

A handwritten signature in black ink, appearing to read "A", is positioned in the top right corner of the slide.

Reentry Thermal Protection Systems

NASA Roadmap Feedback

Bill Willcockson

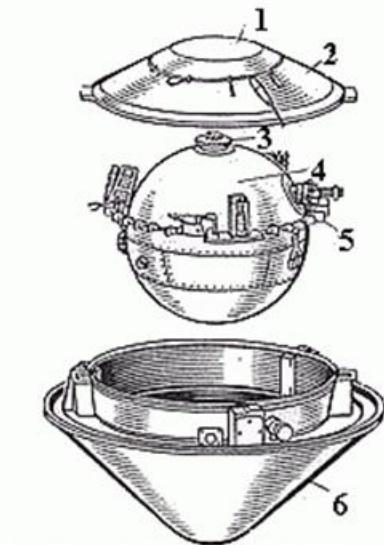
Lockheed Martin Space & Exploration Systems

March 11, 2011

Lockheed Martin Space Exploration Division Experience

- Re-Entry Related Flight Programs
 - Small unmanned missions, Modest \$ value
- Mars Entry
 - Viking
 - Mars Pathfinder (Aeroshell)
 - Mars 2001 / Phoenix
 - Mars Exploration Rover (Aeroshell)
 - Mars Science Laboratory (Aeroshell)
- Earth Entry
 - Stardust Sample Return Capsule
 - Genesis Sample Return Capsule
- Jupiter / Venus Entry (former GE Reentry Systems)
 - Pioneer Venus Probes (Aeroshell + Parachutes)
 - Galileo Probe (Aeroshell + Parachutes)
- Aerobraking
 - Magellan
 - Mars Global Surveyor
 - Mars Odyssey
 - Mars Reconnaissance Orbiter

Phoenix Mars Lander



Stardust Probe

Galileo Probe

Aeroshell TPS Types – Flight Program Experience

A

Low-Energy

SLA-561V

SLA-565S

10-400 W/cm²

Monolithic

High-Energy

PICA

Carbon-Carbon

400-1500 W/cm²

Monolithic / Tiled

Very-High-Energy

Carbon-Phenolic

50,000 W/cm² +

Monolithic

Affordability paradigm fits with LM small probe experience

Affordability – Comparison of Two Large TPS Systems - MSL

A

Comparable Size TPS Compare: PICA & SLA for MSL (>3X cost)

PICA (Heatshield)

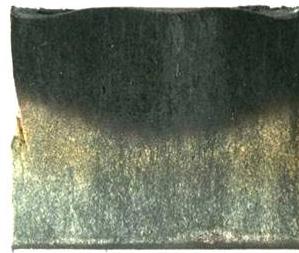
Tiled Application

- 1) Design Tile Layout
- 2) Manufacture Billets
- 3) Precision Machining
- 4) Tile Dry-Fit
- 5) Tile Application
- 6) Gap-Fill

SLA-561V (Backshell)

Monolithic Application

- 1) Prep Flexcore
- 2) Bond Flexcore
- 3) Pack Material
- 4) Surface Finish


While more capable, PICA is more expensive to incorporate on large-scale due to tiling

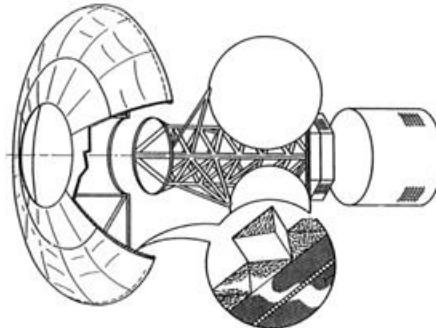
Challenge: Produce a TPS with PICA-Like Performance but SLA-Like Affordability

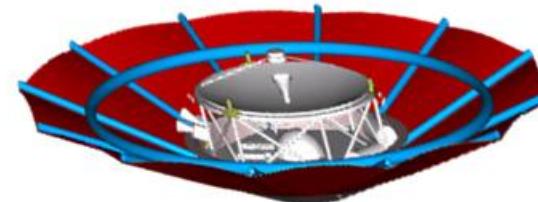
Monolithic High Heat Rate Ablator - MonA

