

NASA TA-02 In-space Propulsion Roadmap Priorities

Russell Joyner

Technical Fellow – Pratt Whitney Rocketdyne

March 22, 2011

Pratt & Whitney Rocketdyne

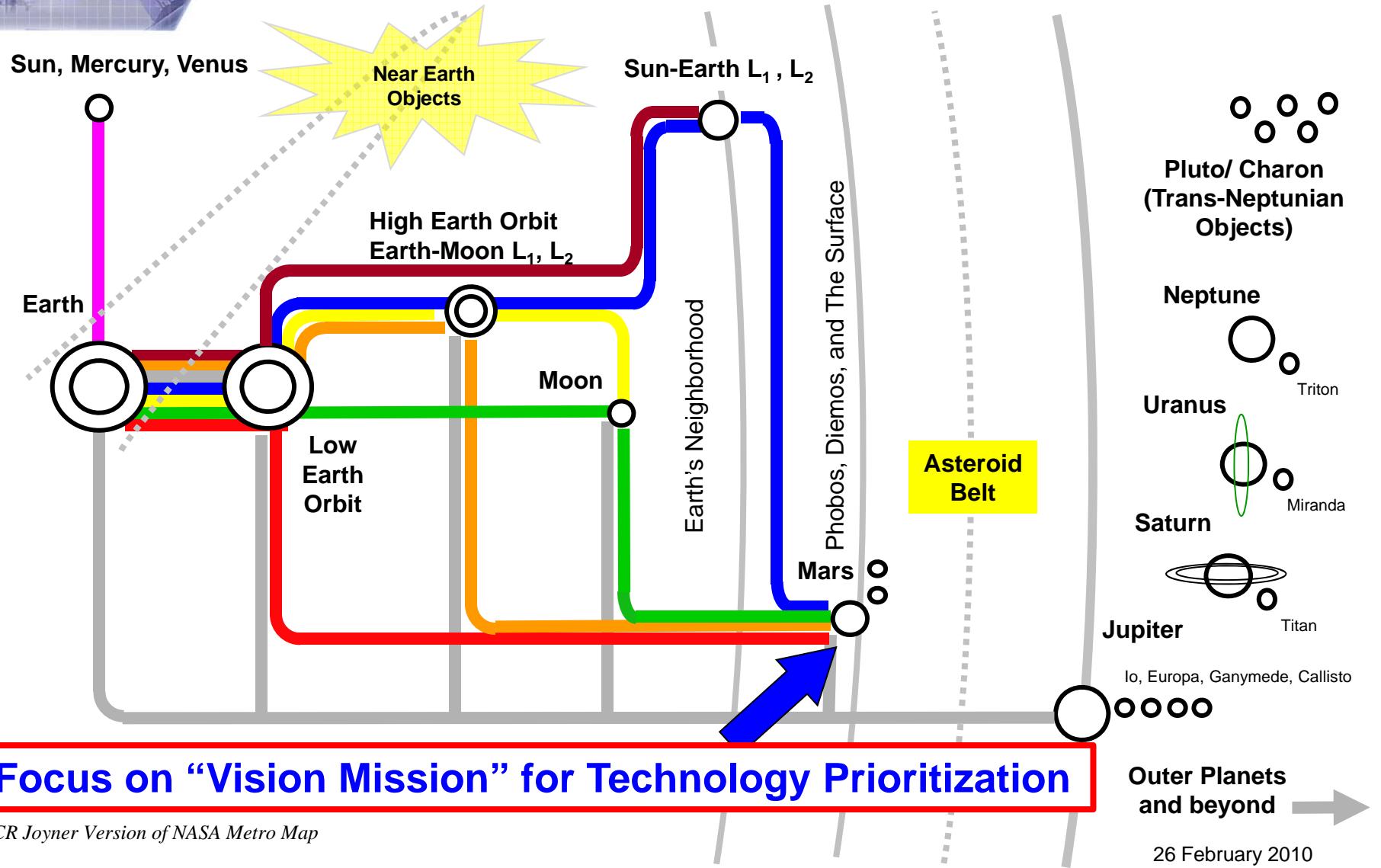
National Aeronautics and Space Administration

DRAFT IN-SPACE PROPULSION SYSTEMS ROADMAP TECHNOLOGY AREA 02

Mike Meyer, *Co-chair*
Les Johnson, *Co-chair*
Bryan Palaszewski
Dan Goebel
Harold White
David Coote

