Reusability And Hydrocarbon Rocket Engines Relevant US Industry Experience

Aerojet Perspective

AEROJET 70 YEARS

Presented To The

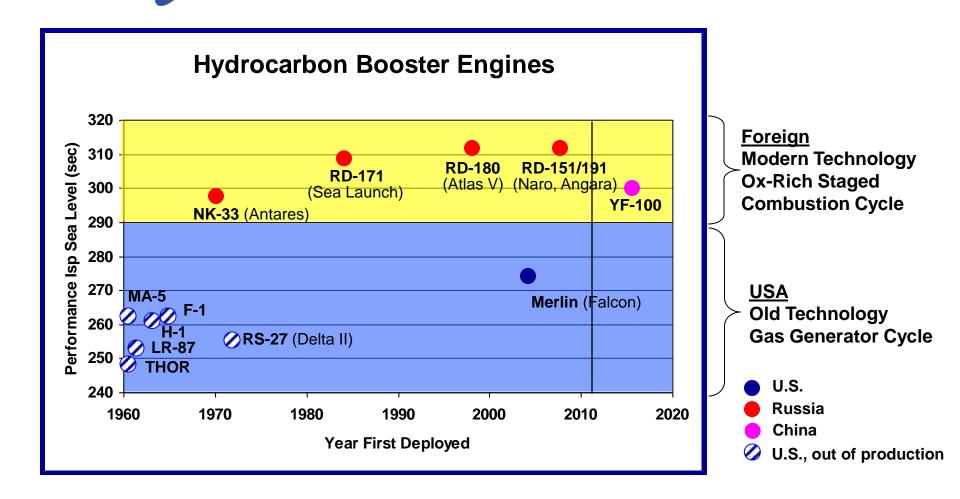
National Research Council

Aeronautics And Space Engineering Board

> 16 February 2012 Jim Long

- Purpose / Scope
 - Provide An Overview Of Aerojet Relevant Experience ORSC Focus
 - Focus Is On HC Engines For RBS
 - Elected NOT To Share Technical / Future Plan Details Openly ITAR, Competition
- HC Experience Summary
 - Titan 1
 - HC Boost Technology Demonstrator (HBTD)
 - N1 (NK 33) Russian Experience
 - Aerojet Experience
 - Kistler
 - Antares

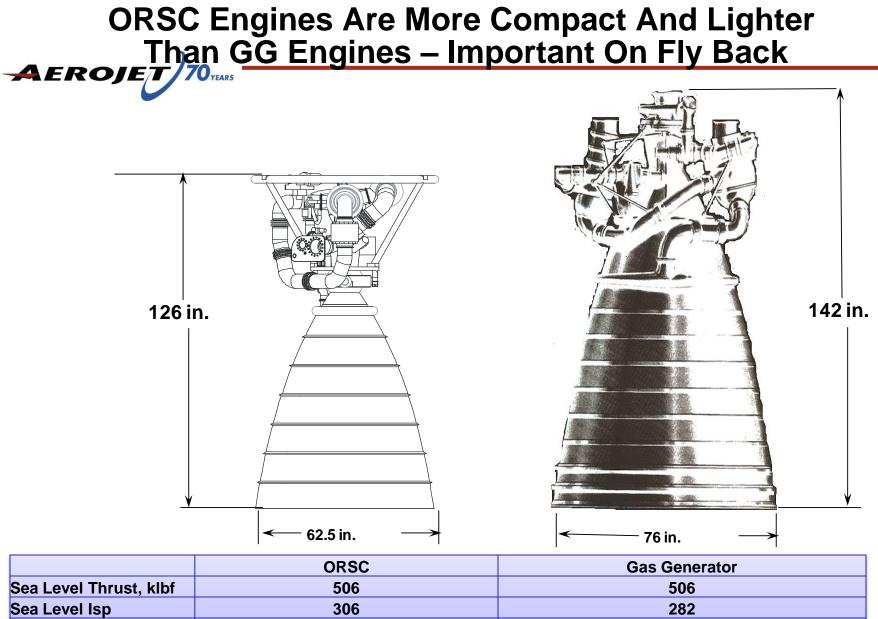
Aerojet Has Nearly 50 Years Of Experience With Hydrocarbon Propellants


