

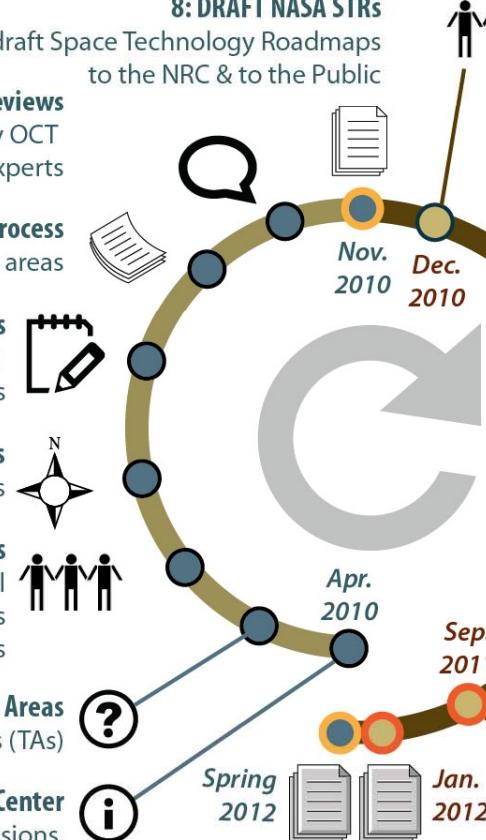
**Draft Technology Roadmap Overview
TA06 – Human Health, Life Support and Habitation Systems**

Presentation to the National Research Council, Panel 4 Workshop
April 26, 2011

Overview

- Introduction of the TA06 Team
- Roadmapping Process
- Items of Interest
- TA06 Overview
- TA06 Breakdown Structure
- Detailed Portfolio Discussion
- NASA Defined Technology Readiness Levels
- Section 2 Overview/Highlights
 - Examples of Technologies with mid-TRL
- Summary
- Appendices
 - TA06 Roadmapping Process
 - Technology Area Strategic Roadmap (TASR)
 - Major Technical Challenges
 - Traceability to NASA Strategic Goals
 - Benefits of Investment in TA06 Technologies
 - Interdependency with Other TAs

Introduction to the TA06 Team


- Kathryn Hurlbert, *Chair*
- Bob Bagdigian
- Carol Carroll
- Antony Jeevarajan
- Mark Kliss
- Bhim Singh

Roadmapping Process

NASA Process

- 1: START & Input from MDs & Center
Identified MD Goals, Missions, Architectures & Timelines; MD Technology Roadmaps & Prioritizations; Center Technology Focus Areas
- 2: Identify Technology Areas
Identified Technology Areas (TAs)
- 3: Establish TA Teams
OCT established NASA internal 6-member subject expert teams for each TA, with one or two chairs
- 4: Common Approach for TA Teams
Guidelines, assumptions, deliverables
- 5: Form Starting Point for TA Roadmaps
Assessed past roadmaps; MD & Center inputs
- 6: Roadmapping Process
Preliminary roadmaps for TA areas
- 7: Internal Reviews
Each TA Roadmap reviewed by OCT & extended teams of subject experts
- 8: DRAFT NASA STRs
OCT released draft Space Technology Roadmaps to the NRC & to the Public

NASA Space Technology Roadmaps Process

NRC Process

- A: Establish NRC Teams
NRC to appoint steering committee and 6 panels

- B: Identify Common Assessment Approach
NRC to establish a set of criteria to enable prioritization within and among all TAs

- C: Initial Community Feedback
NRC to solicit external input from industry & academia

- D: Additional Community Feedback
NRC to conduct public workshops

- E: Deliberations by NRC Panels
NRC panels meet individually to prioritize technologies and suggest improvements to roadmaps

- F: Documentation by NRC Panels
NRC Panels to provide written summary to Steering Committee

- G: NRC Interim Findings
NRC to release a brief interim report that addresses high-level issues associated with the roadmaps, such as the advisability of modifying the number or technical focus of the draft NASA roadmaps

- H: FINAL NRC REPORT
With decisional information, including: summary of findings and recommendations for each of the roadmaps; integrated outputs from the workshops and panels; identify key common threads and issues; priorities, by group (e.g., high, medium, low), of the highest priority technologies from the TAs

You are here

Items of Interest

6 person teams
for each TA – all
NASA and JPL (no
contractors)

3 months from
start to finish –
very intensive
effort

Everyone wore a
NASA badge, not a
Center badge

National Aeronautics and Space Administration

NASA

Table of Contents

1	General Overview	1
1.1	Technical Approach	1
1.2	Benefits	1
1.3	Applicability Traceability to NASA Strategic Goals, AMPM, DRMs, DRAs	2
1.4	Top Technical Challenges	2
2	Detailed Portfolio Discussion	2
2.1	Environmental Control and Life Support Systems (ECLSS) and Habitation Systems	2
2.2	Extra-Vehicular Activity (EVA) Systems	2
2.3	Human Health and Performance (HHP)	2
2.4	Environmental Monitoring, Safety, and Emergency Response (EMSER)	2
2.5	Radiation	2
3	Interdependency with Other Technology Areas	2
4	Possible Benefits to Other National Needs	2
	Appendix A. Acronyms	A-2

30 page limit,
including
3-page Executive
Summary

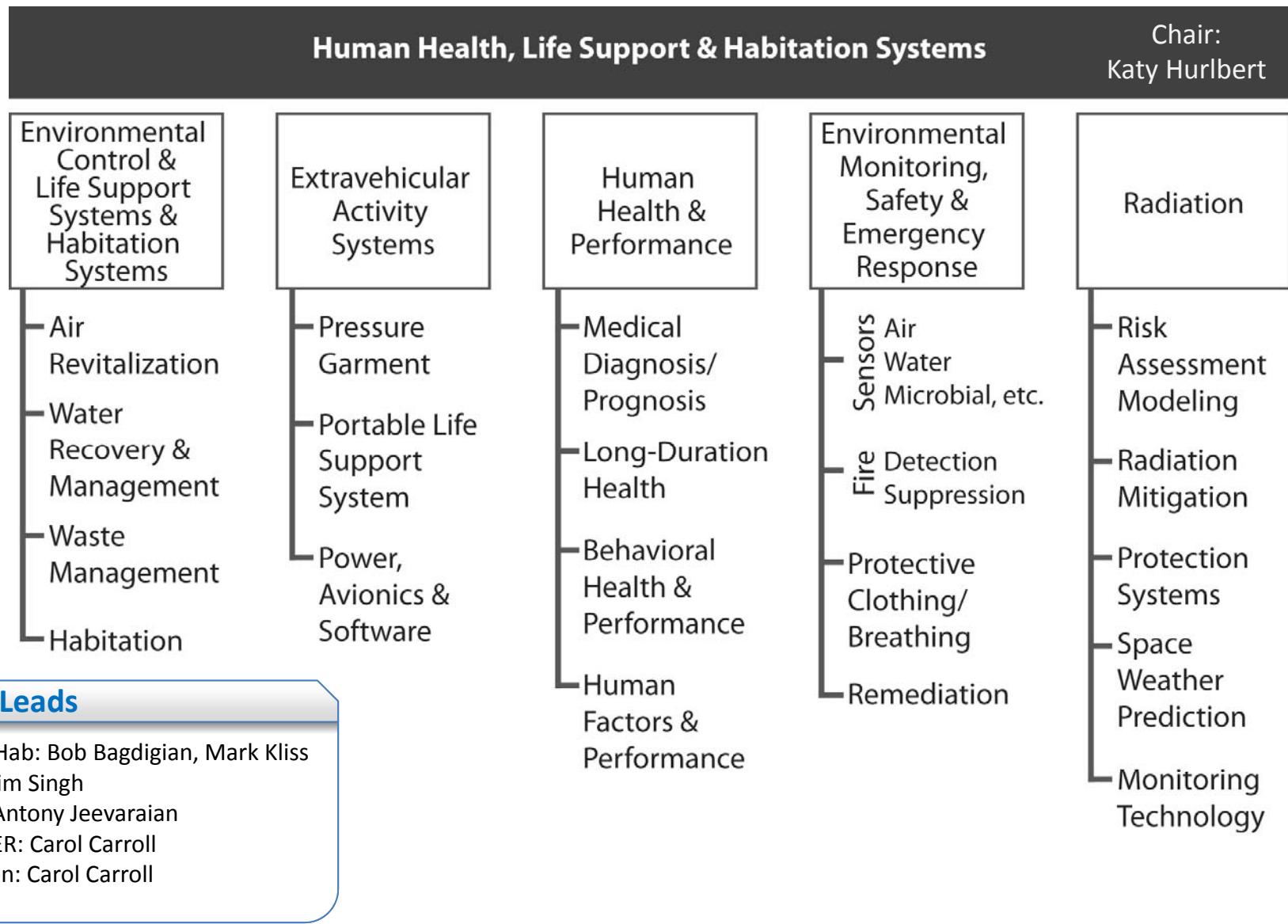
20-year horizon
for TA Strategic
Roadmaps (TASRs)

Went beyond
mission “pull” –
big emphasis also
on technology
“push”