November • 2010

TA02 – In-space Propulsion Roadmap High Thrust (>1kN or >224-lbf) Focus

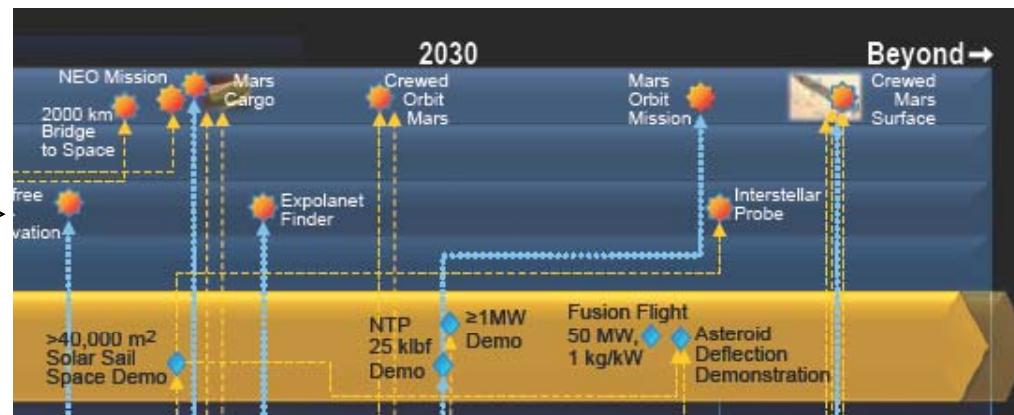
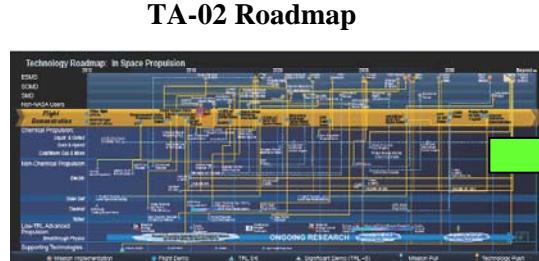


The Overarching Questions

- **What should our NASA (We=Nation) invest in to make biggest benefit and why?**
 - *What have We invested in We can build on? We have a Foundation*
 - *What more can We do Affordably with High Payoff?*
- **How do We invest to accomplish more within \$ limits**
 - *Provide game-changing capability for NASA (our) space missions within 20 years (affordably)?*
 - *Improve mission capability, meet NASA mission needs?*
 - *Align with all aerospace & non-aerospace technology needs*
 - *What is the technical risk, can it be managed within a schedule*
 - *Can We achieve success with the technology and implement*

26 February 2010

Prioritize TA-02 In-space Technologies Based on Benefits to Mission Speed, Mass, and Cost