AEROJET 70 YEARS

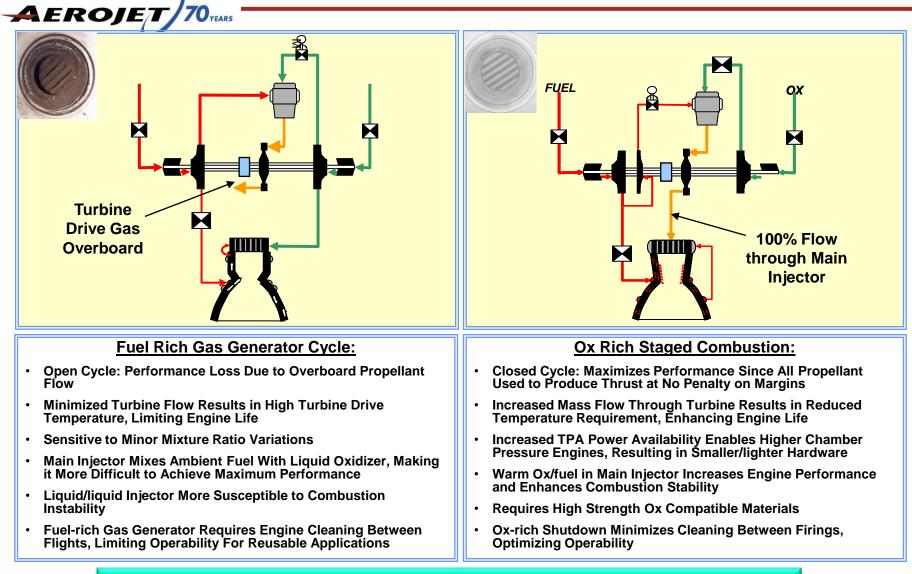
	Ethanol	Methane	Kerosene
1960 1970		 Characterization as a Coolant 40 klbf Injector GOX/GCH4 Igniter Igniter Preburners, Gas Generators Thruster 	 Titan I High Density Fuel LOX/RP-1 Igniter 40K LOX/RP-1 Fuel-Rich Preburner
1980	GOX/HC Ignitio	n Investigation	Carbon Deposition
			Pressure Fed LOX/RP-1 Injector (NASA)
	LOX/HC Injector	r Characterization Program (Design All, Hot	-Fire Kerosene)
1990	GOX/Ethanol Igniter/RCE Kistler OMS LOX/Ethanol	Gox/CH4 X-33 RCS 870 lbf Thruster Pulse	NK-33 Hot-Fire AJ-26 (Americanized NK-33) Development
2000	LOX/Ethanol Igniter and 870 lbf RCE With 25 lbf Vernier Mode	 Igniter Optimization 870 lbf Injector Optimization 	and Hot-Fire LOX/RP-2 Ox-Rich Igniter
2005		 CH₄ Regen Cooling Study (CMBD) 870 lbf RCE Tests 870 lbf APSTB System Tests 	
Today		 NASA 100 lbf RCE Development, Test NASA AME 6000 lbf LOMET TPA 	 Hydrocarbon Boost Tech Demo Antares Booster Engines

Ox-rich Staged Combustion Provides Higher Performance Than Gas Generator

70 YEARS


AEROJET

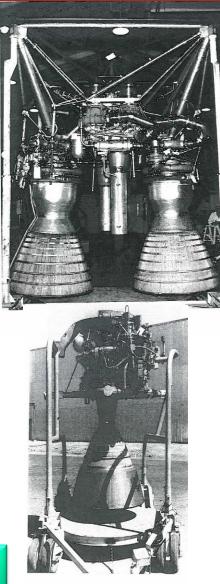
The International Community Is Using High Performance HC Engines