Technology Area Overview

Human Health, Life Support & Habitation Systems

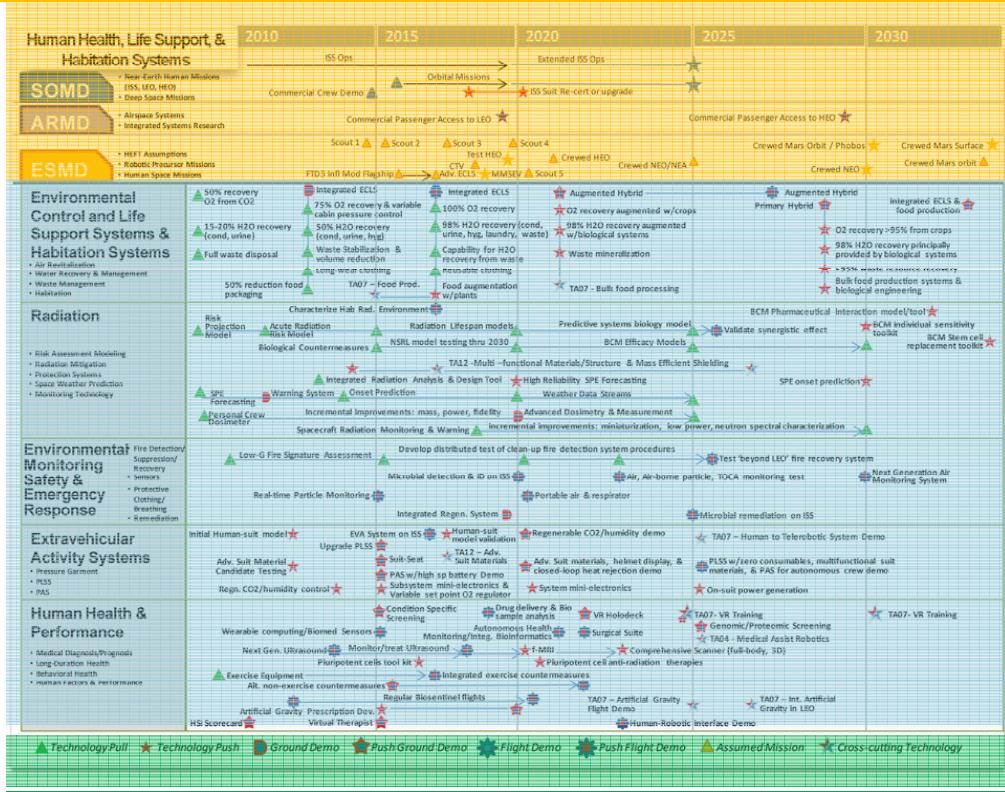
Purpose: to achieve the predicted national and agency goals in space over the next few decades


- Includes **game-changing** and breakthrough capabilities
- Specifically for **crewed missions**

Sub-technology areas

- Environmental Control and Life Support Systems (ECLSS)
- Habitation Systems
- Extravehicular Activity (EVA) Systems
- Human Health and Performance
- Environmental Monitoring, Safety & Emergency Response (EMSER)
- Radiation

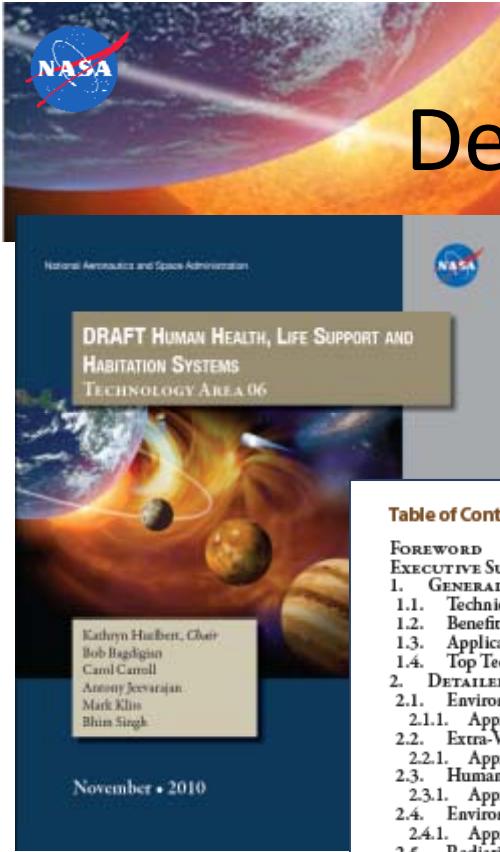
Technology Area Breakdown Structure



Detailed Portfolio Discussion

Technology Area Strategic Roadmap Roll-up

Planned, predicted, and new proposed **missions and milestones** at the top


Technology milestones and activities for each of the sub-TAs

Icons distinguish between technology “pull” and “push”, ground vs. flight demos, etc.

TASR milestones are aligned to

1) Minimize the number of necessary flights to progress the technologies; AND

2) Maximize the use of integrated ground tests/demonstrations for reduced risk

Detailed Portfolio Discussion

Technology Area Strategic Roadmap Document

Table of Contents

FOREWORD	
EXECUTIVE SUMMARY	
1. GENERAL OVERVIEW	TA06-1
1.1. Technical Approach	TA06-2
1.2. Benefits	TA06-2
1.3. Applicability/Traceability to NASA Strategic Goals, AMPM, DRMs, DRAs	TA06-2
1.4. Top Technical Challenges	TA06-5
2. DETAILED PORTFOLIO DISCUSSION	TA06-6
2.1. Environmental Control and Life Support Systems (ECLSS) and Habitation Systems	TA06-7
2.1.1. Approach and Major Challenges	TA06-7
2.2. Extra-Vehicular Activity (EVA) Systems	TA06-10
2.2.1. Approach and Major Challenges	TA06-11
2.3. Human Health and Performance (HHP)	TA06-12
2.3.1. Approach and Major Challenges	TA06-14
2.4. Environmental Monitoring, Safety, and Emergency Response (EMSER)	TA06-16
2.4.1. Approach and Major Challenges	TA06-17
2.5. Radiation	TA06-17
2.5.1. Major Approach and Challenges	TA06-19
3. INTERDEPENDENCY WITH OTHER TECHNOLOGY AREAS	TA06-21
4. POSSIBLE BENEFITS TO OTHER NATIONAL NEEDS	TA06-21
ACRONYMS	TA06-24
ACKNOWLEDGEMENTS	TA06-24

Table 2. ECLS and Habitation Technical Area Details

Practice	Current SOA/Practice	Water Challenges	Initial areas of interest and reference to TRL-6-10 required
Air Revitalization	CO ₂ removal via expendable lithium hydroxide and regenerable molecular sieves (TRL-6 and planned) (TA06-2)	Aircrew high reliability Reduce utilization of expendables Reduce power and equipment mass and volume	2015-14: 75% O ₂ recovery 2015-14: Variable cabin pressure 2015-14: 100% O ₂ recovery 2015-14: Aircrew reliability

Table 1. Major Technical Challenges

Present - 2016
Integrate fundamental research results on radiation environment, biological effects, and including other effects from space exposure, into dam models and consolidate and interpret databases of major signaling pathways causative of cancer from space exposure and other damage
Stabilize liquid and solid wastes to recover water and to control pathogens, biological growth and gaseous production
Achieve high reliability and reduce dependence on expendables over existing SOA systems that recover O ₂ from CO ₂ and H ₂ O from humidity and urine
Develop advanced screening technologies, to detect and/or predict subclinical malignancies, subclinical cataracts, individual susceptibility to damage (e.g., radiation) and carbon dioxide exposures, osteoporosis, oxidative stress, renal stone formation, anxiety, and depression
Demonstrate EVA technologies that could be used to extend EVA capability on ISS beyond 2028. These technologies include advances for on-board CO ₂ and humidity control, advanced suit materials, and more capable avionics
Demonstrate real time airborne particle monitoring on the ISS

NASA Defined Technology Readiness Levels

TRL 1 Basic principles observed and reported: Transition from scientific research to applied

research. Essential characteristics and behaviors of systems and architectures. Descriptive tools are mathematical formulations or algorithms.

TRL 2 Technology concept and/or application formulated: Applied research. Theory and

scientific principles are focused on specific application area to define the concept. Characteristics of the application are described. Analytical tools are developed for simulation or analysis of the application.

TRL 3 Analytical and experimental critical function and/or characteristic proof-of-concept:

Proof of concept validation. Active Research and Development (R&D) is initiated with analytical and laboratory studies. Demonstration of technical feasibility using breadboard or brassboard implementations that are exercised with representative data.

TRL 4 Component/subsystem validation in laboratory environment: Standalone prototyping

implementation and test. Integration of technology elements. Experiments with full-scale problems or data sets.

TRL 5 System/subsystem/component validation in relevant environment: Thorough testing

of prototyping in representative environment. Basic technology elements integrated with reasonably realistic supporting elements. Prototyping implementations conform to target environment and interfaces.

TRL 6 System/subsystem model or prototyping demonstration in a relevant end-to-end environment (ground or space): Prototyping implementations on full-scale realistic problems.

Partially integrated with existing systems. Limited documentation available. Engineering feasibility fully demonstrated in actual system application.

TRL 7 System prototyping demonstration in an operational environment

(ground or space): System prototyping demonstration in operational environment. System is at

or near scale of the operational system, with most functions available for demonstration and test. Well integrated with collateral and ancillary systems. Limited documentation available.

