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Atlas V Evolution 

Atlas V 
(401) 

Atlas V 
(5XX Series) 

(0-5 SRBs) 

Atlas V 

(Heavy) 

3.3m/4.2m  

Payload 

Fairing (PLF) 

Dual Engine 

Centaur 

(DEC) 

(RL10A-4-1) 

Single 

Engine 

Centaur 

(SEC) 

Booster 

Core LOX 

Stretch 

3.1m 

Interstage 

Assembly 

(ISA) 

Atlas II/III Family Atlas V Family 

3.1m  

Booster Core 

(MA-5A 

Booster & 

Sustainer 

Engines) 

3.8m 

Common

Core 

BoosterTM 

(CCB) 

5 

10 

15 

20 

25 

30 

GTO 

Capability  

(klbs) 

CCB 

Liquid 

Rocket 

Boosters 

 

SRBs 
RD-180 

Engine 

Solid 

Rocket 

Boosters 

(SRBs) 

Common 

Centaur 

RL10A-4-2 

5.4 m 

Payload 

Fairing 

Avionics 

Upgrades 

GSO Kits 

Atlas IIAS Atlas IIIA Atlas IIIB Atlas IIA 

6/92 12/93 5/00 2/02 8/02 7/03 IOC 

Atlas V 
(4XX Series) 

(1-3 SRBs) 

Stretched 

5.4 m 

Payload 

Fairing 

3 



Delta IV Evolution 
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• As EELV’s anchor tenant, NSS must provide a steady production rate, 

decoupled from launch manifest, to establish a healthy industrial base 

– Launch industrial base is shrinking due to decreased market; exacerbated by 

current USG buying practices 

 

• Solution: steady production rate provides long-term, focused, and well-

defined commitment to industry 

– Removes uncertainty from program and retains capacity 

– Preserves capability for next generation space launch 

EELV Industrial Base 
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• Rate is the key factor that keeps prime and sub production from going 

dark, increasing costs/risks 

– Detailed analysis with ULA, PWR, ATK, Aerojet 

– Restart / recertification cost and effort significant 

• Keystone of new EELV approach is annual minimum production 

rate of 8 cores  

– 4 Atlas, 4 Delta -- 5 USAF / 3 NRO / year commitment 

• Steady production achieved through Block Buys 

– “Block” = Annual Production Rate X Defined Duration 

 

 

 

EELV Industrial Base (Cont’d) 

Production Rate Commitment Critical To Industrial 

Base Health and EELV Program Stability 
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U.S. Rocket Engine Development 
1945-2010 

• Today, there are no new engine development programs in the U.S.  
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U.S. Rocket Propulsion Industry 
Evolution 

• Since 1941, more than a dozen U.S. companies had been involved in rocket propulsion 

business 

• Only a few major U.S. companies are active today, however various new commercial 

space entities are emerging 
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Liquid Rocket Engines 
“State of the Industry:”  

• Limited recent U.S. liquid rocket engine development 

– RS-68 and Merlin – Designed to focus on reducing production recurring costs  

– J-2X is completing development 

– RL10 (A-4-2, B-2) – multiple performance enhancements, reduced overall design margins 

• 50-year-old craftsman-based manufacturing 

• Limited growth opportunity without major redesign 

– RD-180 – Produced in Russia with insight from the US companies 

– AJ26 – Americanization of Russian NK33 

– SSME – Last NASA funded development effort resulting in steady production 

– DoD Integrated High Payoff Rocket Propulsion Technology (IHPRPT), funded ~$200M over 

last 15 years -- technology focused only 

• New commercial space companies entering the market 

– SpaceX, OSC, Blue Origin, Virgin Galactic, Sierra Nevada, etc…  

– Potentially “disruptive” to current access to space cost model 

– Still building maturity required for critical high value payloads  

– Long term market demand is uncertain 
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Operational Liquid Engines in U.S. 
Today 
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LOX/LH2 Upper Stage Engines 
World’s 1st Hydrogen Engine & Its Evolution 
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Next Generation Engine (NGE) 
Overview 

• USAF considering an LOX/LH2 alternative engine to 

replace aging RL10 

– Request for Information posted September 2010 

• NGE Objectives 

– Modern manufacturing techniques & materials 

– Increased designed-in reliability and performance margins 

– Sustainable and low cost 

• Creates interagency partnership opportunity 

– Incorporates NSS & NASA requirements 

– Captures emerging commercial needs 

• Leverage advanced design tools & technologies 

matured by AFRL/NASA technology investment  

– e.g. AFRL Upper Stage Engine Technology (USET) 

• Creates open competition 

– Bolster U.S. liquid propulsion industrial base capability  

 

 

Top-level Technical Requirements 

Thrust (vacuum) 30klbfs 

Isp (vacuum) 465 seconds or greater 

Nozzle Fixed (preferred, but not 

required) 

Restartable Minimum of 4 flight starts 

Life expectancy 3000 seconds or greater 

Reusable Not required 

Mixture Ratio Adjustable during 

operation 

Length (gimbal to 

nozzle exit) 

NTE 90 inches  

Exit Diameter NTE 73 inches (desired) 

Threshold Reliability 0.9990 or greater 

NGE serves critical need for modern, reliable, cost effective engine, 

sustainment of industrial base and U.S. leadership in propulsion technology 
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Lessons Learned 

• In past 50 years, propulsion enabled ballistic and spacelift 

capabilities  

– Powered first US ICBMs 

– Evolved into space launch vehicle systems 

– Continuous improvements in performance, reliability, 

operability 

• Historically, more than 40% of all launch vehicle failures 

caused by propulsion subsystem malfunctions (#1 

contributor)* 

 

 

 

 

 

 

 

 

• A launch failure incurs the loss of not only expensive 

hardware (launch vehicles/satellites), but extremely high 

recovery cost 

Launch  

Vehicle 

Subsystem 

Failures 

(2010-9-30) 

 by Tomei, E. 

J., & Chang, I.-

S., Aerospace 
Improving propulsion 

subsystem reliability is 

critical to mitigating future 

launch failures 

Launch Failures 
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