A

- Carbon Phenolic, Slurry-based TPS developed under LM IR&D Project D-90d in 1995
- Leverage off Cost-Effective SLA-561V Production Process (TPS in Honeycomb)
- Unique Formulations for Ablator and Gap Filler Applications
- Low Density (~0.29 g/cc) Material for Primary Heatshield
- Graded MonA Optimizes TPS Performance with Depth (dual-attribute cured material)
 - Top Level – Robust Ablator (standard MonA)
 - Bottom Level – Low-Density Insulator
- MonA Selected by NASA Ames for TDP Program
 - TRL Improvement Technology Program
 - Material Has Passed Phase 1 Gate

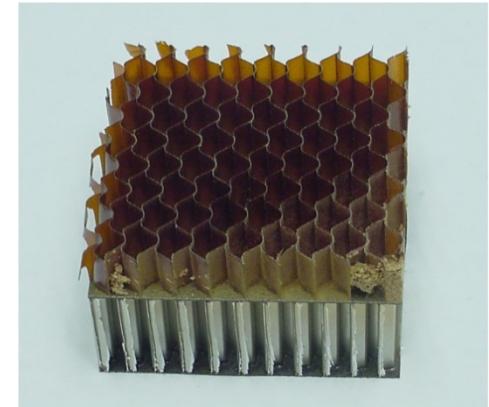
PICA
MonA
Preliminary Tests Show Equivalent Performance


Arcjet Test Specimens


MonA Graded Specimen

Deployable Aeroshell Technology

- LM has investigated variety of deployable aeroshells under NASA / DARPA Studies
 - Inflatable Flexible – In-Space AID NRA, Rapideye DARPA, Aeromorphing Supersonic Decelerator
 - Deployable Flexible – AOTV Phase A Study (1984)
 - Deployable Rigid – Manned Mars Systems Study, Mars 2001 Lander
- Main Issue is Flexible TPS Robust to In-Flight Heating & Flutter
 - IR&D testing of flex TPS to 120 W/cm²
 - Mixed Success to Date
 - No Flutter Testing Yet
- Intermediate Option
 - Deployable rigid panels
 - Not as efficient as deployable flexible but available sooner


OTV 1980's

AID NRA 2000's

“Old” TPS Technology

- While Developing New Technology, Don’t Lose the Old
 - Cost & Schedule may require proven system
- SLA-561V used on many successful entry missions
 - Viking, Mars Pathfinder, Phoenix, MER, Stardust (BS), MSL (BS)
 - Monolithic material with continuous application
 - Ablator packed into pre-bonded flexcore
 - Regional pack using 1-2 ft sq areas
 - Originally developed in early 1970’s
 - Successful stagnation tests from 10 to 400+ W/cm²
- MSL Experience
 - Originally slated for heatshield
 - High shear test anomalies forced switch to PICA
 - Used on MSL Backshell (thruster plume interaction heating)
- Overall
 - Although old, the material is very efficient (thermally & cost)
 - Flight certified & space qualified for use on heatshields
 - IRAD tests of minor mod to increase shear capability



Flexcore Pre-Bonded to Struct

SLA Heatshield Cross-Section
(TPS+Struct)

Wrap-up

- LM-SES has produced multiple flight aeroshells for NASA
 - Unmanned probe missions using multiple TPS materials
 - Flight certification a driving issue
 - Production costs & schedule are key considerations
- Investment in TPS
 - Resurrection of Carbon-Phenolic for Venus & Giant Planets
 - Advanced TPS development funding for LBIR
 - Small funding for maintenance of existing TPS
 - Ingredient obsolescence
 - Resolution of flight program issues (ex: MSL SLA)
 - Dependent on NASA Program Support to Offset Arcjet Costs
- Keep industry involved (In-Space NRA example)
 - Insights into Affordability (Certification, Production, Cost Impacts)