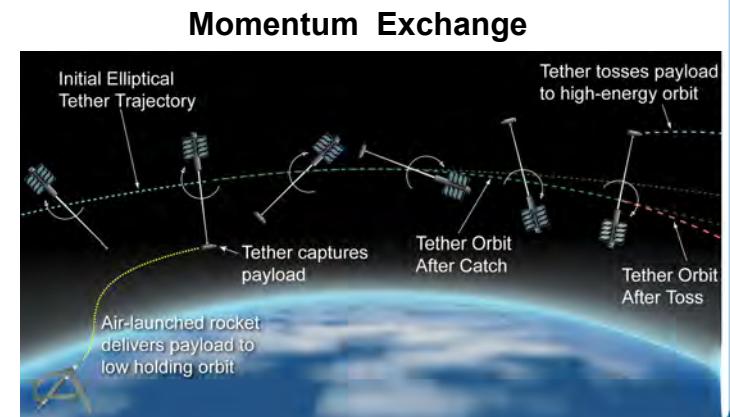
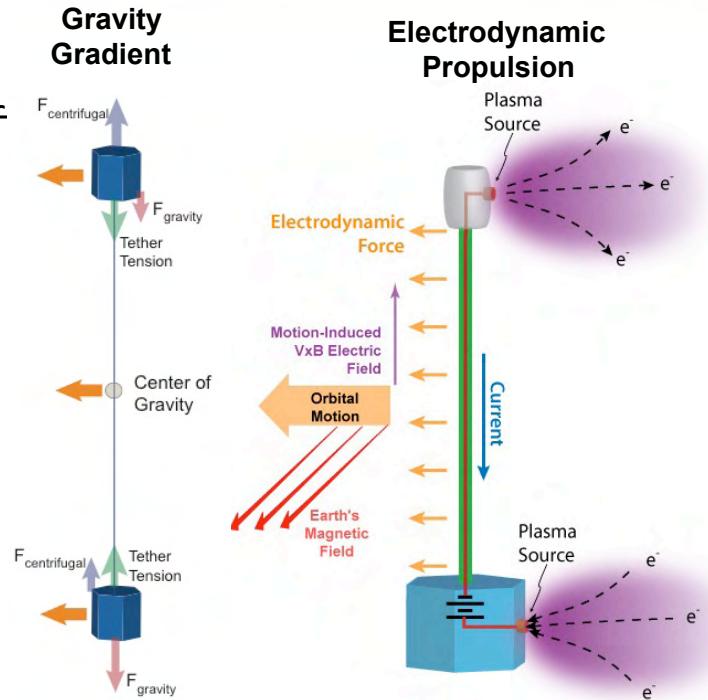


*Advanced Propulsion, Power, & Comm.
for Space, Sea, & Air*

Space Tethers

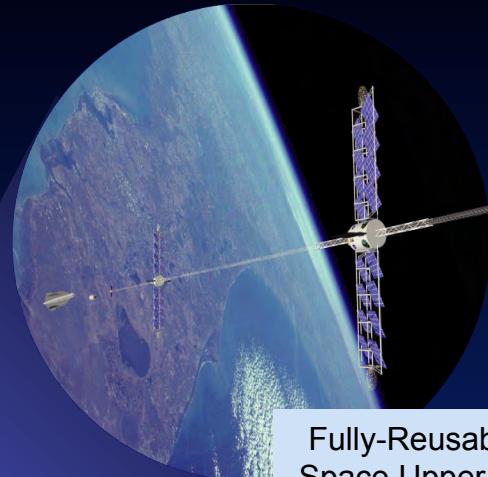


Technology Status and The Way Forward

Rob Hoyt
Tethers Unlimited, Inc

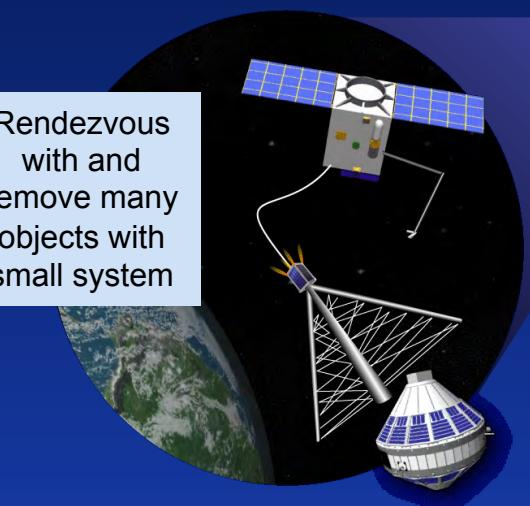
11711 N. Creek Pkwy S., Suite D113
Bothell, WA 98011
425-486-0100 hoyt@tethers.com