TRL 8 Actual system completed and "mission qualified" through test and demonstration in an operational environment (ground or space): End of system development. Fully integrated

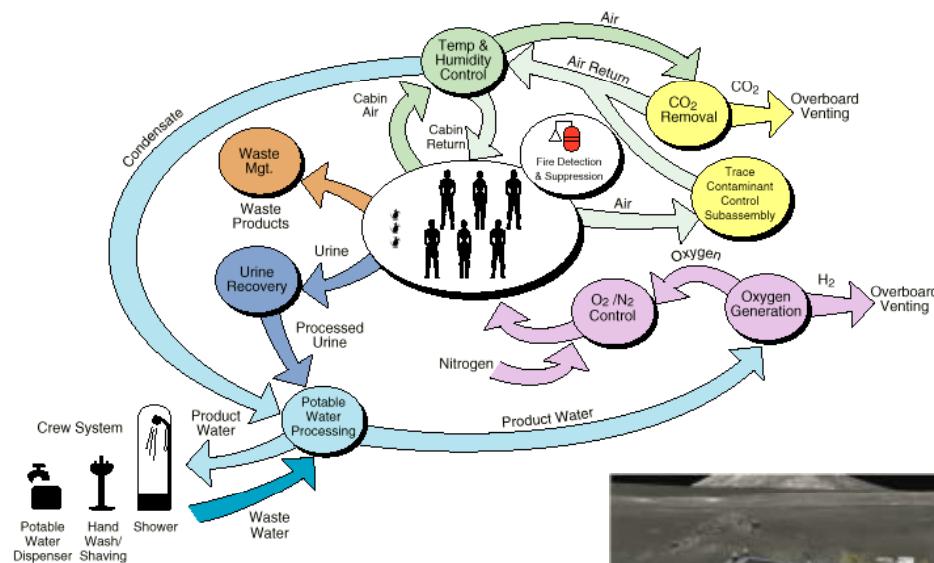
with operational hardware and software systems. Most user documentation, training documentation, and maintenance documentation completed. All functionality tested in simulated and operational scenarios. Verification and Validation (V&V) completed.

TRL 9 Actual system "mission proven" through successful mission operations (ground or

space): Fully integrated with operational hardware/software systems. Actual system has been

thoroughly demonstrated and tested in its operational environment. All documentation completed. Successful operational experience ₁₀
Sustaining engineering support in place.

Section 2


Overview/Highlights

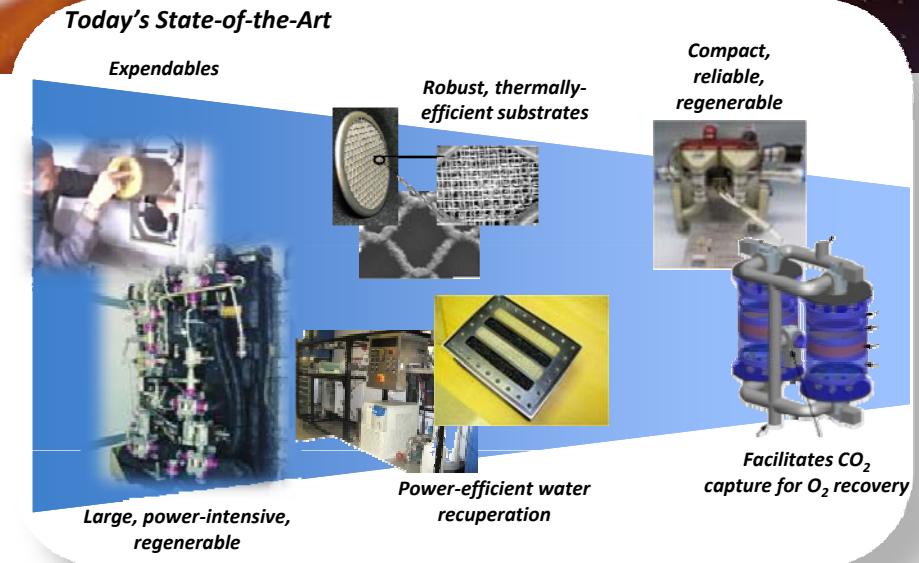
2.1 Environmental Control and Life Support Systems (ECLSS) and Habitation Systems

- Technologies/systems to **maintain an environment suitable for sustaining human life** throughout the duration of a mission
- Advancements are needed for future space missions
 - Human beings will spend **significantly longer periods of time farther from reliable logistics depots**, and
 - An **emergency quick-return option will not be feasible**
- Example game-changing capabilities
 - **Significant advancement in waste management**, including techniques to stabilize wastes, recover resources for re-use, and to control pathogens, biological growth and gas/odor production for crew safety
- Example enhancement of current capabilities
 - Mature technologies for **high reliability and increased recovery of O₂ from CO₂**

Space Station Regenerative ECLSS Flow Diagram (Current Baseline)

Removal of Carbon Dioxide from Spacecraft Cabins and Suit-Loops

Example Technology/Technical Solution:


Compact, reliable, energy-efficient regenerable materials to remove carbon dioxide from spacecraft cabins and EVA suit-loops.

Technology Description:

Stable, high-capacity sorbent systems that can be used to control carbon dioxide to safe levels under a variety of exploration mission conditions and human environments. Sustainable exploration can be enhanced by developing common technologies that can also be used in short-duration, open-loop missions and can also, without modification, be supplemented with additional water or carbon dioxide recovery capabilities to meet longer duration mission needs.

Critical Test Facilities

- Ground test stands for extended operational life and material stability tests
- Human-in-the-Loop (HITL) vacuum and/or variable pressure chambers and/or ground testbeds, with/without suit(s)
- ISS or commercial space platform for operational, microgravity testing and/or parabolic trajectory aircraft and/or suborbital test vehicles

Current TRL: 4

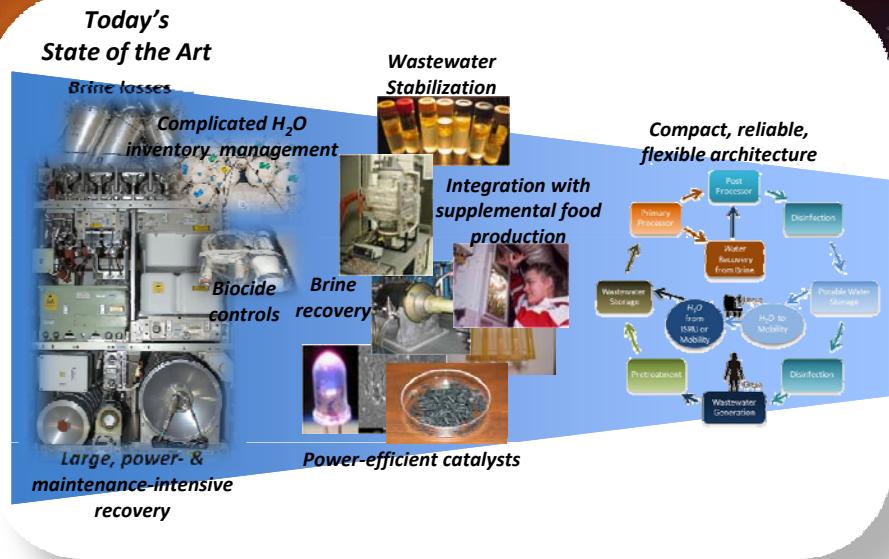
Recommended Timeline to reach TRL 6: 2012 – 2016

Mission Applicability:

- Long Duration LEO
- Transit Beyond LEO
- Planetary

Recovery of Water from Wastewaters

Example Technology/Technical Solution:


Wastewater and product water stabilization, compact & reliable systems to provide flexible architecture to meet specific mission needs.

Technology Description:

Compact, reliable water recovery systems requiring minimum maintenance and contingency resources; expanded capability to recover water from a greater variety of wastewater sources (for example, laundry) to enable mission life cycle mass savings; recovery of reusable water from concentrated wastes (brines); simple, reliable water inventory management. Long-term evolution to enable integration of supplemental food production with water recovery systems.

Critical Test Facilities

- Ground test stands for extended operational life and material stability tests
- Ground test stands for collection of representative human-derived wastewaters for subsystem and integrated testing
- Unique, large-scale, ground testbeds with/without test subjects for closed-loop extended duration ECLS testing
- ISS or commercial space platform for operational, micro-gravity testing

Current TRL: 2-4

Recommended Timeline to reach TRL 6: 2012 – 2028

Mission Applicability:

- Long Duration LEO
- Transit Beyond LEO
- Planetary

Waste Collection & Stabilization

Example Technology/Technical Solution: Denitrification Composter

Technology Description:

Treatment of space-mission solid wastes, or trash, is a critical issue for mid to long duration space habitation or transportation. Composting is a process of accelerated biological decomposition of organic materials in a predominantly aerobic environment.

Critical Test Facilities

- Ground test stands for extended operational life and material stability tests
- Unique, large-scale, ground testbeds with/without test subjects for closed-loop extended duration ECLS testing
- ISS or commercial space platform for operational, micro-gravity testing and/or parabolic trajectory aircraft and/or suborbital test vehicles

Denitrifying Anaerobic Microbial Space Operations Bioconverter

Current TRL: 2

Recommended Timeline to reach TRL 6: 2015 – 2026

Mission Applicability:

- Long Duration LEO
- Transit Beyond LEO
- Planetary

Habitation

Example Technology/Technical Solution: Lightweight Long-Wear Crew Clothing

Technology Description:

Development of crew clothing using modern, advanced light weight fabrics, with antimicrobial resistance, for long-term missions with minimal cleaning requirements. These clothes can be worn extensively before they become unpleasant in appearance, touch, and odor.

Critical Test Facilities

- Ground test stands for extended operational life and material stability tests
- Testing combined with other ground test - beds , with/without test subjects
- ISS or commercial space platform and space vehicles for long-duration, beyond LEO missions for operational, micro-gravity performance testing

JAXA astronaut Koichi Wakata will be testing the clothes shown on the space station.