HC Engines Are In Transition In The US

- Initial HC Engines In Both US And USSR Used Gas Generator (GG) Cycle
- Soviets Switched To Oxygen-Rich Staged Combustion (ORSC) In 1960's
 - Since Then, All HC Engines Developed Outside USA Have Been ORSC
 - At Least Eight Different ORSC Designs Fielded By USSR Or Successor Countries
 - At Least Two ORSC Engines Now Qualified In China (YF-100, YF-115)
 - ORSC Engines Under Study Or Development In India, South Korea And Europe
- The US Meanwhile Has Abandoned HC Gas Generator Engines
 - Except Falcon 9
 - Imported ORSC Engines Used On Atlas V And Antares
 - But, Has Never To Date Completed An ORSC Design
 - Hydrocarbon Boost Technology Demonstrator (HBTD) Currently Underway

Sea Level Isp	306	282
Vacuum Thrust, klbf	552	575
Vacuum Isp	337	321
Mixture Ratio	2.8	2.29
Mass - Ibm	4200	7784

Two Engine Cycles Used For LOX/Kerosene Boosters



ORSC Engine Cycle Provides High Performance And Enables Reusability

Titan 1 Experience – HC GG Engines

- Developed For ICBM 1955-1959
- Stage 1 Lox / RP Two TCAs / 300klbf
- Stage 2 Lox / RP Single TCA / 80klbf
- Significant Test Program > 26,100 Total Tests
 - 6900 Engine Tests;
 - 5440 TCA Tests
 - 3930 TPA Tests
 - 9900 Misc Tests
- 500 Engines Manufactured / Delivered 1956 1960
- First Flight 1959
- Titan Engines Were Converted To Storable Propellants But Retain Their GG Heritage
 - Titan Flew For 50 Years

Aerojet Has Significant GG Flight Experience, But Is Investing For The Future In ORSC

HC Boost Program Objectives

 Program Focused On Achieving IHPRPT Goals Including Operational Responsiveness

ISP +15% T/W +60% Cost -30% Reusable

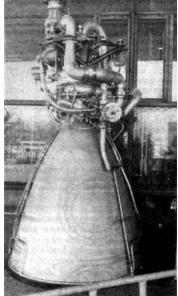
- Develop Vision Flight-type Engine And Critical Components To The Conceptual Design Level = HIVE
 - 250 Klbf Thrust (Sea Level)

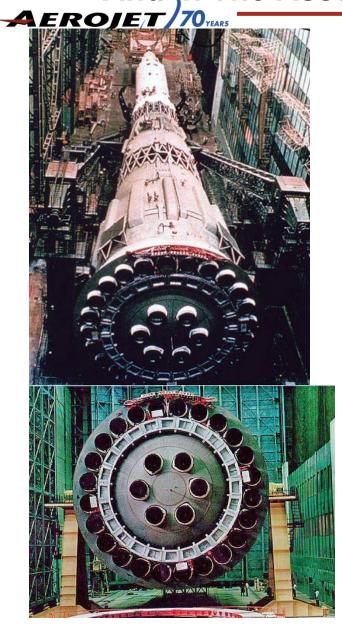
AEROJET

- LOX/RP-2 Ox-rich Staged Combustion Cycle
- Demonstrate Critical Technology In A Hydrocarbon Demonstrator Engine (Hyde) To Achieve TRL 5 Maturity
 - Design And Fabricate Critical Components
 - Design, Fabricate/Integrate Demonstration Engine
 - Support Testing At AFRL For Components, Subsystems, And Engine

HBTD Is Developing The Next Generation Technologies For ORSC And Reusable Engines