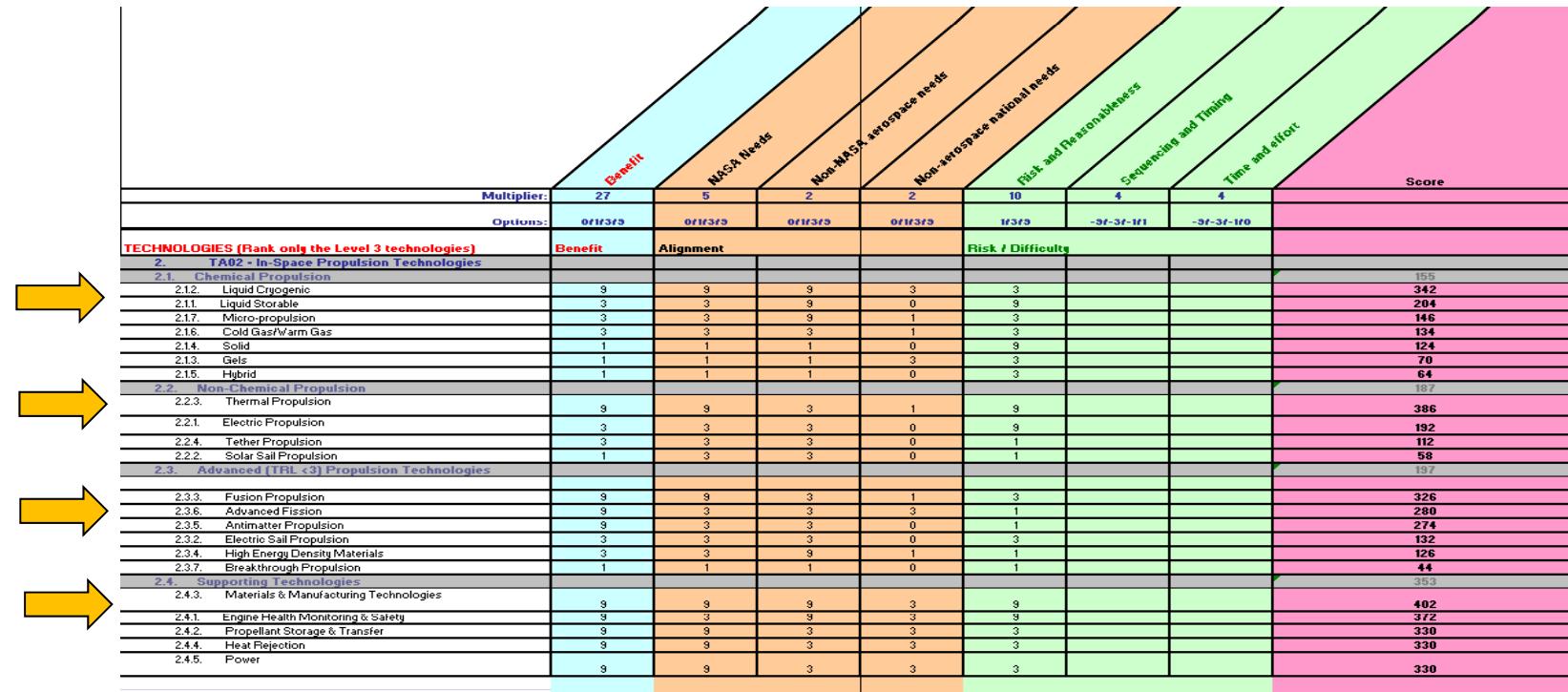


Pratt & Whitney

A United Technologies Company

Pratt & Whitney Rocketdyne

Missions Drive Technology Need

- Need to prioritize based on Need to Execute a Mission – then look at other missions that benefit from the technologies within fiscal constraints


- The “Vision Mission” in this Roadmap is Mars and Beyond?
 - Technologies should be focused to that direction
 - The same technologies can be applied to other missions
- How can We do the “Vision Mission” in 20 years?
 - By investing to get more capability and affordability with technology

Build Off Investments, Do Not Throw Them Away

26 February 2010

Prioritized TA-02 – In-space Propulsion Technologies List

TA-02 Roadmap Technologies Assessed

Multiplier:	Benefit		NASA Needs		Non-NASA aerospace needs		Non-aerospace national needs		Risk / Readiness		Sequencing and Timing		Time and effort		Score	
	Options:	0.01375	0.01375	0.01375	0.01375	0.01375	-0.01375	-0.01375	-0.01375	-0.01375	-0.01375	-0.01375	-0.01375	-0.01375		
TECHNOLOGIES (Rank only the Level 3 technologies)																
2. TA02 - In-Space Propulsion Technologies	Benefit	Alignment														
2.1. Chemical Propulsion																155
2.1.2. Liquid Cryogenic	3	9	9	3	3	3										342
2.1.1. Liquid Storable	3	3	9	0	9											204
2.1.7. Micro-propulsion	3	3	9	1	3											146
2.1.6. Cold Gas/Warm Gas	3	3	3	1	3											134
2.1.4. Solid	1	1	1	0	9											124
2.1.3. Gels	1	1	1	3	3											70
2.1.5. Hybrid	1	1	1	0	3											64
2.2. Non-chemical Propulsion																187
2.2.3. Thermal Propulsion	3	9	3	1	9											386
2.2.1. Electric Propulsion	3	3	3	0	9											192
2.2.4. Tether Propulsion	3	3	3	0	1											112
2.2.2. Solar Sail Propulsion	1	3	3	0	1											58
2.3. Advanced (1R <3) Propulsion Technologies																197
2.3.3. Fusion Propulsion	9	9	3	1	3											326
2.3.6. Advanced Fission	9	3	3	3	1											280
2.3.5. Antimatter Propulsion	9	3	3	0	1											274
2.3.2. Electric Sail Propulsion	3	3	3	0	3											132
2.3.4. High Energy Density Materials	3	3	9	1	1											126
2.3.7. Breakthrough Propulsion	1	1	1	0	1											44
2.4. Supporting Technologies																353
2.4.3. Materials & Manufacturing Technologies	9	9	9	3	9											402
2.4.1. Engine Health Monitoring & Safety	9	3	9	3	9											372
2.4.2. Propellant Storage & Transfer	9	9	3	3	3											330
2.4.4. Heat Rejection	9	9	3	3	3											330
2.4.5. Power	9	9	3	3	3											330