Current TRL: 2

Recommended Timeline to reach TRL 6: 2012 – 2028

Mission Applicability:

- Long Duration LEO
- Transit Beyond LEO
- Planetary

Section 2

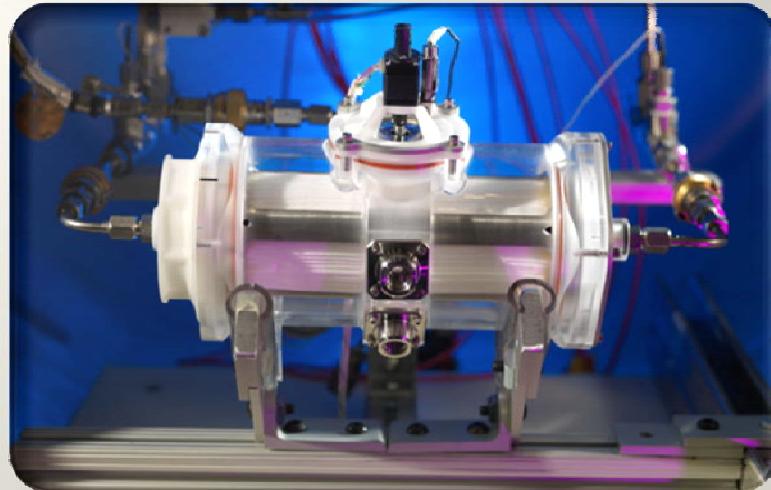
Overview/Highlights

2.2 Extra-Vehicular Activity (EVA) Systems

- **Technologies/systems for humans to perform EVAs** in space and on planetary surfaces
- **Includes Launch, Entry, and Abort (LEA) suit systems** to protect the crew during launch, landing, and cabin contamination / depressurization events
- Advancements are needed for future space missions
 - Need to provide for **crew safety**,
 - Systems must be developed and provided **affordably**, and
 - Require **sustainability** in extreme environment(s) and for remote locations.
- Example game-changing technologies
 - **New suit materials** to perform multiple functions (e.g., integrated power generation, injury protection, radiation protection), and lead to **game-changing suit configurations and architectures** with decreased mass, improved mobility, self-sizing capabilities, and/or increased life
- Example enhancement of current capabilities
 - Technologies for improved **suit-seat interface design for crew protection** during nominal and off-nominal mission events

Spacesuit Thermal Control

Example Technology/Technical Solution: Suit Water Membrane Evaporator (SWME)


Technology Description:

The SWME provides cooling to the spacesuit water loop by evaporating some of the water across a membrane into the vacuum of space.

The sheet membrane SWME uses six concentric cylindrical membranes to create water passages separated by a vented space. A back pressure control valve is used to control the pressure within the evaporator assembly, which controls the amount of water that is evaporated.

Critical Test Facilities

- Human-Rated Vacuum chamber(s)
- Space Suit Systems Lab
- Portable Life Support System (PLSS) Ventilation Lab

Sheet membrane suit water membrane evaporator

Current TRL: 2

Recommended Timeline to reach TRL 6: 2012 – 2025

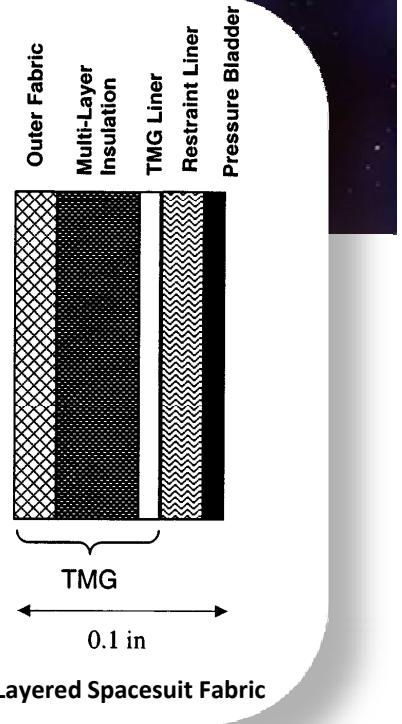
Mission Applicability:

- Short Duration LEO
- Long Duration LEO
- Transit Beyond LEO
- Planetary

Spacesuit Materials

Example Technology/Technical Solution: Advanced Multi-Functional Materials

Technology Description:


In addition to materials designed for radiation protection, micrometeoroid protection, self-healing, wear resistance, etc., alternatives to woven fabrics or applying surface coatings to keep particles from entering and penetrating the fabric weave can control dust contamination.

Critical Test Facilities

- Advanced Suit Lab
- Space Softgoods Lab
- Specialized Chambers for Planetary Dust Testing

Dust Chamber

Current TRL: 2

Recommended Timeline to reach TRL 6: 2012 – 2021

Mission Applicability:

- Short Duration LEO
- Long Duration LEO
- Transit Beyond LEO
- Planetary

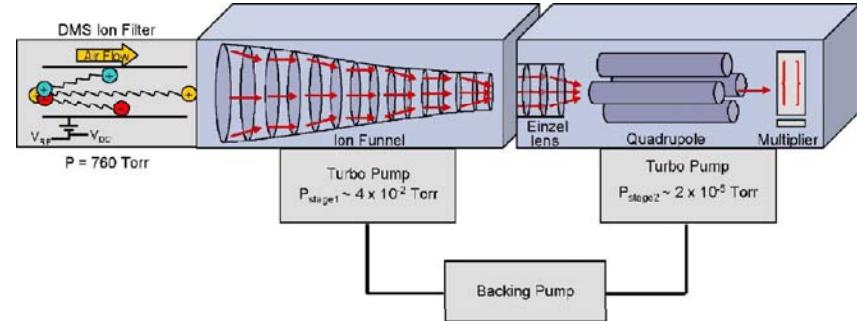
Section 2

Overview/Highlights

2.4 Environmental Monitoring, Safety, and Emergency Response (EMSER)

- **Technologies to ensure crew health and safety** by protecting against spacecraft hazards, and for effective response should an accident occur
- Advancements are needed for future space missions
 - Provide essential **monitoring, prevention and safety systems for critical hazards** (e.g., fire, contamination)
 - Accommodate **remediation should a hazardous event occur** to support the crew and overall mission completion, especially in remote and extreme environments
 - Example game-changing technologies
 - Multi-analyte technology for **stand-alone water quality measurements and total organic carbon (TOC) monitoring**
 - Example enhancement of current capabilities
 - **Post-fire remediation recovery technologies** that are portable, regenerable, and are stand-alone from the critical ECLSS, to safely remove combustion products and fire extinguishing material(s)

Sensors for autonomous, real time air and water monitoring


Example Technology/Technical Solution:
Differential mobility/mass spectrometry device(s)

Technology Description:

Instrument(s) that separate ions using differential mobility, which is based on the charge-, mass-, and structure-dependent movement of ions through a high electric field region. The separated compounds will be identified and quantified using mass spectrometry, which provides the capability of identifying unknown contaminants. Samples can be ionized using nickel-63, electrospray ionization, or pyrolysis. Multiple inlet sources provide the flexibility to monitor breath and body fluids for biomarker analysis.

Critical Test Facilities

- ISS or commercial space platform needed for crewed, long duration testing

Schematic design of DMS/MS system

Current TRL: 3

Recommended Timeline to reach TRL 6: 2012 – 2016

Mission Applicability:

- Long Duration LEO
- Transit Beyond LEO
- Planetary

Techniques for fire suppression systems

Example Technology/Technical Solution: Gaseous Fire Suppression System(s)

Technology Description:

Carbon dioxide based suppression system carbon dioxide or nitrogen, with single and multiple injection points and direct or distributed agent deployment

Critical Test Facilities

- Parabolic trajectory aircraft and/or suborbital test vehicles (note: recommendation to strongly consider suborbital options) for zero-g and partial-g evaluation
- ISS or commercial space station test beds
- Development of an unique, large scale test platform (e.g., re-entering ISS cargo vessel)

Unique Test Vehicles

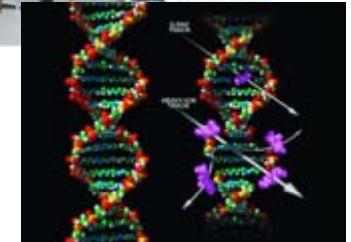
Ground-Based CO2 Fire Suppression System

Current TRL: 2

Recommended Timeline to reach TRL 6: 2015 – 2026

Mission Applicability:

- Transit to/from LEO
- Short Duration LEO
- Long Duration LEO
- Transit Beyond LEO
- Planetary



Section 2

Overview/Highlights

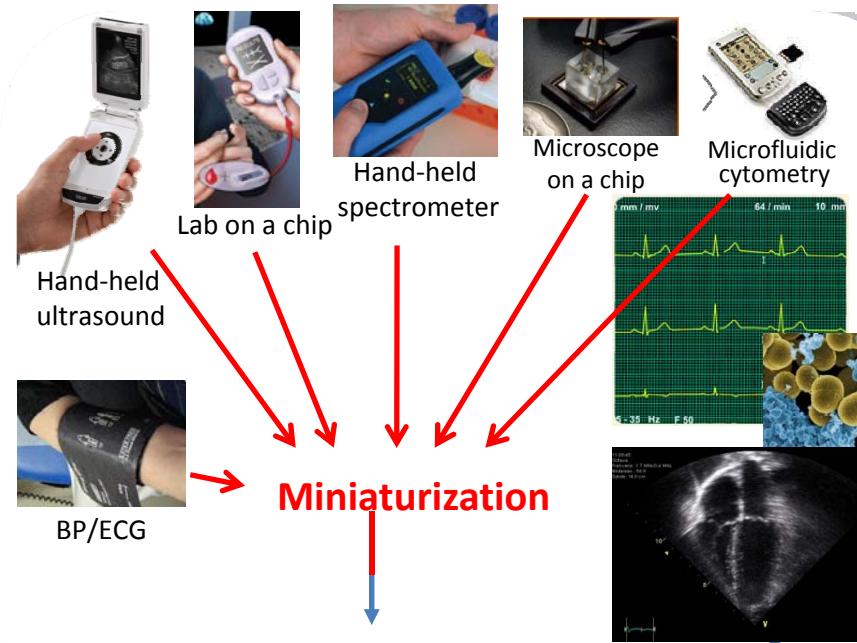
2.3 Human Health and Performance (HHP)