Definitions

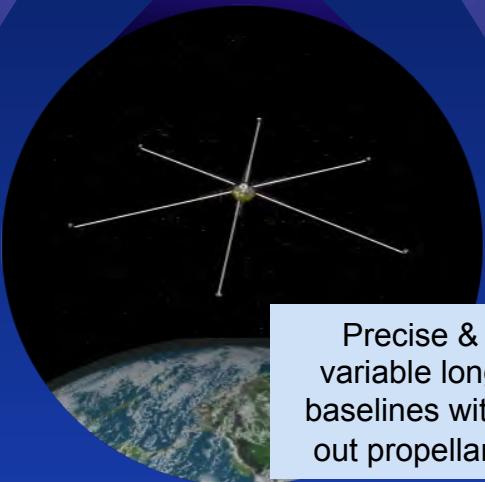
- **Space Tether:**
 - Long, thin cable or wire deployed from a spacecraft
- **Gravity Gradient:**
 - Aligns tether along local vertical and tensions the tether
- **Electrodynamic Tether (EDT):**
 - Conducting tethers can create propulsive forces through Lorentz interactions between currents in the tether and the Earth's magnetic field
- **Momentum-Exchange (MXT):**
 - High-strength tethers can act as a 'sling' to enable transfer of orbital momentum from one spacecraft to another
- **Formation Flight Tether (FFT):**
 - Tethers can constrain multiple spacecraft to fly in formation without expending propellant



Electrodynamic Tether Orbit-Raising and Repositioning


Space Tethers: Cross-Cutting, Game-Changing Benefits

Momentum-Exchange Launch-Assist & Orbit Transfer


Tether propulsion enables large ΔV missions to be performed by re-usable, low mass systems

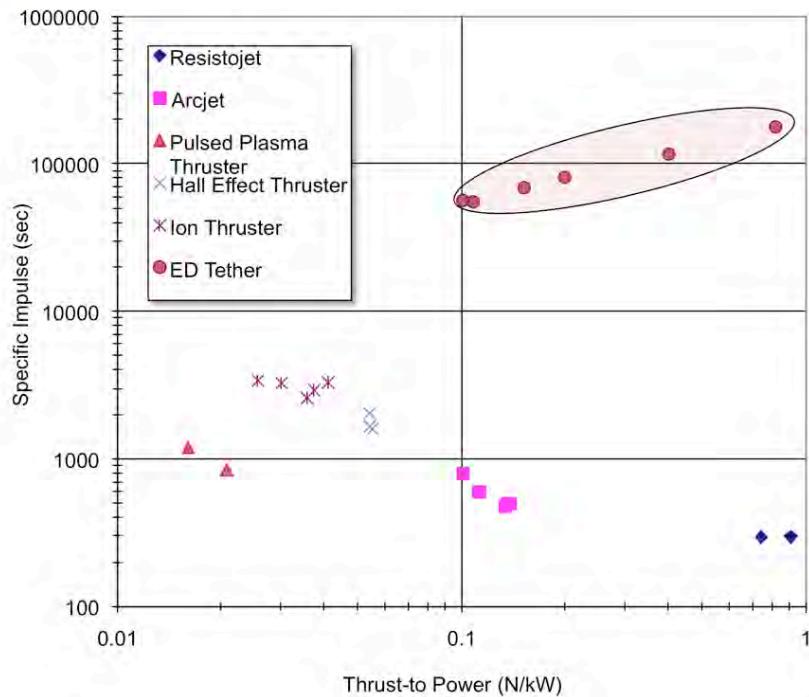
Rendezvous with and remove many objects with small system