Performed Qualitative Assessment Based on “Vision Mars Mission”

26 February 2010

Pratt & Whitney

A United Technologies Company

Pratt & Whitney Rocketdyne

Highest Priority Areas

Prioritized based on highest benefit, alignment, reasonable risk, achievable within finite time and cost

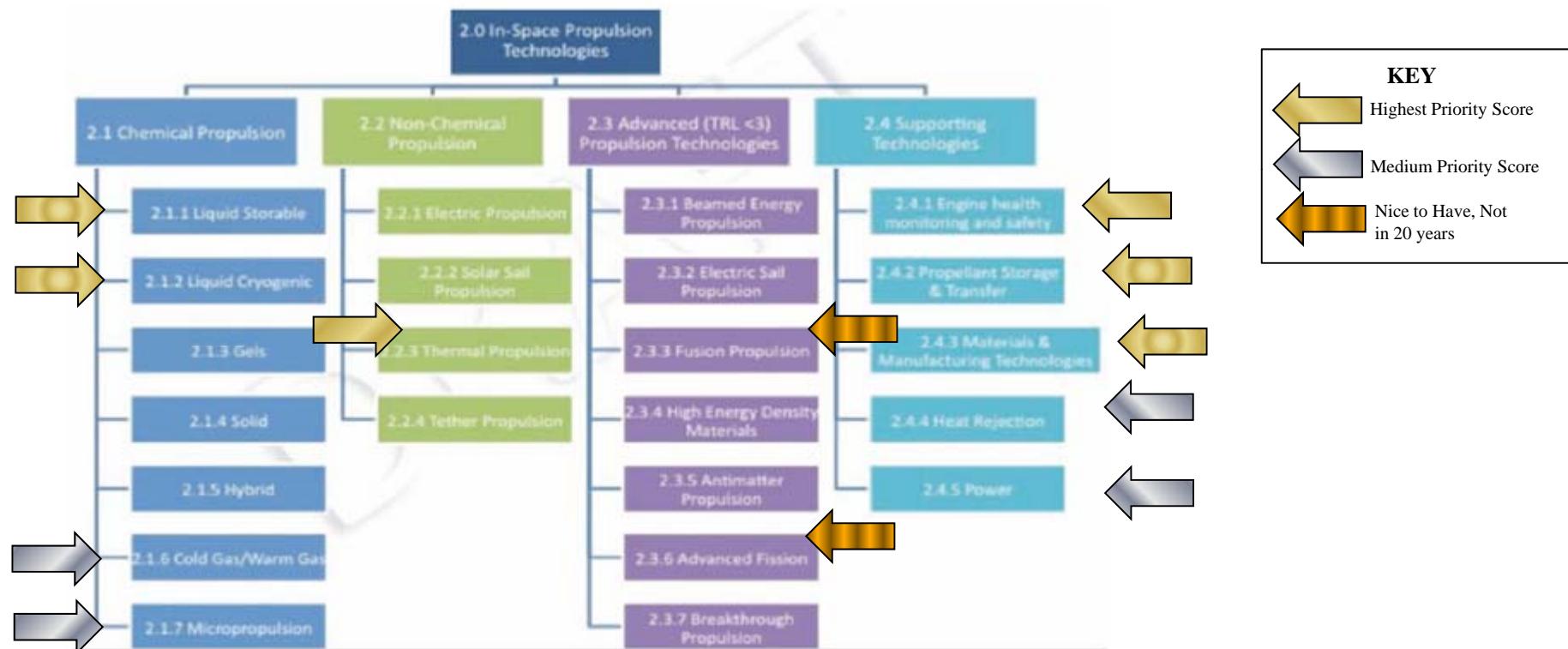


Figure 1. In-Space Propulsion Technology Area Breakdown Structure

Focus on “Gold”: Cryogenic Propulsion, Nuclear Thermal, Health Management, Propellant Storage In-orbit