History Of The NK-33


N-1 Vehicle Was Being Developed To Carry Men And Cargo To The Moon



Comparable in size to Saturn V

- Korolev Wanted Non Toxic Propulsion For N-1
- Energomash Was Developing Storable Propellant Engines For ICBMs At The Time
- N.D. Kuznetsov Was Contacted
 - Primarily Gas Turbine Engine Developer
 - Initiated Ox Rich Staged Combustion Research In 1959 With The NK-9 Engine
 - Initiated NK-15 Development In 1963
 - NK-33 Development Completed In 1972
- All Engines Use Ox-rich Staged Combustion Cycle With LOX/Kerosene Propellants
 - First Stage 30 NK-15/33
 - 154 Metric Tons (339,500 Lbf)
 - 331 Seconds (27.7:1 Ar)
 - Second Stage 8 NK-15V/43
 - 179 Metric Tons (394,600 Lbf)
 - 346 Seconds (79.7:1 Ar)
 - Third Stage 4 NK-39
 - 41 Metric Tons (90,400 Lbf)
 - 353 Seconds (114:1 AR)
 - Fourth Stage 1 NK-31
 - 41 Metric Tons (90,400 Lbf)
 - 353 Seconds (114:1 AR)

N1 Vehicle On The Transporter And In The Assembly Bay And The Launch Pad

NK-33 Features And Performance

Engine Cycle Features

- Ox-Rich Staged Combustion (ORSC) Cycle
- Single Liquid/Liquid Preburner
- Moderate Turbine Temperature
- Single Turbopump Assembly
- Single Chamber/Nozzle

Engine Performance (100% Throttle)

 Thrust (vac/SL), klbf 	377 / 338
 ISP (vac/SL), sec 	331 / 297
 Main Chamber Pressure, psi 	2,109
Main Chamber Mixture Ratio	2.6:1
 Throttle Range 	50 - 100%
 Preburner Mixture Ratio 	59
Turbine Inlet Temperature, °F	670
 Nozzle Area Ratio 	27.7:1
 Weight, Ibm 	2,985
 Thrust/Weight (vac/SL) 	126 / 113

NK-33 Was Developed As A Booster Engine For The N-1

Test History	NK-15	NK-33	NK-43	Total	
Total Engines Built	581	208	42	831	
Development	199	101	5	305	
Serial Production	382	107	37	526	
Total Engine Tests	832	575	92	1,499	
Development	450	350	13	813	
Serial Production	382	225	79	686	
Total Test Duration, sec	86,000	99,400	8,608	194,008	
Development	40,200	61,651	969	102,820	
Serial Production	45,800	37,749	7,639	911,88	
Total Engines Flown	120	0	0	120	
Development	0	0	0	0	
Serial Production	120	0	0	120	

- Tests Of 30 Engines With Augmented Thrust To 114%
- Five Engines At Lower Thrust Ratings To 50%
- 22 Engines Tested At 122-130% Of Rated Power
- 49 Engines Without Removal From Test Stand In The Range Of 4-17 Successive Firings
- 75 Engines At Propellant Mixture Ratio In The Range Of 133...78 Percent Of Nominal Ratio

• First N-1 Test Flight (Designated 3L) Launched on 21 February 1968 (between Apollo 5 and 6)

- Fire Started in First Stage Aft Bay Due to Hot GOX Line Failure From High Frequency Vibration
- Mistakenly Shut-off all 30 engines at 68.7 seconds (12 km) into the flight
- Second N-1 Flight (5L) Launched on July, 3 1969 (2 weeks before Apollo 11)
 - At 0.25 Seconds into Flight, the LOX Pump of Engine Number 8 Ingested Debris (likely a bolt) and exploded
 - Control System Detected the Inoperative Pump and Was Suppose to Then Shut off the 180° Opposite Engine to Cancel out Pitch/Roll Moment but Instead Shut off the other 28 Engine of the 30
- Third N-1 Flight (6L) Launched on June 24, 1971 (between Apollo 14 and 15)
 - During Ascent, the Vehicle Developed a Roll That the Control System was Unable to Compensate for
 - Appears That the Roll Thrusters Were Wired Backwards
 - Control was Lost 50.2 seconds After Liftoff, and Controllers Activated the Self-Destruct System
- Fourth (and Final) N-1 Flight (7L) Launched on November, 23 1972 (2 weeks before Apollo 17)
 - Normal Operation Until 106.3 seconds into Flight
 - To Reduce G Levels the Stage I Shutdown Sequence First Shut 6 Center Engines off and Then a Few Seconds Later the Remaining 24 Engines Were to Be Shut off
 - The Center Engines Were Shutdown Causing a Water hammer that Failed the Feed lines on Engine 4 in The Out Ring of 24 Engines Resulting in an Explosion and Disintegration 7 seconds prior to Stage 1 Burnout