- **Technologies to maintain the health of the crew and support optimal and sustained performance** throughout the duration of a mission
- Advancements are needed for future space missions
 - **Significant new challenges to crew health**, such as astronauts' psychological health in extreme and remote environments, hazards created by traversing the terrain of planetary surfaces during exploration, and the physiological effects of exposure to variable gravity environments
 - More remote missions with **limited communications** to obtain support from ground-based personnel for diagnosis and consultation of **medical events**
 - Ensure safety and success before, during, and after proposed flights, including those with **no option for emergency quick-return**
 - Example game-changing technologies
 - Use **virtual reality** for training and psychological benefits
 - Example enhancement of current capabilities
 - **Advanced human screening technologies** for early detection/prediction of critical medical conditions such as dental emergencies, subclinical medical conditions including malignancies, cataracts, individual susceptibility levels to radiation and carbon dioxide exposures, osteoporosis, oxidative stress and renal stone formation, sleep disorder, anxiety and depression

Mapping of HRP/NSBRI/SBIR Funded Technologies against OCT Roadmap

6.3.2.6	In-flight medical diagnosis	
		Non-Invasive Intracranial Pressure Device (Funded by HRP) NRA - TRL-6 at FY-2011
		Monitoring of Bone Loss Bio-Markers in Human Sweat (Funded by HRP) NRA TRL-6 at FY-2012
		Re-usable handheld lab technology proof-of-concept prototype hardware (Funded by SBIR) TRL-6 at FY-2011
		Test-strips for use in the rHealth sensor for diagnostic testing (Funded by SBIR) TRL-6 at FY-2012
		In-flight blood analysis system prototype (Funded by NSBRI) - TRL-6 at FY-2012
		In-flight banalysis of body fluid and resusable (Funded by HRP)
		Integration of i-revive with lightweight Trauma Module (Funded by NSBRI) TRL-6 at FY-2011
		Light-weight Trauma Module (Funded by HRP)
6.3.3.1	Crew monitoring and evaluation	
		Tools for Physiological Markers of Stress (Non-invasive Technology) - Funded by HRP - Directed Study
		Autonomous Monitoring Technology (Funded by SBIR)
		NIN (Near-Infrared Neuroimaging) Depression Detection Tool (Funded by NSBRI)
		OCR (Optical computer Recognition) of Stress (Funded by NSBRI)
		Cognitive Performance Monitoring Tech (Funded by SBIR)
		Behavior Tracking Software (Solicited by SBIR)
		Developing, Maintaining and Restoring Team Cohesion (Funded by HRP/NRA)
6.3.4.1	Human/system displays and interfaces, and HIS	
		Automation Interface Design Tools Development (AIDT) (Funded by HRP)
		Displays and Controls Interfaces (Human-Computer/Vehicle) (Funded by HRP)
		Lunar Lander, Human-Automation Interactions (Funded by NSBRI)
		Computer-based Tool for Assessment of Mission Function Allocation Strategies (Funded by SBIR)
		Evaluation Toolkits and Methods for Assessing Human-Robot Teams (Funded by HRP)
		Tool for reporting Human Factors Incidents to eliminate errors in recall-by-memory (Funded by SBIR)

In-flight Medical Diagnosis


Example Technology/Technical Solution: Hand-held diagnostic Suite

Technology Description:

Technologies under consideration include (but not limited to) ultrasound imaging, Blood pressure, ECG monitoring, micro-digital microscope, microfluidic cytometry, spectrometry and a diagnostic laboratory-on-a-chip. These technologies will be further miniaturized and integrated into a single unit that will function as a portable computer interface similar to the picture shown

Critical Test Facilities

- ISS or commercial space platform needed for crewed, long duration testing

Current TRL: 2-3

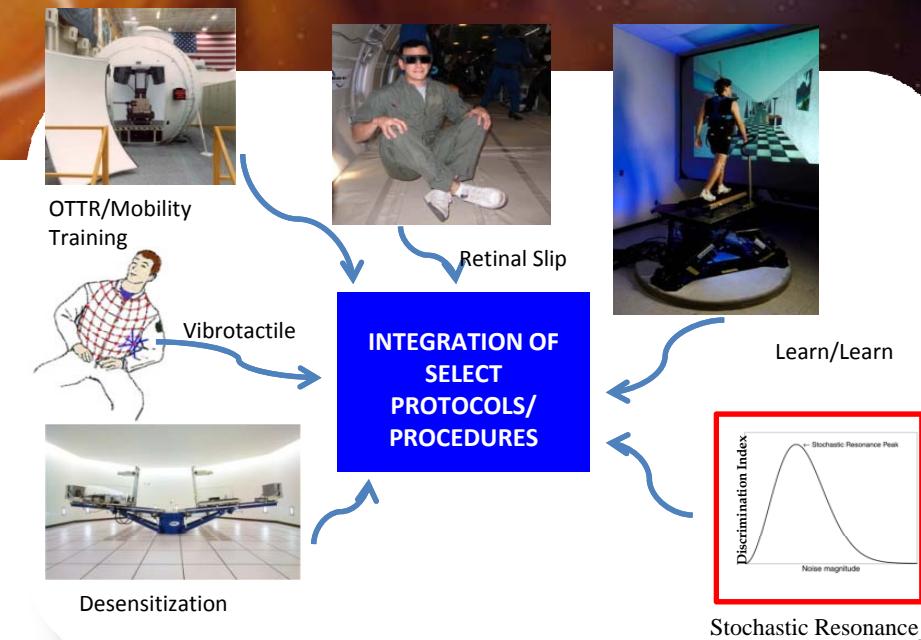
Recommended Timeline to reach TRL 6: 2012 – 2017

Mission Applicability:

- Long Duration LEO
- GEO
- NEO
- Lunar
- Mars

Non-pharmacological Treatment for Sensorimotor Flight Disorders

Example Technology/Technical Solution:


Suite of Protocols/Procedures for Neurosensory Disorders

Technology Description:

Technologies under consideration include (but not limited to) vibrotactile feedback for spatial orientation, stochastic noise to provide low level brainstem input, stroboscopic illumination to prevent retinal slip, desensitization protocols, pre and in-flight training protocols and learning to learn strategy protocols

Critical Test Facilities

- Short-arm Centrifuge
- OTTR
- ISS as a platform to test operational implementation

Current TRL: 1-2

Recommended Timeline to reach TRL 6: 2012 – 2017

Mission Applicability:

- Long Duration LEO
- GEO
- NEO
- Lunar
- Mars

Advanced Displays & Controls

Example Technology/Technical Solution: Wearable, modular computing

Technology Description:

Advancements in D&C, cameras, and communication technologies, an “all-in-one” human interface system can be developed and integrated to provide display of information, crew-to-crew/ crew-to-ground communications and crew situational awareness capability for future, autonomous human mission operations. Development includes ground assessments, integrated testing of prototype hardware.

Critical Test Facilities

- Parabolic trajectory aircraft for zero-g and partial-g evaluation
- ISS or commercial space station test beds for crewed and long duration testing
- Other analog environments such as NEEMO, D-RATS

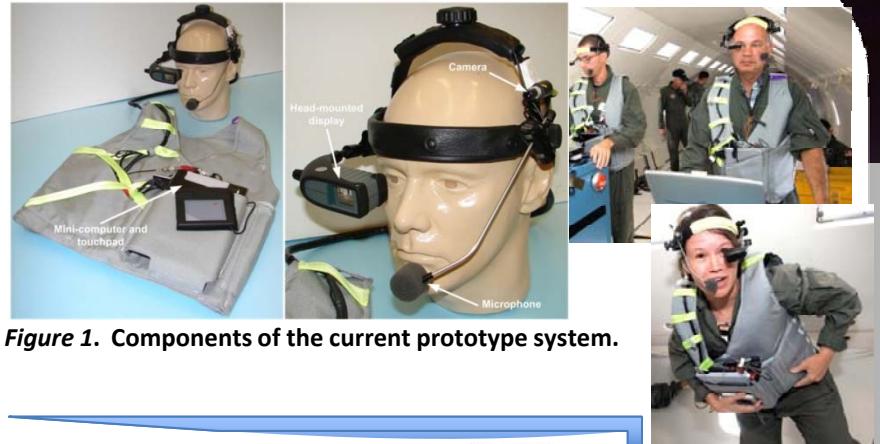


Figure 1. Components of the current prototype system.

