Launch Propulsion Systems
TA-01

Orbital Perspective

March 2011

John Steinmeyer
Sr. Systems Project Manager
Orbital Sciences Corporation
Launch Vehicle Propulsion Industry Status

● US Industrial Space Policy has Hampered Emerging Technology, Specifically the Availability of Affordable Liquid Propulsion Solutions
 ➢ Lack of focus and consistent direction has effectively curtailed engine development
 – “No significant investment or broad-based planning by NASA in Launch Propulsion technologies over the last 7 years”
 ➢ Lack of production and future definable business plan is leading to erosion of the U.S. propulsion industrial base
 – Technology, development, and production cycle has been broken

● Engine Technology Development is the Key to New Launch Vehicle Development
 ➢ Successful development in one initial area leading to sustainable production rates will facilitate advances in further areas

● In These Times of Fiscal Constraint, Strategic Investments in Technology Should Made Which Meet Immediate Needs, Have Broad Application and Benefit Multiple Users
Propulsion Technology Leads Vehicle Development

- Launch Vehicle Industry Follows Model of Other Vehicle Evolutions where Advances in Propulsion Technology Advance the State of the Art and Make Vehicles Economically Viable

Aircraft

- Commercial Propeller-Driven Aircraft of the 1950s
 - Introduction of the turboprop engine

- Commercial Jet Aircraft of the 1950s
 - Low-bypass ratio turbojet engines

- Large Commercial Jet Aircraft of the 1960s
 - Four Engine Configurations

- Commercial Jet Aircraft of the 2000s
 - Improved Engines

Rail

- Steam Engines of the 1800s

- Electric Engines of the early 1900s

- Diesel Engines of the 1940s

- Diesel - Electric Engines of the 1960s

- High Speed Electric of the 1970’s

- Magnetic Levitation 1990s-2000’s
Immediate Need is a New U.S. Heavy Lift Launch System

- NASA and Industry Teams Currently Studying Optimal Configurations

- Three Most Likely Competing Configurations

<table>
<thead>
<tr>
<th></th>
<th>Core</th>
<th>Upper Stage</th>
<th>Boosters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOx/H2</td>
<td>LOx/H2</td>
<td>SRB x 2</td>
</tr>
<tr>
<td></td>
<td>LOx/RP</td>
<td>LOx/H2</td>
<td>LOx/RP x 2</td>
</tr>
<tr>
<td></td>
<td>LOx/H2</td>
<td>LOx/H2</td>
<td>LOx/HP x 2</td>
</tr>
</tbody>
</table>

Optimal Configuration Must Be Affordable, Sustainable and Realistic

- Boost Phase Propulsion Technology Development and / or Cost Reduction is Required for Each Configuration
Engine Technology Gap Assessment

- No Currently Available Main Engine Propulsion System is Ideal for Heavy Lift Systems
 - All Cost, Performance and / or Availability “Challenged”

- Near Term HLV Funding and Schedule Constrained
 - Insufficient to support “Start from Scratch” propulsion system development program with IOC of 2016

- Economies of Scale Can Positively Influence Recurring Costs
 - LOx/RP more readily adaptable to other applications and vehicles

- LOx/RP Engine Development Should Focus on State of the Art, High Performance / High Efficiency Solutions
 - Oxygen Rich Staged Combustion
Path to High Performance U.S. LOx / RP Engine

- New ORSC LOx/RP Engine Could be Developed Using Existing Engines as Test-beds

- Could Facilitate Rapid Development of U.S. ORSC LOx/RP Technology

- Would Have Broad Application to U.S. Launch Vehicle Fleet
Consolidated Development Activity Required

- Advances in U.S. Technology have been made in isolated areas:
 - Brazed Nozzles
 - High Performance Injectors
 - Lower cost / high pressure thrust chambers
 - Common Booster Pumps
 - Extendable Nozzles (upper stage)

- Significant performance gains can be achieved through development of other key technologies:
 - High-performance, high-pressure turbopumps
 - High strength materials
 - High-pressure flexible feed lines
 - Lox rich pre-burners

- A properly funded, coordinated program could capitalize on advances in these areas and facilitate development and production of high performance, reliable, and cost-effective liquid propulsion engines
Summary

- US Industrial Space Policy has Hampered Emerging Technology, Specifically the Availability of Affordable Liquid Propulsion Solutions

- Strategic, Focused Investments in Technology Should be Made Which Meet Immediate Needs, Have Broad Application and Benefit Multiple Users

- Multiple NASA, Commercial, and Other USG Launch Vehicles Could Significantly Benefit From a Consolidated, Incremental Liquid Propulsion Development Program