NK-33 Testing Successfully Demonstrated a Reusable HC Engine using the ORSC Cycle

AJ26/NK-33 Knowledge Base Program

Kistler

Through

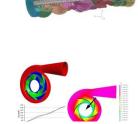
Orbital Sciences Corporation"s Antares Launch Vehicle

A Comprehensive Product Integration Effort Has Been Performed On The NK-33

- Flight qualified
- Thrust (SL) 338,000 Ibf
- Isp (SL) 297 sec
- 831 engines built
- 1,499 hot fire tests
- 194,000 sec firing
 - 0.9985 demonstrated benign-shutdown reliability

- Aerojet Modifications
- Gimbal
- TVC attachment
- Thrust frame
- Solenoid valves
- EMAs
- Harnesses
- Controller

Americanized Engine


Kistler Proven Operability

- 23%-115% thrust
- 78%-133% mixture ratio
- 5,870 sec before overhaul
- 10 firings before overhaul
- 6 firings after overhaul

Orbital Antares Requires One Use

Aerojet Design and Analysis Capability

- Acquired and converted complete set of design drawings, specifications, and process instructions
- Conducted analyses to confirm fluid flow conditions
 - Conducted analyses to replicate design data for stresses, frequencies, and dynamic and static loads

Aerojet Manufacturing and Assembly Capability

- Acquired Manufacturing License
 Agreement
- Demonstrated ability to reproduce key processes and capabilities in US
- Trained by Russian engineers in engine assembly and disassembly

Aerojet Engine Availability

- 38 NK-33's
 - 20 for use on Orbital's Antares after inspection and repair of OEM material defects
 - Remaining 18 being inspected for OEM defects
- 9 NK-43's
- Aerojet-owned / In Sacramento

Aerojet Engineers Were Trained By NDK Developers On The Design And Operation Of The NK-33

Aerojet Has Made Significant And Continuous Discretionary Investments In The NK-33 Product Line

• <u>1993 – 2008 Efforts</u>		<u>\$72M</u>
–Engine MLA, Acquisition, Drawings, IP, Tooling, Test	ing	
• <u>2009 Efforts</u>		<u>\$3.65M</u>
–Engine Inventory Health Check		\$200K
–Engine Disassembly And Inspection		\$150K
–Refurbishment Kit Development		\$50K
–Knowledge Base Development		\$250K
–Duty Cycle Margin Demonstration Test		\$3000K
• <u>2010 Efforts</u>		<u>\$1.58M</u>
–Continue NK-33 Knowledge Base Development		\$1.2M
 Data Mining And Electronic Database Development 	\$383K	
 Engine/Component Performance Models 	\$181K	
 Engine/Component Structural/Dynamic Models 	\$631K	
-Valve Testing And Disassembly		\$107K
–Samara Test Data Detailed Analysis		\$277K