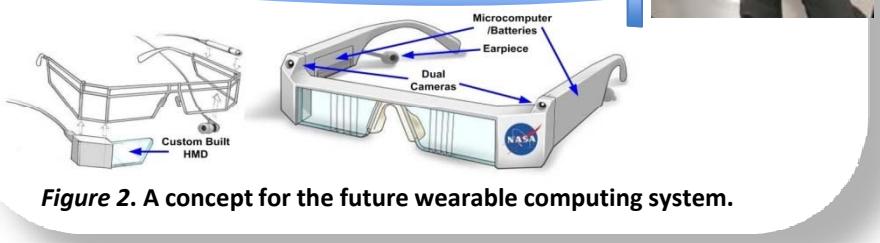


Figure 2. A concept for the future wearable computing system.

Current TRL: 3

Recommended Timeline to reach TRL 6/7: 2012 – 2016

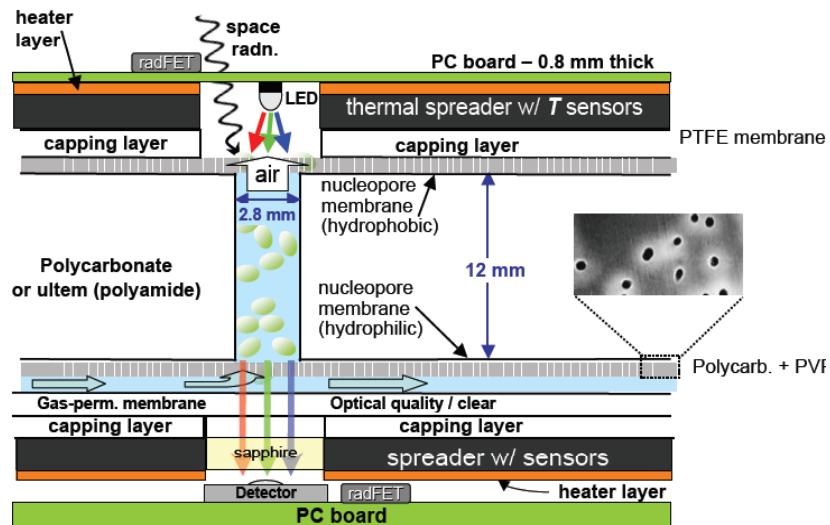
Mission Applicability:

- Transit to/from LEO
- Short Duration LEO
- Long Duration LEO
- Transit Beyond LEO
- Planetary
- Ground operations

Biosentinels

Example Technology/Technical Solution:

Suite of Nanosatellite platforms to carry out space environment effects on Cells, microbes, plants and multicellular organism


Technology Description:

Technologies under consideration include (but not limited to) Drug dose dependence alteration in high dose radiation and microgravity, grow/analyze microorganisms in space environments and follow organism viability, chemical stability, drug efficacy and gene expression

Critical Test Facilities

- Nanosatellite platforms
- ISS as a platform to test operational implementation

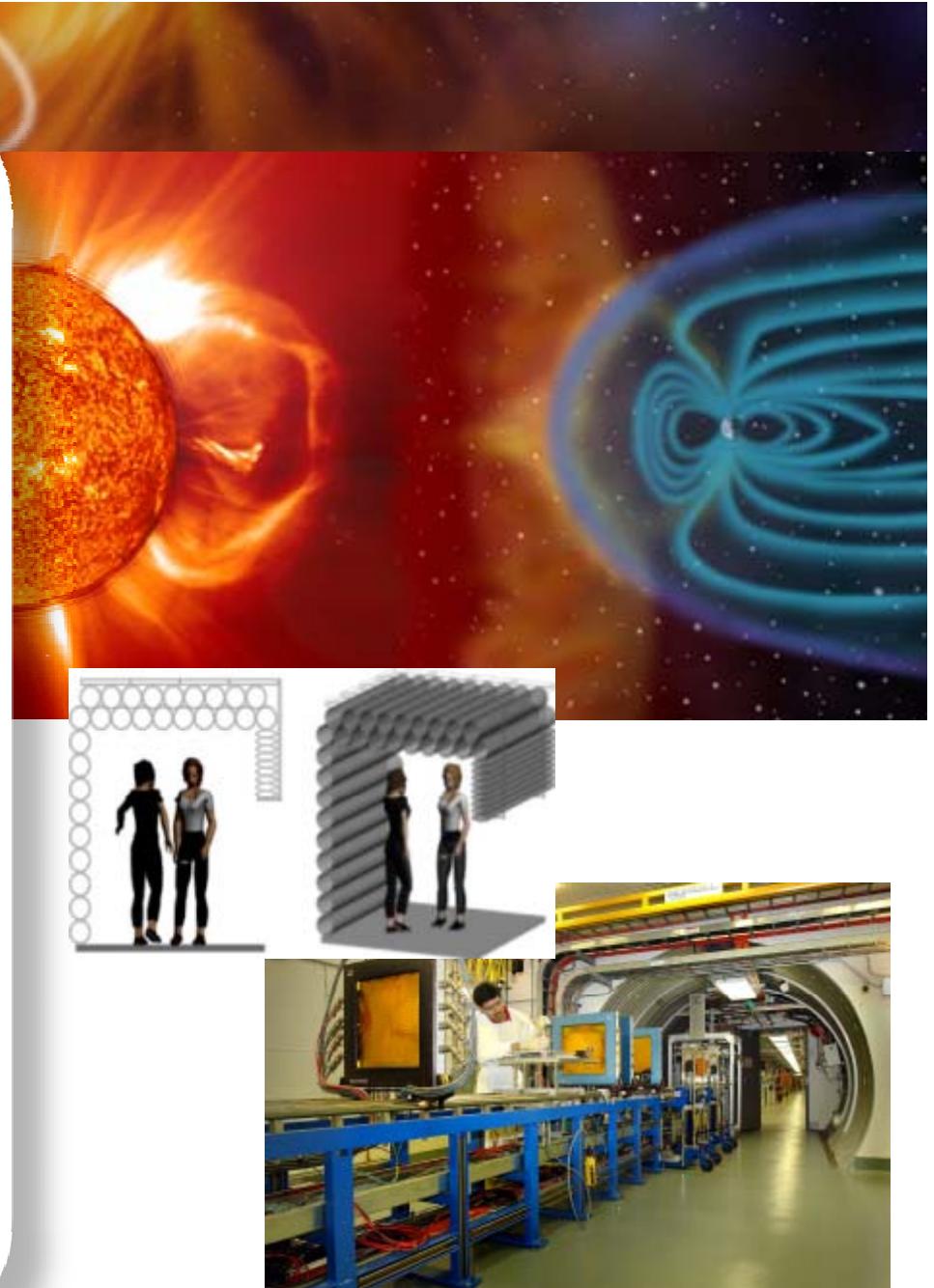
SESL (bio) Fluidic/Thermal/Optical Architecture *Fluidic / optical / thermal cross-section*

Current TRL: 3-4

Recommended Timeline to reach TRL 6: 2012 – 2016

Mission Applicability:

- Long Duration LEO
- GEO
- NEO
- Lunar
- Mars



Section 2

Overview/Highlights

2.5 Radiation

- Technologies and the development of a knowledge base to understand and quantify radiation health and performance risks, for monitoring space radiation and crew exposure, to develop mitigation countermeasures, and to minimize exposures through the use of material shielding systems and/or combination strategies
- Advancements are needed for future space missions
 - Sufficient ground and flight data on living systems exposed to the relevant space environment to support models to accurately predict radiation risks, identify genetic selection factors, and develop mitigation measures for remaining risks
 - Develop effective design(s) of integrated radiation protection systems
- Example game-changing technologies
 - Radiation mitigation/biological countermeasures for chronic galactic cosmic radiation (GCR) or intermediate solar particle event (SPE) dose rates
- Example enhancement of current capabilities
 - Space weather prediction to include real-time monitoring and forecasting model(s), and prediction of onset and evolution of SPE as well as all-clear periods

Medipix small active radiation dosimeter

Example Technology/Technical Solution:
Active Dosimeter for crew and area monitoring

Technology Description:

Miniaturized, radiation-hard pixel-based technology to provide fully active personal radiation monitoring including EVA. Replaces “dosimetry” with a full personal spectral field measurement.

Critical Test Facilities

- ISS or commercial space platform needed for crewed, long duration testing

Medipix prototype without casing

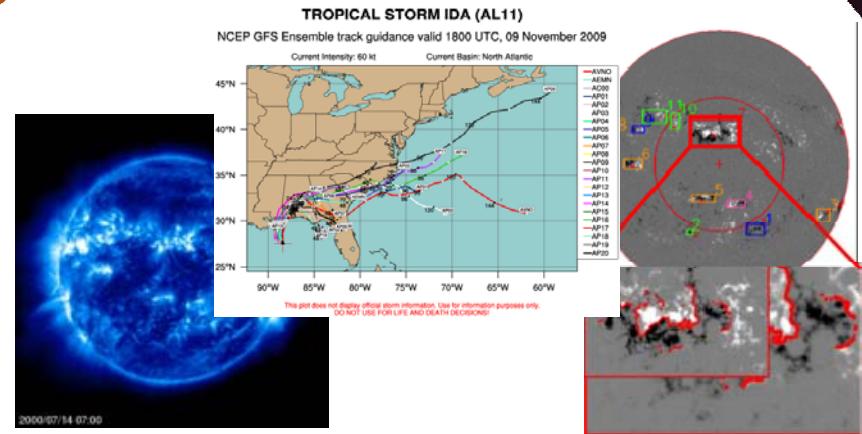
Current TRL: 5

Recommended Timeline to reach TRL 6: 2012 – 2014

Mission Applicability:

- Long Duration LEO
- Transit Beyond LEO
- Planetary

Ensemble Forecasting for Space Weather Risk Mitigation


Example Technology/Technical Solution:
Ensemble forecasting of hurricane tracks in terrestrial weather

Technology Description:

Ensemble techniques are the state-of-the-art in terrestrial weather forecasting for decreasing uncertainty in individual forecast models. Current space weather forecasting models identified as reaching sufficient maturity will be transitioned to operations using an ensemble approach. Much enhanced forecast fidelity could be obtained with this approach. Tests would be conducted in real-time during the next solar max to assess overall forecast skill and false alarm rate. Ensemble techniques provide for inclusion of additional models into the suite of tools as models mature.