Capture & Deorbit of Space Debris

Perpetual stationkeeping without resupply costs

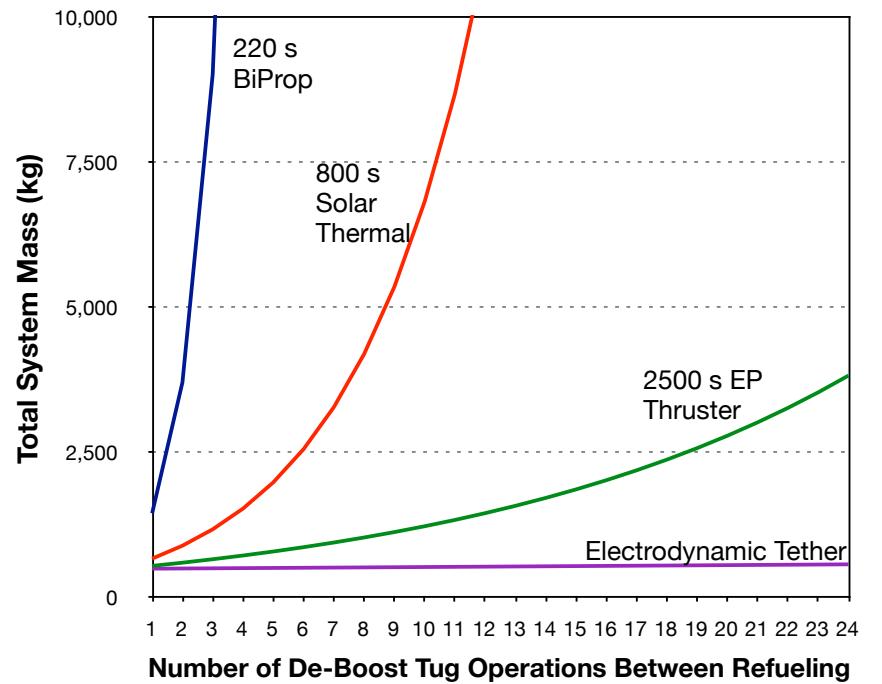
Drag-Makeup Stationkeeping for LEO Assets

Precise & variable long baselines without propellant


Formation Flying for Long-Baseline SAR & Interferometry

Electrodynamic Tethers: Performance Characteristics

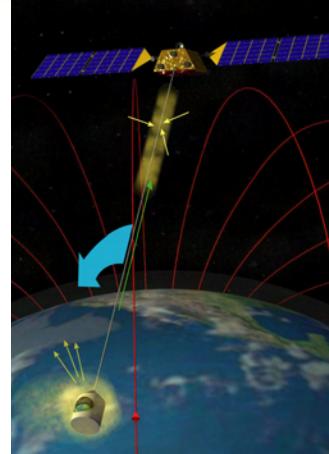
Advanced Propulsion, Power, & Comm.
for Space, Sea, & Air


Thrust-to-Power vs Isp

ED Tethers Can Provide
High Thrust (for EP) AND High Isp

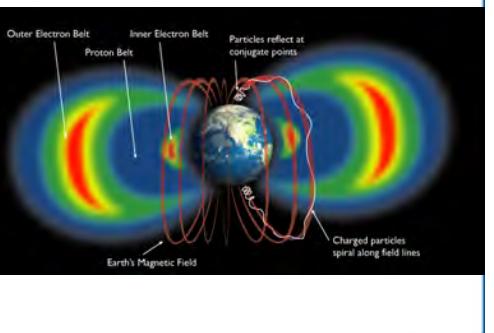
System Mass for Orbital Debris Removal Tug

(1 mT OD objects, 10° plane change per object)

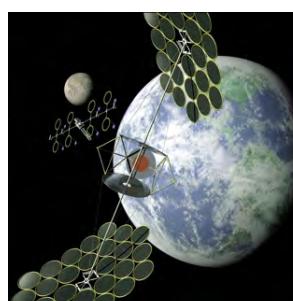


Tethers Can Enable Small Systems
to Perform Missions Requiring
Very High Total ΔV

Alignment with Non-NASA and Non-Aerospace Needs


Commercial Space:

- ED tethers can provide cost-effective end-of-mission de-orbit for orbital debris mitigation
- 2-10X cost reductions for launch of satellites
- Re-usable in-space infrastructure for sustainable space program


Defense:

- Launch cost reductions for deployment of LEO, MEO, & GEO assets
- Maintain large baselines for high performance missions with lower system mass
- ED tethers can enable game-changing capabilities for certain missions

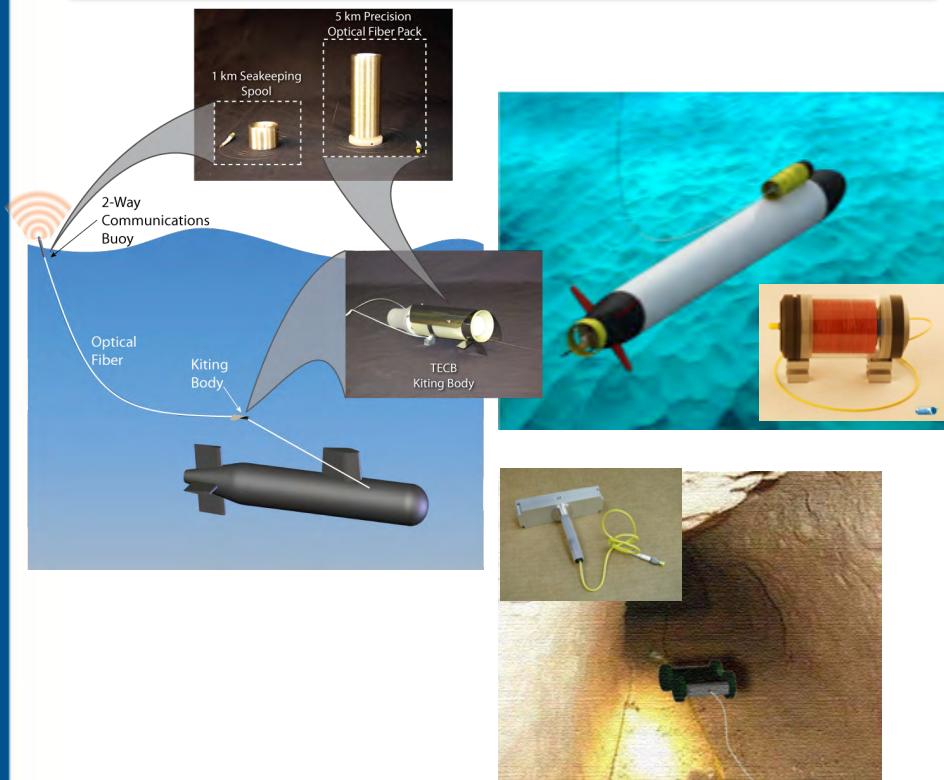
Environment:

- Tethers can enable cost-effective remediation of both orbital debris and radiation belt environments

Terrestrial Energy:

- MX Tether “Upper Stage” could enable the dramatic launch cost reductions needed to make space-based solar power economically viable