26 February 2010

Pratt & Whitney

A United Technologies Company

Pratt & Whitney Rocketdyne

TA-02 – In-space Chemical Propulsion

Liquid Cryogenic and Liquid Storable

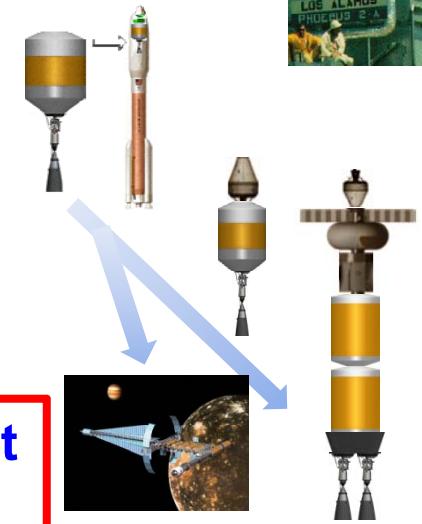
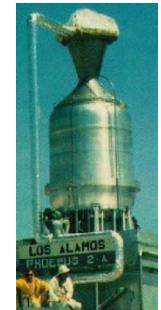
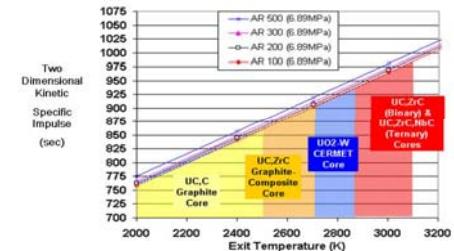
- **USA leads in Liquid Cryogenic (LOX/LH₂) propulsion technology – Should Be Highest Priority to Maintain**
 - Capability established: SSME (RS-25), RL10, J-2X
 - Focus on enhancing upper stage and in-space reliability
- **We (USA) have capability Now – leverage our investments and new technology to create Affordability and Reliability**
- **Current Liquid Storable technology adequate, prioritize new investments on “Greener” propellants**
 - LOX/CH₄ versus NTO/MMH where there is mission/architecture payoff like Mars In-situ resource applicability
 - Leverage already applied technology and enhance for use beyond Earth orbit (e.g. RL10, RS-18)

Technology Priority Should Be on Reducing Cost and Increasing System Reliability

26 February 2010

Pratt & Whitney

A United Technologies Company




Pratt & Whitney Rocketdyne

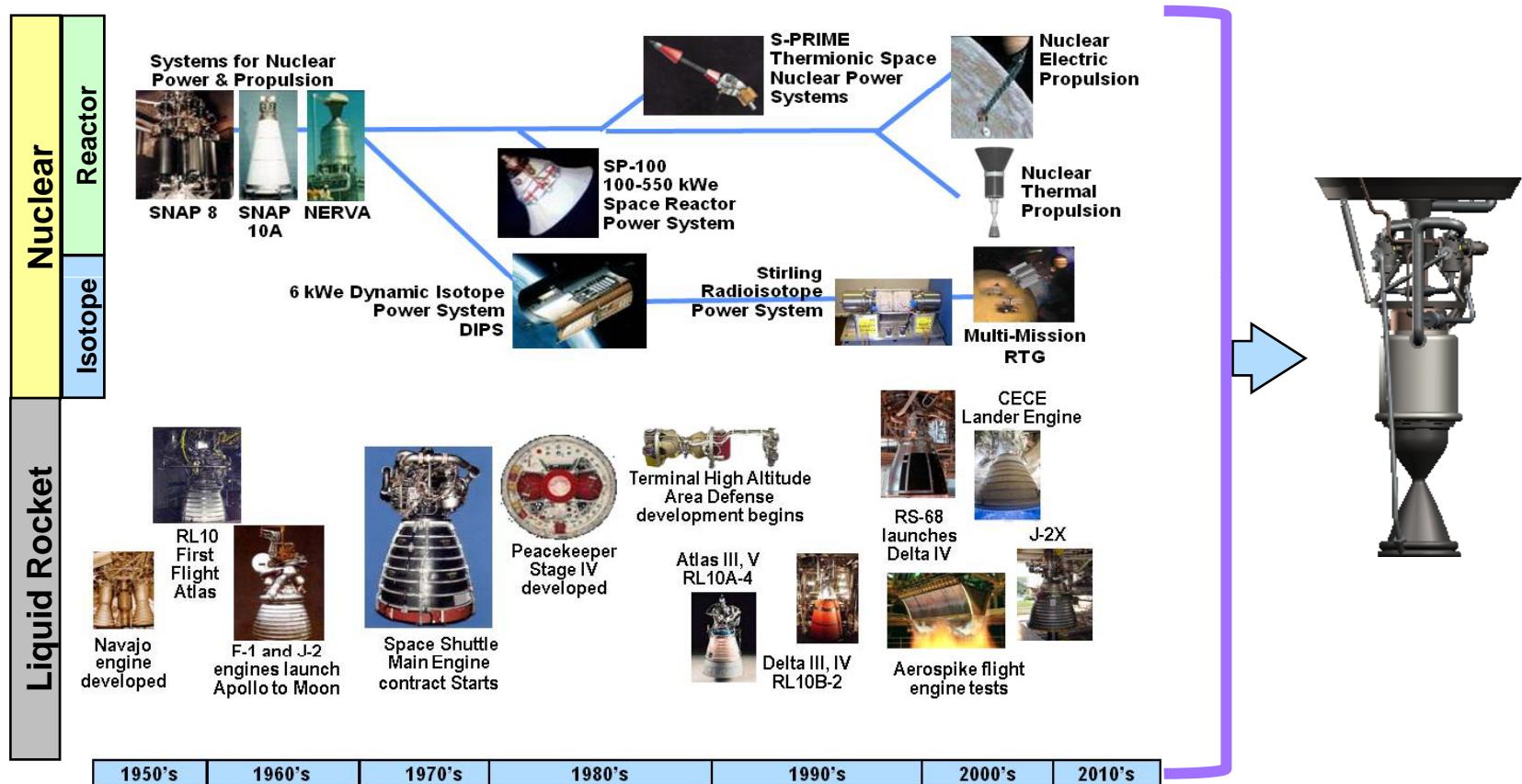
TA-02 – In-space Non-chemical Propulsion