Critical Test Facilities

- Computational platform for testing ensemble models
- Infrastructure for testing operational utilization concepts
- Possible use of ISS as a platform to test operational implementation

Translation of ensemble techniques for mitigating Solar Proton Events

Current TRL: 1

Recommended Timeline to reach TRL 6: 2013 – 2017

Mission Applicability:

- Long Duration LEO
- GEO
- NEO
- Lunar
- Mars

Summary

- The development of this roadmap showed that technology investments in the Human Health, Life Support, and Habitation Systems TA will help enable human space missions to Low Earth Orbit (LEO) and well beyond, and provide significant benefit to national needs.

Acknowledgements

- Our great support team of Audrey Burge, Jeannie Corte, Karen Spears, and Rilla Wolf, who provided administration, graphic artistry, technical editing and many other things ...
- The wide array of technical experts and contributors supporting our efforts, including Dr. Howard Ross

Appendices

- TA06 Roadmapping Process
- Technology Area Strategic Roadmap (TASR)
- Major Technical Challenges
- Traceability to NASA Strategic Goals
- Benefits of Investment in TA06 Technologies
- Interdependency with Other TAs

TA06 Document Development Process Overview

NASA Process

In parallel to OCT expert review, our team did a review with selected topical experts, including a NASA Engineering and Safety Center (NESC) Fellow

Each TA Roadmap reviewed by OCT & ext
First draft 9/2010

Solicited inputs from recognized experts and acquired existing reference materials

Example: Committee on the Evaluation of Radiation Shielding for Space Exploration, Aeronautics and Space Engineering Board (ASEB), Division on Engineering and Physical Sciences (DEPS), National Research Council of the National Academies (NRC), 2008, "Managing Space Radiation Risk in the New Era of Space Exploration," Washington, D.C.: The National Academies Press.

Our team developed a Technical Area Breakdown Structure (TABS)

OCT formed TA teams and named members

o-member subject expert teams for each TA, with one or two chairs

2: Identify Technology Areas
Identified Technology Areas (TAs)

1: START & Input from MDs & Center
Identified MD Goals, Missions, Architectures & Timelines; MD Technology Roadmaps & Prioritizations; Center Technology Focus Areas

Updated draft
10/2010

NASA Space Technology Roadmaps Process

Human Health, Life Support, & Habitation Systems		2010	2015	2020	2025	2030
SOMD	<ul style="list-style-type: none"> Near-Earth Human Missions (ISS, LEO, HEO) Deep Space Missions 	ISS Ops	Orbital Missions	Extended ISS Ops		
ARMD	<ul style="list-style-type: none"> Airspace Systems Integrated Systems Research 	Commercial Crew Demo	ISS Suit Re-cert or upgrade			
ESMD	<ul style="list-style-type: none"> HEFT Assumptions Robotic Precursor Missions Human Space Missions 	Scout 1 ▲ Scout 2 ▲ Scout 3 ▲ Scout 4 ▲ Scout 5 ▲ CTV Adv. ECLS MMSEV FTDB Infl Mod Flagship ▲	Commercial Passenger Access to LEO ★ Test HEO ★ Crewed HEO Crewed NEO/NFA	Commercial Passenger Access to HEO ★ Crewed Mars Orbit / Phobos ★ Crewed NEO ★	Crewed Mars Surface ★ Crewed Mars orbit ▲	
Environmental Control and Life Support Systems & Habitation Systems	<ul style="list-style-type: none"> Air Revitalization Water Recovery & Management Waste Management Habitation 	50% recovery O2 from CO2 15-20% H2O recovery (cond, urine) Full waste disposal 50% reduction food packaging	Integrated ECLS 75% O2 recovery & variable cabin pressure control 50% H2O recovery (cond, urine, hyg) Waste Stabilization & volume reduction Long-wear clothing TA07 - Food Prod.	Integrated ECLS 100% O2 recovery 98% H2O recovery (cond, urine, hyg, laundry, waste) Capability for H2O recovery from waste Reusable clothing Food augmentation w/plants	Augmented Hybrid - O2 recovery augmented w/crops 98% H2O recovery augmented w/biological systems Waste mineralization TA07 - Bulk food processing	Augmented Hybrid Primary Hybrid O2 recovery >95% from crops 98% H2O recovery principally provided by biological systems >95% waste resource recovery Bulk food production systems & biological engineering
Radiation	<ul style="list-style-type: none"> Risk Assessment Modeling Radiation Mitigation Protection Systems Space Weather Prediction Monitoring Technology 	Risk Projection Model Acute Radiation Risk Model Biological Countermeasures	Characterize Hab Rad. Environment Radiation Lifespan models NSRL model testing thru 2030	Predictive systems biology model BCM Efficacy Models	BCM Pharmaceutical interaction model/tool★ Validate synergistic effect	BCM Individual sensitivity toolkit★ BCM Stem cell replacement toolkit★
Environmental Monitoring, Safety & Emergency Response	<ul style="list-style-type: none"> Fire Detection/Suppression/Recovery Sensors Protective Clothing/Breathing Remediation 	Low-G Fire Signature Assessment Real-time Particle Monitoring	Develop distributed test of clean-up fire detection system procedures Microbial detection & ID on ISS Integrated Regen. System	High Reliability SPE Forecasting Weather Data Streams Advanced Dosimetry & Measurement	SPE onset prediction★ TA12 - Multi-functional Materials/Structure & Mass Efficient Shielding	
Extravehicular Activity Systems	<ul style="list-style-type: none"> Pressure Garment PLSS PAS 	Initial Human-suit model★ Adv. Suit Material Candidate Testing★ Regn. CO2/humidity control★	EVA System on ISS Upgrade PLSS★ Suit-Seat PAS w/high sp battery Demo Subsystem mini-electronics & Variable set point O2 regulator	Human-suit model validation TA12 - Adv. Suit Materials System mini-electronics	Regenerable CO2/humidity demo Adv. Suit materials, helmet display, & closed-loop heat rejection demo On-suit power generation	TA07 – Human to Telerobotic System Demo PLSS w/zero consumables, multifunctional suit materials, & PAS for autonomous crew demo
Human Health & Performance	<ul style="list-style-type: none"> Medical Diagnosis/Prognosis Long-Duration Health Behavioral Health Human Factors & Performance 	HSI Scorecard★	Condition Specific Screening Wearable computing/Biomed Sensors Next Gen. Ultrasound Pluripotent cells tool kit★ Exercise Equipment Alt. non-exercise countermeasures★ Artificial Gravity Prescription Dev. Virtual Therapist★	Drug delivery & Bio sample analysis Autonomous Health Monitoring/Integ. Bioinformatics f-MRI Integrated exercise countermeasures Regular Biosentinel flights	VR Holodeck Surgical Suite TA07 - VR Training Genomic/Proteomic Screening TA04 - Medical Assist Robotics Comprehensive Scanner (full-body, 3D) Pluripotent cell anti-radiation therapies	TA07 - VR Training TA07 - Int. Artificial Gravity in LEO Human-Robotic Interface Demo

Technology Pull Technology Push Ground Demo Push Ground Demo Flight Demo Push Flight Demo Assumed Mission Cross-cutting Technology

Major Technical Challenges

- Determined by **reviewing the recommended content for each sub-TA for the time period** specified, and selecting **one or two technologies** and/or priority system functions within that domain for a **balanced representation** of HLHS
- The selected technologies include those that:
 - Are a **low TRL** and require extended development time to be ready for future missions
 - May **significantly impact mission implementation** (e.g., high reliability, reduced logistics, decreased mass, high efficiency power systems, etc.)
 - Are **critical to human safety and well-being**

Major Technical Challenges

Present – 2016

- **Integrate fundamental research results on radiation environment biological effects**, and including other effects from space exposure, into damage/risk model(s) and consolidate and interpret databases of major signaling pathways causative of cancer from space exposure and other damage
- **Stabilize liquid and solid wastes** to recover water and to control pathogens, biological growth and gas/odor production
- **Achieve high reliability and reduce dependence on expendables** over existing SOA systems that recover O₂ from CO₂ and H₂O from humidity condensate and urine
- **Develop advanced screening technologies**, to detect and/or predict subclinical malignancies, subclinical cataracts, individual susceptibility levels to space exposure (e.g., radiation) and carbon dioxide exposures, osteoporosis, oxidative stress, renal stone formation, anxiety, and depression
- Demonstrate EVA **technologies** that could be used **to extend EVA capability on ISS beyond 2020**. These technologies include advances for on-back regenerable CO₂ and humidity control, advanced suit materials, and more capable avionics
- **Demonstrate real time airborne particle monitoring** on the ISS