Alignment with Non-Aerospace Needs: Example Terrestrial Spin-Off Applications



Advanced Propulsion, Power, & Comm.
for Space, Sea, & Air

Space Tether Deployment Technology

Optical Tether Dispensers for Underwater Communications & Mobile Robots

Momentum-Exchange Tether Technology

Sensor Towing System for UAVs

MAST CubeSat Mission Space Tether Inspection Technology

Antenna Tower & Bridge Guy Wire Inspection Tool

Technical Risk: Prior History

■ = Met All Mission Goals

■ = Did Not Meet All Mission Goals

Year	Mission	Type	Description	Lessons Learned
1966	Gemini-11	Dynamics	<ul style="list-style-type: none"> • 15-m tether between capsules • Tethered capsules set in rotation 	+ Successful deployment and stable rotation
1966	Gemini-12	Dynamics	<ul style="list-style-type: none"> • 30-m tether between capsules • Tethered capsules set in rotation 	+ Successful deployment and stable rotation
1989	OEDIPUS-A	ED/Plasma Physics	<ul style="list-style-type: none"> • Sounding rocket experiment • 958-m conducting tether, spinning 	+ Successfully demonstrated strong EM coupling between the ends of conducting tether + Obtained data on behavior of tethered system as large double electrostatic probe
1992	TSS-1	ED/Plasma Physics	<ul style="list-style-type: none"> • 20-km insulated conducting tether to study plasma-electrodynamical processes and tether orbital dynamics 	- Too-long bolt added without proper review caused jam in tether deployer + Demonstrated stable dynamics of short tethered system + Demonstrated controlled retrieval of tether
1993	SEDS-1	Momentum Exchange	<ul style="list-style-type: none"> • Deployed payload on 20-km nonconducting tether and released it into suborbital trajectory 	+ Demonstrated successful, stable deployment of tether + Demonstrated deorbit of payload
1993	PMG	ED	<ul style="list-style-type: none"> • 500-m insulated conducting tether • Hollow cathode contactors at both ends 	+ Demonstrated ED boost and generator mode operation - Did not measure thrust
1994	SEDS-2	Dynamics	<ul style="list-style-type: none"> • Deployed 20-km tether to study dynamics and survivability 	+ Demonstrated successful, controlled deployment of tether with minimal swing
1995	OEDIPUS-C	ED/Plasma Physics	<ul style="list-style-type: none"> • Sounding rocket experiment • 1174-m conducting tether, spinning 	+ Successfully obtained data on plane and sheath waves in ionospheric plasma
1996	TSS-1R	ED/Plasma Physics	<ul style="list-style-type: none"> • 20-km insulated conducting tether to study plasma-electrodynamical processes and tether orbital dynamics 	+ Demonstrated electrodynamic efficiency exceeding existing theories + Demonstrated ampere-level current - Flaw in insulation allowed high-voltage arc to cut tether • Tether was not tested prior to flight
1996	TiPS	Dynamics	<ul style="list-style-type: none"> • Deployed 4-km nonconducting tether to study dynamics and survivability 	+ Successful deployment + Tether survived over 10 years on orbit
1999	ATEx	Dynamics	<ul style="list-style-type: none"> • Tape tether deployed with pinch rollers 	- "Pushing on a rope" deployment method resulted in unexpected dynamics, experiment terminated early
2000	Picosats 21/23	Formation	<ul style="list-style-type: none"> • 2 picosats connected by 30-m tether 	+ Demonstrated tethered formation flight
2001	Picosats 7/8	Formation	<ul style="list-style-type: none"> • 2 picosats connected by 30-m tether 	+ Demonstrated tethered formation flight
2002	MEPSI-1	Formation	<ul style="list-style-type: none"> • 2 picosats connected by 50-ft tether • Deployed from Shuttle 	+ Tethered formation flight
2006	MEPSI-2	Formation	<ul style="list-style-type: none"> • 2 picosats connected by 15-m tether • Deployed from Shuttle 	+ Tethered formation flight of nanosats with propulsion and control wheels
2009	AeroCube-3	Formation	<ul style="list-style-type: none"> • 2 picosats connected by 61-m tether • Deployed from Minotaur on TacSat-3 launch 	+ Tethered formation flight with tether reel and tether cutter
2007	MAST	Dynamics	<ul style="list-style-type: none"> • 3 tethered picosats to study tether survivability in orbital debris environment 	- Problem with release mechanism resulted in minimal tether deployment; + Obtained data on tethered satellite dynamics
2007	YES-2	Momentum Exchange	<ul style="list-style-type: none"> • Deployed payload on 30-km nonconducting tether and released it into suborbital trajectory 	+ Tether did deploy, but: - Controlling computer experienced resets during tether deployment, preventing proper control of tether deployment
2010	T-REX	ED/Plasma Physics	<ul style="list-style-type: none"> • Sounding rocket experiment • 300-m bare tape tether 	+ Successfully deployment of tape and fast ignition of hollow cathode

>70% of Tether Missions Have Been Fully Successful

Early Rocket Test History

Rocket #	Date	Successes/Failures
2	18 Mar 1942	• Gyro & propellant feed failures
3	16 Aug 1942	• Nose broke off
4	3 Oct 1942	• Success
5	21 Oct 1942	• Steam generator failure
6	9 Nov 1942	• Success
7	28 Nov 1942	• Tumbled
9	9 Dec 1942	• Hydrogen peroxide explosion
10	7 Jan 1943	• Explosion on ignition
11	25 Jan 1943	• Trajectory failure
12	17 Feb 1943	• Trajectory failure
13	19 Feb 1943	• Fire in tail
16	3 Mar 1943	• Exploded in flight
18	18 Mar 1943	• Trajectory failure
19	25 Mar 1943	• Tumbled, exploded
20	14 Apr 1943	• Crashed
21	22 Apr 1943	• Crashed
22	14 May 1943	• Cut off switch failed
25	26 May 1943	• Premature engine cutoff
26	26 May 1943	• Success
24	27 May 1943	• Success
23	1 Jun 1943	• Premature engine cutoff
29	11 Jun 1943	• Success
31	16 Jun 1943	• Premature engine cutoff
28	22 June 1943	• Exploded in flight