Thermal Propulsion

- **USA has already invested and proven nuclear thermal propulsion, leverage and demonstrate it in Space**
 - Nuclear thermal propulsion has 2X the efficiency as LOX/LH₂
 - It is game-changing: quicker missions, more science, fewer launches for human missions
- **Thermal propulsion has application to robotic and human missions**
 - High-thrust >20k-lbf, Isp > 900-sec, T/W>3, Orbit departure in minutes not weeks
 - High power density for surface power and in-space power for Electric Propulsion
 - Focus on maturing core fuel for commonality and robustness
 - Perform Ground and flight demonstrator with no environmental impact, fly on unmanned mission

**Investment Priority – Prove NTP in Unmanned Flight
Demo in Next 15 Years**

26 February 2010



Pratt & Whitney

A United Technologies Company

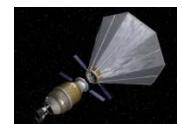
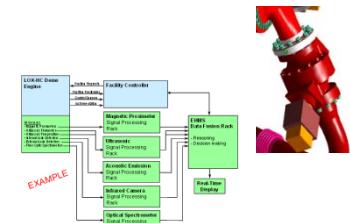
Pratt & Whitney Rocketdyne

TA-02 – In-space Non-chemical Propulsion

Prioritize Based on Leveraging Previous Technology
Investments in Nuclear & Cryogenic Propulsion

26 February 2010

Pratt & Whitney



A United Technologies Company

Pratt & Whitney Rocketdyne

TA-02 – Other “Gold” Priorities

Materials & Manufacturing, Engine Health Monitoring & Safety, Propellant Storage & Transfer

- **Mature manufacturing and materials technologies**
 - Manufacturing technology infusion opportunity for next launch system, in-space systems and
 - Materials technologies for less weight, radiation shielding, entry/decent devices
- **Engine health monitoring technologies for improved safety and reliability**
 - Focus prioritization on integrating technologies on flight systems
 - In orbit flight demonstration of monitoring engines
- **Propellant storage & transfer for depots or large tank assemblies**
 - Need technology for future human missions; for propellant depots or large in-orbit tank set assembly for human Mars missions

Focus Priority On Manufacturing, Materials, Health Monitoring and Propellant Storage

ULA, B. Kutter presentation

26 February 2010

- **An extensive list Introduced – but limited funds to address**
- **Considering nation's budget challenges**
 - Demands prioritization based on contribution of the technologies towards a Challenge Goal – such as a human mission to Mars
 - Need to categorize: have-to-haves, nice-to-haves...and interesting science
- **NASA must define a driving mission, leverage technologies with DoD and Commercial**
 - Implement technologies that are game-changing, scalable, multi-mission capable (Science, Human Exploration, Human Settlement, etc.)
- **NASA (We) must leverage past technology work**
 - Cryogenic propulsion, Nuclear, Materials, EHMS

**Prioritize Technologies Relative to Affordability,
Capability, & Mission Impact**