2017 – 2022

- **Develop radiation risk model(s)** as a predictive systems biology model approach for space radiation, including development of experimental methods/ techniques and models to verify integrated risk and understand synergistic effects of other spaceflight stressors (microgravity, reduced immune system response, etc.) combined with radiation
- **Validate physiological and psychological countermeasures** for long-duration missions, which can include any combination of exercise, non-exercise (e.g., pharmacological) and/or advanced techniques (e.g., Virtual Reality technologies such as a “Holodeck”, artificial gravity)
- **Close high-reliability ECLSS more fully**, with >95% O₂ and H₂O recovery from an integrated mission perspective
- Implement **bulk food processing in-flight and augmentation of food supply** with plants
- **Advanced EVA technologies to enable missions to NEOs**, which includes suits that incorporate advanced materials and component demonstrations of life support technologies that reduce consumables
- Complete **development of a distributed hybrid fire-detection system** for space missions

Major Technical Challenges

2023 – 2028

- **Demonstrate hybrid physical/chemical and biological ECLSS** with >95% recovery of O₂ and H₂O **with bulk food production**
- **Develop and validate a non-ionizing, full body, dynamic, 3-D imager** with in-situ diagnosis and treatment capabilities (e.g., renal stone ablation)
- **Validate real-time monitoring and forecasting space weather model(s)**, to include prediction of onset and evolution of Solar Particle Events (SPEs) as well as all clear periods
- **Flight demonstration of an advanced EVA system**, including suits that utilize multifunctional materials, a portable life-support system (PLSS) with no consumables, on-suit power generation, and avionics that enable the crew to operate autonomously
- Complete integrated **system testing of portable, non-solvent-based microbial remediation** on ISS

Traceability to NASA Strategic Goals

- **Technology Area Strategic Roadmap (TASR) development process**
 - Used our interpretation of the **overall agency goals, outcomes and objectives** as “pull” for the technology content and milestones
 - **Incorporated the NASA Mission Directorates and NASA Centers needs and focus** into the sub-Technical Areas (sub-TAs)
- **Major missions and milestones were derived from multiple sources**
 - Drafted **FY11 Agency Mission Planning Manifest** (AMPM)
 - **Design Reference Missions** (DRMs) were assumed based on **Design Reference Architectures** (DRAs) being evaluated as a part of the **Human Exploration Framework Team** (HEFT) activity
 - Attempt made to include **items on the TA07, Human Exploration and Development of Space, roadmap**, as considerable overlap potential exists with this technology area
 - **“Push” missions and milestones that are recommended for consideration**, with the an example being the **extension of ISS operations beyond 2020**
 - It should be noted that alternative platforms might serve this purpose as well

Traceability to NASA Strategic Goals

The **drafted roadmap** does not fully link all items directly to a specific agency mission or milestone at this time, but rather **provides time phasing that would allow infusion of technologies or capabilities to support appropriate future agency missions and/or milestones**

Benefits of Investment in TA06 Technologies

The **primary benefit** of significant technology development for the Human Health, Life Support and Habitation Systems (HLHS) domain is the **ability to successfully achieve human space missions to Low Earth Orbit (LEO) and well beyond**

- **Continuing operation and missions of the International Space Station (ISS)**
 - Recommend consideration for extending operations there, or that an **alternative permanent or semi-permanent in-space facility** be identified to allow for continued and sustained research/testing and associated advancements related to the effects of living and working in space
- **Proposed bold space missions currently under consideration, like to a Near Earth Object (NEO)**
- **Proposed roadmap also includes suggested in-flight and ground test activities for pre-flight evaluation and augmented research/testing**, which will regularly and efficiently provide advancements

Benefits to Other National Needs

Many of the **proposed technologies identified** in the roadmap **can lead to improvements in the quality of life here on Earth, creating benefits of national and global interest**

Life Support and Habitation

- Potential for complete wastewater recovery to potable standards for **military, remote and water-scarce regions, and disaster relief emergency response**
- Efficient methods for CO₂ capture, conversion, sequestration, and advanced contaminant removal/destruction, and particulate management for **climate change mitigation, mine safety, enclosed spaces, military applications, and synthetic fuel production**
- Light-weight, deployable, inflatable, interior structures provide **rapid shelter construction for military deployments, disaster response, etc.....**

Space Suit Technologies

- Previous and recent **space suit technologies** have provided materials and manufacturing techniques that have led to significant improvements in **commercial products**, like athletic shoes, **and specialized items** that benefit many, like **efficient manufacture of pharmaceuticals**
 - **Therapeutic suits for people with medical needs**
 - **Protective suits** like those for race car drivers and firefighters
 - **Life-saving gas and chemical masks**, etc....

Benefits to Other National Needs

Human Health & Performance

- Technologies may lead to smaller portable analysis and imaging units that could be used in **austere/harsh environments, or even in rural settings without access to large medical facilities**
 - Countermeasures developed for space are likely to **impact clinical practice by providing a better understanding of how the body works**
 - **New tools to influence both wellness, and treatment of diseases**
 - Technologies for enhanced crew interfaces and autonomy will have the **potential for use in extreme environments**, etc....

EMS & ER and Radiation

- Biological innovations or breakthroughs would also be of **interest to the National Institutes of Health**, and have the potential to significantly improve life on Earth
 - Technologies for radiation may **help cancer patients suffering from radiation treatments, increase understanding of early onset of diseases of old age, and provide preventive measures to delay or block their appearance**
 - Innovations for **homeland security for detection of hazardous aerosols**
 - Development of microbial and chemical sensors can easily translate to multiple applications, such as **analysis of water sources in remote locations**, etc....

Interdependency with Other TAs

The listing below identifies technologies where overlaps are likely to exist and/or key technologies that may be of joint benefit. Further discussion and/or collaboration in these areas is recommended.

Technology Area	Overlapping Technology Descriptions
TA02: In-Space Propulsion Systems	Tanks for high pressure gas storage and/or cryogenics; if tanks are "shared" then purity is an issue for ECLSS use For cryogenics, issues include zero-g or low-g management/boil-off control (*also overlap with TA03 and TA14)
TA03: Space Power and Energy Storage Systems	Tanks for high pressure gas storage and/or cryogenics; see description under TA2 (*also overlap with TA14) Low mass, high efficiency, long life, high reliability, etc. batteries for EVA/suits and/or human habitat/vehicle power systems High efficiency electrolyzers for production of O ₂ and/or potable water
TA04: Robotics, Tele-robotics and Autonomous Systems	Human factors (e.g., immersive visualization) and human/robot interaction and automation systems (e.g., human-robot interfaces for remote operations) Medical-assist robotics Human safety enhancement (e.g., robotic surveying and remote operations)
TA05: Communication and Navigation Systems	Very high bandwidth communication systems (e.g., telemedicine, software uploads)
TA07: Human Exploration Destination Systems (HEDS)	Manufacture of components, tools, soft goods (e.g., o-rings, seals) etc/3D model Printing; see description under TA12 Research grade water production/recycle/reuse for research platforms/needs Integrated Habitat Systems (e.g., lighting, acoustics, advanced habitat materials) EVA mobility (e.g., rovers), interfaces (e.g., suitport/lock), and tools Virtual reality/Holodeck (e.g. STAR TREK) technologies for training, etc. Radiation protection materials and/or structures/architecture using in-situ resources (*also overlap with TA12) Contamination control and housekeeping (e.g., dust) Artificial gravity devices/architecture (e.g., rotating vehicle, centrifuge chair) In- situ or remote food production and processing

Interdependency with Other TAs

Technology Area	Overlapping Technology Descriptions
TA10: Nanotechnology	<p>Nano-systems/sensors for non-invasive physiological monitoring of crew and/or medical treatment</p> <p>Advanced batteries for EVA suits (*also overlap with TA3)</p> <p>Nanoporous and/or other advanced nano-engineered materials/structures for ECLSS and/or other human-related applications (e.g., CO₂ removal, water filtration, radiation protection, environmental and/or constituent sensors)</p>
TA11: Modeling, Simulation, Information Technology and Processing	<p>Human, environmental, subsystem and overall vehicle monitoring and data management systems</p> <p>Models and simulations/simulators for human and systems performance</p>
TA12: Materials, Structural and Mechanical Systems, and Manufacturing	<p>Materials compatible with future ECLS environment of 8 psi (reduced pressure) and 32% O₂ (enriched oxygen)</p> <p>Multifunctional materials and/or structures, including combined structural and radiation protection, microbial control (e.g., materials and/or coatings), and other examples:</p> <ul style="list-style-type: none">• The "water wall" concept envisions incorporating water required for life support into the vehicle structure to eliminate the extra mass of water tanks and provide additional radiation shielding in specific locations (e.g., crew quarters, storm shelter)• The idea is to build spacecraft internal structures (struts, secondary structure, avionics boxes, seat cushions, etc) out of materials that can, for example, absorb CO₂. If enough of the materials could be incorporated into the spacecraft and preserved throughout ground processing (or "regenerate" its capacity prior to launch), then for short missions the spacecraft structures could absorb all the CO₂ from the atmosphere <p>Manufacture of components, tools, soft goods (e.g., o-rings, seals) etc./3D model printing; in space for increased reliability, to reduce spares, etc., similar to a STAR TREK replicator (*also overlap with TA7)</p> <p>Materials Flammability associated with advanced materials testing, and update(s) to MSFC-HDBK-527, Materials Selection List for Space Hardware Systems</p>
TA14: Thermal Management Systems	<p>High-efficiency, non-degradable condensing heat exchangers and lightweight radiators</p> <p>Non-venting, closed heat rejection system with no consumables for EVA/suits</p> <p>Tanks for high pressure consumables and/or cryogenics, including issues include zero-g or low-g management/boil-off control (*also overlap with TA02 and TA03)</p>