Total Investment From Inception (1993-2010) > \$80M

Aerojet Test History

AEROJET 70	ARS
------------	-----

	Purpose	Tests	Results	Notes
1995 Aerojet	Demonstrate Performance for EELV Competition	5	 Total Duration 408 sec Repeat of original ATP "end-of-mission" test with warm LOX Atlas duty-cycle test up to 103% power level EELV max-power test up to 113% power level 	All Objectives Met
1998 Aerojet	Veriify Engine Modifications for Kistler	6	 Total Duration 525 sec with 415 sec at Full Power Various Ox and Fuel Temperature Ranges Various Throttle and MR Settings Tested with Low Inlet Tank Pressures to Demonstrate Altitude Start 	All Objectives Met
2009 Samara	Demonstrate 2x Duty Cycle for Orbital Sciences Corporation's Antares Launch Vehicle	2	 Total Duration 362 sec Thrust levels from 81% to 113% with MR excursions to explore Pc/MR box 	Test Failed 154 sec into second test. Attributed to Test Stand feed line
2010 Samara	Demonstrate 2x Duty Cycle for Orbital Sciences Corporation's Antares Launch Vehicle	3	 Total Duration 619 sec 95 sec test up to 108% power 287 sec test up to 108% power 235 sec test at 100% power level and below 	All Objectives Met
2010 Stennis	Verify Engine Modifications for Orbital Sciences Corporation's Antares Launch Vehicle	2	 Total Duration 65 sec 10 sec checkout test up to 108% power level 55 sec Acceptance Test Profile with1° engine gimbal, up to 108% power level 	All Objectives Met
2011 Stennis	Verify Engine Modification for Orbital Sciences Corporation's Antares Launch Vehicle	6	Total Duration 277 sec 55 sec acceptance test profile with engine gimbal, up to 108% power	**1 test failure attributed to OEM material defect All other objectives met
	Totals	24	1783 sec	No Anomalies Attributed to the Cycle

**All engines required inspection and repair to correct age-related material defects"

Evolution Of NK-33 To AJ-26 Engine Configuration

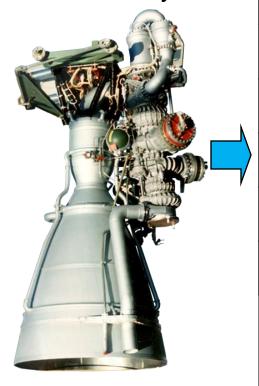
NK-33 Heritage

- Flight qualified
- High Performance
- High Reliability
- 831 engines built
- 1,499 hot fire tests
- 194,000 sec firing

AJ26 Reusable Engine

Demonstrated Operability**

- Deep throttling capability
- Non-coking
- Up to 17 firings before overhaul
- Up to 5 overhauls
- Up to 11 firings after overhaul
- Up to 25 total firings
- Up to 20,000 total sec hot fire **Based on Russian Test History Excludes Antares



Kistler Program Invested \$120M in NK-33 Conversion

Hot-Fire Test At Aerojet's E-zone

Orbital Sciences Corporation's Antares Launch Vehicle Program Added Additional Vehicle Integration Hardware And Established A Production Line

338,000lbf (SL)Thrust 297 ISP 831 engines Built 1499 Hot fire Tests 194,000 sec 0.997 Reliabilty

U.S. Pyro Valves and Initiators

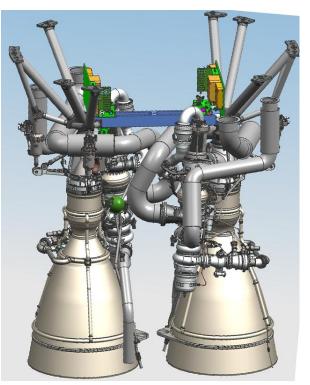
U.S. Moog EMAs to Actuate Control Valves

Aerojet-Manufactured solid Start Cartridge

Aerojet-Manufactured Gimbal Bearing and Thrust Mount

Aerojet-Manufactured Main Chamber Igniters

New U.S. Electrical Harness and Instrumentation


Digital Controller/Sequencer

U.S. Moog TVC System

Aerojet Manufactured Lines

US Sourced Propellant run lines

U.S. Sourced Aft Closure Aerojet TEA-TEB Cartridge 776,866lbf (SL) Thrust 301.6 ISP 37 Engines For Conversion 11 Hot Fire Aerojet Tests 0.988 Reliability