80% Failure Rate

Past Space Tether Experiments

- **Rotating tethered capsule experiments during Gemini missions**
- **Small Expendable Deployer System (SEDS)**
 - SEDS 1: de-orbited a small payload using 20 km tether
 - SEDS 2: demonstrated controlled deployment of a 20 km tether
 - PMG: demonstrated basics of electrodynamic physics using 500 m conducting wire
- **Shuttle Tethered Satellite System (TSS) - 20 km insulated conducting tether**
 - TSS-1: 200 m deployed, demonstrated stable dynamics & retrieval
 - Last-minute S&MA demanded design change resulting in oversized bolt that jammed deployer (configuration control process failure)
 - TSS-1R: 19.9 km deployed, >5 hours of excellent data validating models of ED tether-ionosphere current flow
 - Arc caused the tether to fail (contamination of insulation & failure to properly test tether prior to flight)
- **TiPS - Survivability & Dynamics investigation**
 - 4 km nonconducting tether, ~1000 km alt
 - Survived over 10 years on orbit
- **MAST – low cost tethered CubeSat experiment**
 - Release mechanism malfunction prevented full deployment of tether
- **YES-2**
 - Computer resets during deployment prevented proper control of deployment
- **T-Rex (JAXA)**
 - Demonstrated conducting tape deployment current collection on sounding rocket

Past missions demonstrated stable tether deployment and physics of electrodynamic propulsion

Mission failures were due to design, QA, & process errors, ***not due to fundamental physics***

Significant, predictable orbital maneuvering with a tether still needs to be demonstrated

Status of Key Technologies and Development Plan

Key Technologies Identified by AIAA Space Tethers Technical Committee:

Technology Element	EDT	MXT	FFT	Status
Stable Deployment of Tether	Electrodynamic Tether Demonstration			Demonstrated by PMG, TSS-1 and -1R, SEDS, and TiPS missions
Tracking and Prediction				Not yet demonstrated
M/OD & AO-Survivable Tether				TiPS demonstrated >10-year survival of non-conducting tether; Not yet demonstrated for conducting tether
Tether Retrieval				Successful retrieval demonstrated by TSS-1
Current Transfer with Ionosphere				Demonstrated by PMG, TSS-1R, T-REX
Orbit Modification				Not yet demonstrated
Arc-Resistant or Arc-Tolerant Tether				Not yet demonstrated
Bare Wire Anode Current Collection				Not yet demonstrated
High Voltage Power System				Not yet demonstrated
Dynamic Stabilization of Electrodynamic Tether				Long-term stability not yet demonstrated
Tethered Payload Disturbance Mitigation			FFT	Not yet demonstrated
Power Generation				Basic physics demonstrated; useful power generation not yet demonstrated
Very High Strength Space Survivable Tether	Momentum-Exchange Demonstration			Not yet demonstrated
Stable Spin-Up of Tether System				Not yet demonstrated
Payload Capture				Not yet demonstrated
Tethered System Retargeting				Not yet demonstrated
Precision StationKeeping				Not yet demonstrated
Precise Tether Deployment/Retrieval				Not yet demonstrated
Robotic Tether Crawler				Not yet demonstrated

Reasonableness for NASA Investment

- **Tether community consensus is that the next step is to demonstrate significant controlled orbital maneuvering with an ED tether**
- **Tether community is confident it is ready to demonstrate electrodynamic tether propulsion on an operationally-relevant system**
- **Validation of tether systems can only be carried out on orbit**
- **Because a flight mission is required, government investment is required to enable ED Tethers to progress through the TRL valley-of-death**
- **Cost/performance benefit of ED tethers can recover investment within 1-2 operational missions**