No Irrigation	1	1			Prereq 2: Environmental Tobacco Smoke (ETS) Control				
				Credit 2: Innovative Wastewater Technologies	1	1			Credit 1: Outdoor Air Delivery Monitoring				1
				Credit 3.1: Water Use Reduction: 20% Reduction	1		1		Credit 2: Increased Ventilation				1
				Credit 3.2: Water Use Reduction: 30% Reduction	1			1	Credit 3.1: Construction IAQ Management Plan: During Construction				1
									Credit 3.2: Construction IAQ Management Plan: Before Occupancy				1
									Credit 4.1: Low-Emitting Materials: Adhesives & Sealants				1
									Credit 4.2: Low-Emitting Materials: Paints & Coatings				1
									Credit 4.3: Low-Emitting Materials: Carpet Systems				1
									Credit 4.4: Low-Emitting Materials: Composite Wood & Agglomerate Products				1
									Credit 5: Indoor Chemical & Pollutant Source Control				1
									Credit 6.1: Controllability of Systems: Lighting				1
									Credit 6.2: Controllability of Systems: Thermal Comfort				1
									Credit 7.1: Thermal Comfort: Design				1
									Credit 7.2: Thermal Comfort: Ventilation				1
									Credit 8.1: Daylight & Views: Daylight 75% of Spaces				1
									Credit 8.2: Daylight & Views: Views for 90% of Spaces				1
Energy & Atmosphere				Possible Points	17	1			Innovation & Design Process			Possible Points	5
1	1	5	7	Prereq 1: Fundamental Commissioning of the Building Energy Systems		1			Prereq 1: Innovation in Design: Increased Life Safety – Security				
				Prereq 2: Minimum Energy Performance - CPG434/ASHRAE 90.1-1999			1		Prereq 2: Innovation in Design: Acoustics				1
				Prereq 3: Fundamental Refrigerant Management			1		Prereq 3: Innovation in Design: Enhanced IAQ				1
				Credit 1.1: Optimize Energy Performance: 30% New / 10% Existing	2			1	Prereq 4: Innovation in Design: Project Specific				1
				Credit 1.2: Optimize Energy Performance: 30% New / 20% Existing	2		1		Prereq 5: LEED™ Accredited Professional				1
				Credit 1.3: Optimize Energy Performance: 40% New / 30% Existing	2								
				Credit 1.4: Optimize Energy Performance: 50% New / 40% Existing	2	1							
				Credit 1.5: Optimize Energy Performance: 60% New / 50% Existing	2	1		1					
				Credit 2.1: On-Site Renewable Energy: 5%	1								
				Credit 2.2: On-Site Renewable Energy: 10%	1								
				Credit 2.3: On-Site Renewable Energy: 20%	1								
				Credit 3: Enhanced Commissioning	1								
				Credit 4: Enhanced Refrigerant Management	1								
				Credit 5: Measurement & Verification	1	1							
				Credit 6: Green Power	1		1						

26 5 21 17 Total Project Score

Total Points 69

Getting to Green – New Construction OBO's 1st LEED Certification

NEC for Sofia, Bulgaria earned 7 Prerequisites and 26 Points:

- 37% Better than ASHRAE
- Brownfield Redevelopment
- Ozone Protection
- No Chemical Water Treatment
- Enhanced Indoor Air Quality
- Tree Preservation
- Building as Educational Tool

Getting to Green – New Construction OBO's 2nd LEED Certification

NEC for Panama City earned 7 Prerequisites & 26 Points:

- 35% Better than ASHRAE
- Ozone Protection
- Water Efficient Landscaping
- Regional Materials
- Low Emitting Materials
- Enhanced Indoor Air Quality
- Building as Educational Tool

League of Green U.S. Embassies:

20 embassies joined to date:

USEU

UN-Geneva

Bulgaria

Denmark

France

Georgia

Greece

Hungary

Ireland

Luxembourg

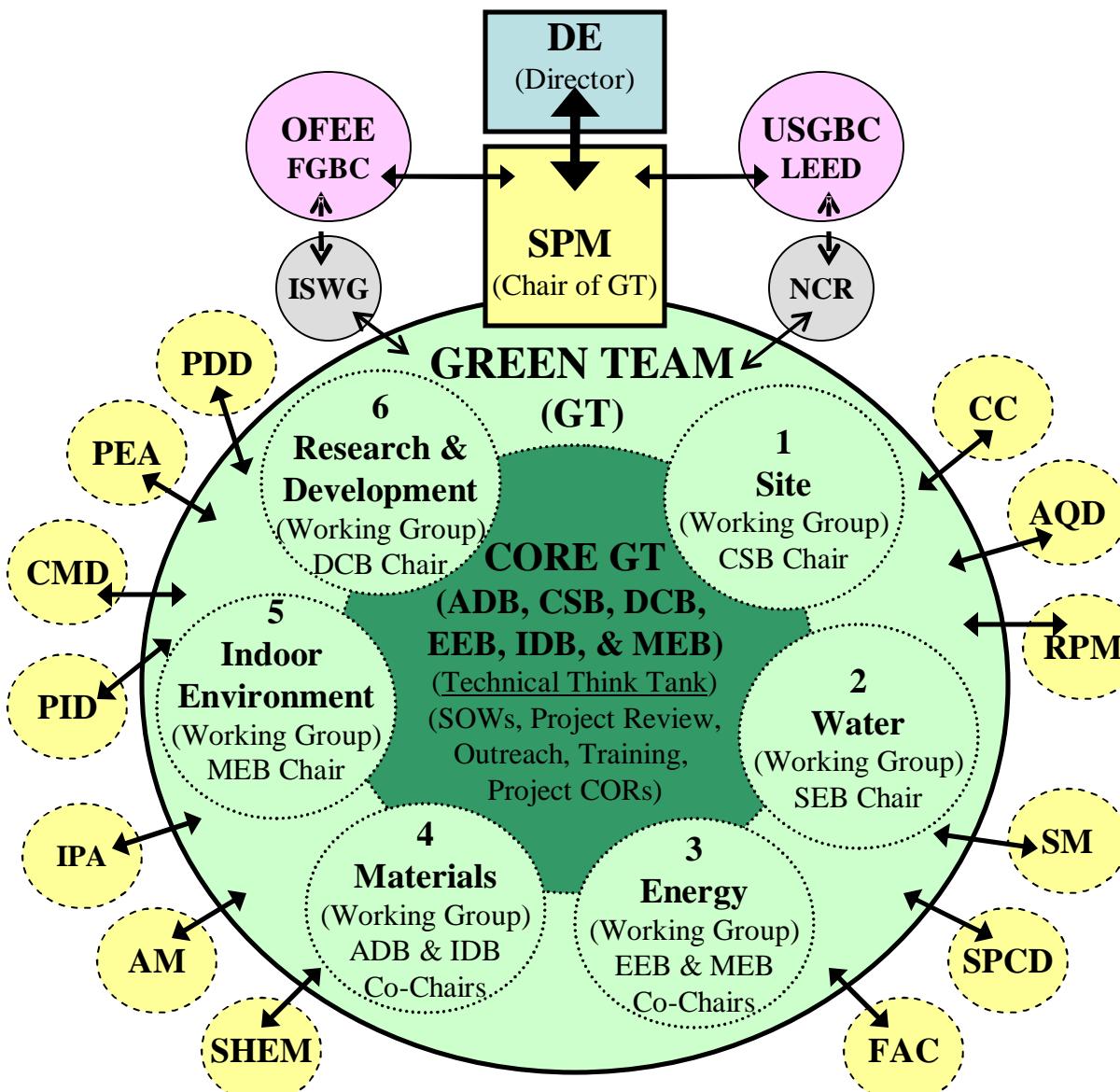
Malta

Norway

Portugal

Slovakia

Spain


Sweden

UK

- ü Share best practices on greening our missions
- ü Act collectively to obtain funding
- ü Use public affairs to highlight our green practices
- **US collaboration** with local government and private sector greening initiatives
- **Web-portal** for sharing of best practices, case studies, and energy saving tools and strategies
- **OBO support** via development of Green Guide for sustainable operation & maintenance of embassy properties

Energy & Sustainable Design Program

(Organizational Chart)

DE – Design & Engineering Division

SPM – Sustainability Program Manager

OFEE – Office of the Federal Environmental Executive

FGBC – Federal Green Building Council

USGBC – U.S. Green Building Council

LEED – Leadership in Energy & Environmental Design, Green Building Rating System

GT CORE & WORKING GROUP CHAIRS

ADB – DE's Architectural Design Branch

CSB – DE's Civil Structural Branch

DCB – DE's Design Coordination Branch

EEB – DE's Electrical Engineering Branch

IDB – DE's Interiors Design Branch

MEB – DE's Mechanical Engineering Branch

SEB – DE's Security Engineering Branch

AT-LARGE GREEN TEAM CHAMPIONS

PDD – Project Development Division

PEA – Planning Evaluation & Analysis

CMD – Cost Management Division

PID – Planning Integration Division

IPA – Interiors Planning & Analysis

AM – Area Management Division

SHEM – Safety, Health, & Environmental Management Division

FAC – Facility Management Division

SPCD – Special Projects Coordination Division

SM – Security Management Division

RPM – Real Property Management Division

AQD – Acquisitions & Disposals Division

CC – Construction & Commissioning Division