Aerojet Has Complete Technical Responsibility For NK-33 Derivates In The US

- Aerojet Has Been Developing An AJ26/NK-33 Engine Knowledge Base For Over 15 Years
 - 1993: Initial Contacts With NDK And Transfer Of Information
 - 1995: Engine Test At Aerojet In Support Of EELV Proposal And Developed First U.S. Production Manufacturing Plan
 - 1995 Received Manufacturing License Agreement
 - 1996-1998: Kistler Program Included Multiple Technical Interchange Meetings (TIM) In Russia And Sacramento
 - 1997-1999: Aerojet Expanded 1995 U.S. Build Program To Detailed Manufacturing Processes And Included Multiple Tims
 - 1998-2001: Japanese J-I Upgrade Program Included Technical Interchanges With NDK
 - 2002-2008: Various AJ26 Marketing Efforts Conducted, Some Knowledge Base Development
 - 2008-present: Antares Program Includes Significant Technical Interchange Meetings With NDK

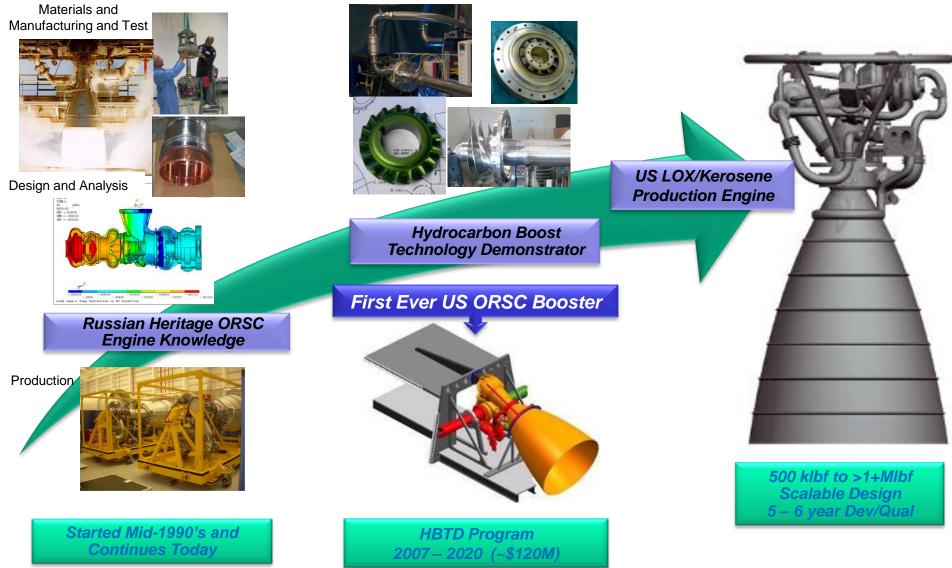
Successfully Demonstrated Our Knowledge Gain Through Application To Kistler And Antares

Path To RBS

Aerojet's Experience With HC Engines Has Prepared Us To Develop And Produce A US Built ORSC Booster Engine

ORSC Is The Answer For RBS

U YEARS


– Reusable

AEROJE7

- High Performance
- Our Ongoing Experience With HC Engines Has Prepared Us To Develop An ORSC Engine For RBS
 - Understanding The ORSC Cycle
 - Transfer Of The Technical Characteristics Of The NK Engine
 - HBTD Expanded Our Knowledge Base Relative To The Cycle
 - Understanding The Operational Characteristics Of The ORSC Engine
 - Complete Technical Cognizance And Responsibility In The US For NK Derivatives
 - Hardware Test Experience
 - Integration Of The AJ 26 Into Launch Vehicles
 - Adapting The NK Engine To US Standards
 - Understanding The Hardware Fabrication
 - Investments In Manufacturing Process/Parts Manufacture
 - Understanding The Design And Mastering The Technologies
 - Modern Analysis Of NK Engine
 - HBTD Is Developing The Next Generation Technologies For ORSC And Reusable Engines

RBS Ultimately Requires A New, Reusable Engine

Aerojet & USG Investments Provide Path To New US ORSC Engine

