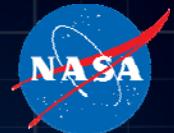
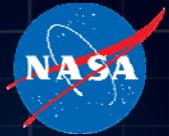


Human Health and Surface Exploration Panel Workshop ECLSS & Habitation Systems

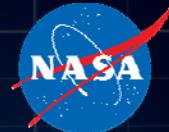
Jordan Metcalf
Lunar & Planetary Institute
April 26, 2011



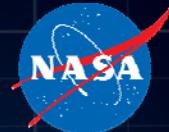
Outline:


- An Operational Perspective
- Technology Development and Systems Engineering
- Interdependencies
- Key factors
- Closing

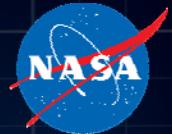
An Operational Perspective


- Flight Programs have been a critical mechanism for technology development & maturation
 - Baseline Shuttle Environmental Control & Life Support System (ECLSS) was a substantial technological advancement
 - Supported by significant system-level integrated testing
 - The need to extend Shuttle Orbiter mission duration drove further ECLS technology development via upgrades
 - EDO waste collection system
 - Regenerable CO₂ Removal System (RCRS)
 - Shuttle Urine Pretreat Assembly (SUPA)

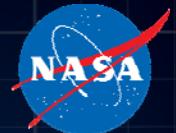
An Operational Perspective


- This approach can be unnecessarily burdened by numerous constraints
 - Configuration management requirements
 - Integration within existing system's requirements
 - Safety impacts
 - Operational constraints
 - Logistics-related manifest limitations
- The result: Difficult and Expensive

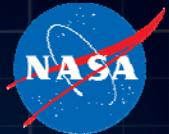
Technology Development & Systems Engineering


- We tend to think of “technologies” as components that are used to assemble a System
 - LiOH cans
 - Carbon Dioxide Removal Assembly (CDRA)
 - Amine swingbed
- But ECLS “technologies” are **processes** that are integrated to assemble a larger process
 - Atmosphere revitalization
 - Water management
 - Waste management
 - Pressure control
- The ECLS **Process** does not end
 - Constant operations
 - Closely monitored
 - Frequent operational changes

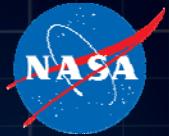
Technology Development & Systems Engineering


- Systems Engineering expects us to pursue an integrated approach from cradle to grave
 - Typically mission-driven
 - Mindful of life cycle costs
 - Requirements based
- We can apply SE principles to develop capabilities and technologies, independent of specific mission requirements
 - Function-driven
 - Satisfy basic requirement set and understand flexibilities & limitations
 - Always strive for minimum mass, volume, power
- For TA06 ECLS roadmap the key drivers (sect. 2.1.1, p.8) are:
 - High reliability processes & integrated systems
 - Increased self-sufficiency
 - Minimized logistics supply

Interdependencies


- ECLSS processes are interdependent, and that interdependency increases with the need to recover resources
 - “Air loop” and “water loop” are linked
 - Waste collection, management & “repurposing” are linked to air & water
- Disruption of a sub-process can initiate a “ripple effect” through the larger ECLSS process
 - Example: alcohol from wipes collects in condensate and “poisons” water processor and/or oxygen generator, driving hardware repair or replacement
- Integrated performance is a critical component of any ECLSS technology or process development effort
 - Neglecting to do so prior to on-orbit implementation is a guaranteed cost and risk multiplier

Key Factors


- Environment
 - Gravitational effects & fluid dynamics
 - Thermal
 - Pressure & Oxygen
- Operational
 - On/off cycling
 - Contamination
 - Degradation
 - Maintenance
 - Emergency response
- Architectural
 - Transportation vs. Habitat
 - “Plug & play”
 - Upgradability

Vulnerabilities and Gaps

- Current
 - Oxygen generation (electrolysis)
 - Urine processing/water recovery
 - Water chemistry control
 - Onboard air & water quality monitoring and verification
 - Regenerative CO₂ removal
 - Gas/Liquid separation
- Future / Ongoing
 - Contamination control/filtration
 - Materials
 - Interfaces (fluid & electrical connectors, human interfaces)
 - Instrumentation & control systems
 - Mass, volume, power reductions

Closing

- The key to long-term manned space operations is a stable, reliable ECLS that enables increasing self-sufficiency
- ECLS is a **PROCESS** made up of several interdependent sub-processes
- Technology/process development must consider and quantify effects on the greater integrated process
- Regenerative ECLS is game-changing for long-duration spaceflight
- Further development of the ISS regenerative ECLS shows the greatest promise for a point of departure for exploration beyond LEO