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e EELV Launch Systems and Industrial Base

* Rocket Propulsion Industrial Base




Atlas V Evolution
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Delta IV Evolution
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EELV Industrial Base

* As EELV’s anchor tenant, NSS must provide a steady production rate,
decoupled from launch manifest, to establish a healthy industrial base

— Launch industrial base is shrinking due to decreased market; exacerbated by
current USG buying practices

e Solution: steady production rate provides long-term, focused, and well-
defined commitment to industry

— Removes uncertainty from program and retains capacity
— Preserves capability for next generation space launch




EELV Industrial Base (Cont'd)

* Rate is the key factor that keeps prime and sub production from going
dark, increasing costs/risks

— Detailed analysis with ULA, PWR, ATK, Aerojet
— Restart / recertification cost and effort significant

* Keystone of new EELV approach is annual minimum production
rate of 8 cores

— 4 Atlas, 4 Delta -- 5 USAF / 3 NRO / year commitment

e Steady production achieved through Block Buys
—  “Block” = Annual Production Rate X Defined Duration

Production Rate Commitment Critical To Industrial
Base Health and EELV Program Stability




U.S. Rocket Engine Development

1945-2010

* Today, there are no new engine development programs in the U.S.
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U.S. Rocket Propulsion Industry

Evolution

business

Since 1941, more than a dozen U.S. companies had been involved in rocket propulsion

* Only a few major U.S. companies are active today, however various new commercial

space entities are emerging

From 1941
Liquid Rocketdyne Thiokol Solid
Pratt & Whitney Hercules
TRW

Atlantic Research Corp
Grand Central Rocket Co.

i Aerojet
General Electric

American Pacific Comp

Rocket Research Corp Rohm & Hass Co.
Hamilton Standard Div. United Technology
Center

Reaction Motors

-

Liquid
Pratt & Whitney
Rocketdyne

North rop Ael’Oj et ATK

Grumman

Space-X

Small Business

Blue Origin, Busek,
Exguadrum, Florida Turbine, Orbitec
WASK, Williams International,
XCOR & many more...




Liquid Rocket Engines

Limited recent U.S. liquid rocket engine development

RS-68 and Merlin — Designed to focus on reducing production recurring costs

J-2X is completing development

RL10 (A-4-2, B-2) — multiple performance enhancements, reduced overall design margins
* 50-year-old craftsman-based manufacturing

* Limited growth opportunity without major redesign

RD-180 — Produced in Russia with insight from the US companies

AJ26 — Americanization of Russian NK33

SSME - Last NASA funded development effort resulting in steady production

DoD Integrated High Payoff Rocket Propulsion Technology (IHPRPT), funded ~$200M over
last 15 years -- technology focused only

New commercial space companies entering the market

SpaceX, OSC, Blue Origin, Virgin Galactic, Sierra Nevada, efc...
Potentially “disruptive” to current access to space cost model
Still building maturity required for critical high value payloads
Long term market demand is uncertain




Operational Liquid Engines in U.S.

Today
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LOX/LH2 Upper Stage Engines
World’s 15t Hydrogen Engine & Its Evolution
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Next Generation Engine (NGE)
Overview
* USAF considering an LOX/LHZ2 alternative engine to
replace aging RL10
— Request for Information posted September 2010

NGE Objectives
— Modern manufacturing techniques & materials

— Increased designed-in reliability and performance margins
— Sustainable and low cost

Creates interagency partnership opportunity
— Incorporates NSS & NASA requirements
— Captures emerging commercial needs

Leverage advanced design tools & technologies
matured by AFRL/NASA technology investment

— e.g. AFRL Upper Stage Engine Technology (USET)

Creates open competition
— Bolster U.S. liquid propulsion industrial base capability

Top-level Technical Requirements

Thrust (vacuum)

30klbfs

Isp (vacuum)

465 seconds or greater

Nozzle

Fixed (preferred, but not
required)

Restartable

Minimum of 4 flight starts

Life expectancy

3000 seconds or greater

Reusable

Not required

Mixture Ratio

Adjustable during
operation

Length (gimbal to
nozzle exit)

NTE 90 inches

Exit Diameter

NTE 73 inches (desired)

Threshold Reliability

0.9990 or greater

NGE serves critical need for modern, reliable, cost effective engine,
sustainment of industrial base and U.S. leadership in propulsion technology
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Lessons Learned
Launch Failures

* |n past 50 years, propulsion enabled ballistic and spacelift
capabilities
— Powered first US ICBMs

=

— Evolved into space launch vehicle systems ;-._“"‘>
— Continuous improvements in performance, reliability, S
operability -

* Historically, more than 40% of all launch vehicle failures

caused by propulsion subsystem malfunctions (#1
contributor)*

Functional Subsystem US.LV Non-US.LV World LV % Failure
Lau n ch Propulsion 70 104 174 40.00
Vehicle Unknown 5 ) 95 21.84
Guidance, Navigation, and Control 25 23 48 11.03
Su btsyStem Separation 23 16 39 897
Failures Thrust Vector and Attitude Control 23 16 39 897
_O._ Structures 10 9 19 437
(2010 9 30) Electrical Power Distribution and Control 10 5 15 345
by Tomei, E. Tracking and Flight Safety 3 0 3 0.69
J.. & Chang, I.- Command and Control 0 1 1 0.23 I . I .
S" A T Environmental Protection 1 0 1 023 m p rOVI n g p rO p LI S | O n
- AGroSpace  rejemetry 0 1 1 023 . “r .
Total 170 265 33510000 subsystem reliability is

critical to mitigating future
launch failures

* A launch failure incurs the loss of not only expensive
hardware (launch vehicles/satellites), but extremely high
recovery cost
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