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Charge to the Committee

Sponsored by the National Nuclear Security Administration, Department of Energy;
the Air Force Office of Scientific Research; and the National Science Foundation.

Study the mathematical foundations of VVUQ, and to recommend steps
that will ultimately lead to improved processes. The specific tasking
to the committee is as follows:

A committee of the National Research Council will examine practices
for VVUQ of large-scale computational simulations in several
research communities.

 The committee will identify common concepts, terms, approaches,
tools, and best practices of VVUQ.

 The committee will identify mathematical sciences research needed
to establish a foundation for building a science of V&V and for
improving the practice of VVUQ.

 The committee will recommend educational changes needed in the
mathematical sciences community and mathematical sciences
education needed by other scientific communities to most effectively
use VVUQ.
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Verification: the process of determining how
accurately a computer program (“code”)
correctly solves the equations of the
mathematical model. This includes code
verification and solution verification.

Verification

K

Code verification

— Determining whether the
code correctly implements
the intended algorithms

Solution verification

— Determining the accuracy
with which the algorithms
solve the mathematical
model’s equations for
specified QOls.

Interest focuses on key outputs or
“Quantities of Interest” (QOls).

Highly accurate solutions are
typically only available for simple
or specialized problems.

Assessing accuracy of QOls can be
challenging.

Understand what can be done to
improve accuracy
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Subsystem Cases
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Unit Problems

the degree to which a model is an
accurate representation of the real
world from the perspective of the
intended uses of the model.

[from AIAA Guide on V&V]

Breaking complex system into a hierarchy of
successively less complicated subsystems,
and eventually separated effects.

Physical experiments at different levels of
this hierarchy for calibration, estimating
prediction accuracy, and assessing quality of
model-based predictions.
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Uncertainty Quantification

The process of quantifying uncertainties associated with

model calculations of true physical QOls, with the goals of
accounting for all important sources of uncertainty and
quantifying the contributions of specific sources to the
overall uncertainty.

ldeally, the UQ assessment includes:

an inventory of possible sources of error and uncertainty in
the inferences and predictions

an inventory of the sources of error and uncertainty
accounted for in the assessment

an inventory of assumptions on which the assessment is
based.



Uncertainty Quantification

More generally, UQ is the discipline that develops theory,
methods and tools to assess the reliability of scientific
inferences, often aided by computational models.

This includes:

* Sensitivity analysis, emulation, construction of reduced
models;

 Forward propagation of input uncertainties through large-
scale computational models;

* |nverse problems and parameter estimation;
* Quantifying model discrepancy/structural error;

* Aggregating these various sources of uncertainty to
estimate prediction uncertainty.

* |nforming about steps to take to reduce prediction
uncertainty



VVUQ Approaches depend on the application

physical <_uu_> empirical
complex, nonlinear @m@ simple, few interactions

limited observatic plentiful and relevant
extrapolative oredictic interpolative
demanding, slow omputatic light, fast

sensor locations

/]
)
SN
=) Temp (K) Rate
I\ = 113 3000
N . $ 80
\ g
| - Y 5
-'S\\ 2 600
>
e 400

0 0.:.)5 0f1 0.I15 0f2
Theme Area? True Strain AN - 10



Code Verification

Verification tasks

Software Quality Assurance
practices

Regression tests

Comparison to high quality,
analytic solutions (e.g.
manufactured solutions)

Coverage?
Algorithm checks —Is

convergence rate as expected?

input states

Solution Verification

* Assessing/estimating solution
error

* Convergence studies

* A posteriori— as the calculations
are being carried out

* Goal oriented — with focus on
QOlI, guiding calculations




Accuracy of QOI can be used to drive adaptive
mesh refinement for solution verification
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- Ball Drop, with Emulator
h

dt2 — g Emulating the computer model response
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Emulators and Reduced Models

Goal is faster model evaluations for sensitivity analysis,
forward propagation, and parameter estimation.

* Polynomial chaos
representations n(t,x, 7) Z e (t, 2)®r(Z), # of bases = (

— Efficiently represents output
uncertainty given specified i, = E[n2)0,(2)) = /n(Z)CIDk(Z)p(Z)dZ, 0<|k| <N
input uncertainty.

— Can also emulate model
response.

— Makes use of functional
analysis theory.

 Reduced, or low fidelity
models

n, + N
nZ

"'n..,\ CFD: Euler/

— Capture necessary features for_ . Lincarized  Navier-Stokes
assica N
appllcatlon Aerodynamlcs\ Panel Code

— Discard unnecessary
complexity.



Bridging Resolutions & Model
Combination

IPCC simulation
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Potential Research Directions for Emulation,
Reduced Models & Forward Propagation

* Approaches for dealing with high-dimensional spaces of uncertain
inputs.

— Use process knowledge to help counter the curse of dimensionality.
* Phenomena aware emulation

— Make use of adjoint and/or derivative information.

— Make use of other “intrusive” UQ methods.

— Use knowledge of system to model discontinuities and represent
uncertainty.

 Emulation, sensitivity analysis, and uncertainty propagation across
hierarchies of models.
— Multiple fidelities, model hierarchies, multiple resolutions.

e Efficient exploitation of modern and future massively parallel
architectures.

— Rethink the development of computational models with UQ in mind

— Co-develop UQ methods and computational models with computing
architecture in mind.
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Multi-model ensembles

To help estimate structural IPCC
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Domain space — describing the prediction scenario
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Exchange traditional computational models
for VVUQ friendly implementations

PDE Solver Markov Random Field
9
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[Wikle and Hooten, 2010]

Adjoint enabled posterior sampling for
a 30K-dimensional inverse problem

Constructing forward models and adjoints
* Very informative in high-dimensional problems

 Can help in building response surface
e Can facilitate MCMC or other UQ algorithms

Exploiting new, heterogeneous, high
performance computing architectures

Tolax =TV, [(A, + 1)~ L]VT 4 I}a
[Martin, Wilcox, Burstedde, and Ghattas, 2012]



Potential Research Directions for
Validation and Prediction

Combining models

— With different resolutions, spatial and temporal scales,
and/or of different features of the physical process.

Constructing computational models with VVUQ in
mind.

— Availability of adjoints, embedding terms to account for
model discrepancy, ...

Designing VVUQ, systems that consider the
computational model, high-performance computing,
the application area, in the context of VVUQ needs.
Assessing the reliability of extrapolative predictions.
— Idea of a domain space in which problems reside.
— Designing ensembles of models for this purpose?



Rare, high consequence events
* PRAideas:

— scenarios
— consequences
— chances

e Often involves catastrophic
failure — a difficult process to
model

* Rare =» estimation of small
probabilities

« Rare = difficult to compare to
reality

* Difficult in extrapolation
applications — are all important
processes in the model?

e Build models to cater to such
events?




Educational changes that can facilitate
advances in VVUQ

* Consider ideas and principles of VVUQ early in
students’ experience.

— Confront and reflect on ways that knowledge is acquired,
used, and updated

— Statistical thinking, physical-systems modeling, numerical
methods, and computing as core curriculum.
* VVUQ methods + computational modeling + HPC to

empower the next generation of researchers to exploit
opportunities at the interface of these fields.

* Develop examples of VVUQ done well for students, as
well as practitioners.



Inference with multiple computational models

BMA Predictive PDF
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Bayesian Model Averaging

48 hour ahead temperature forecast
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Raftery et al (2005)
(TIny, - mar) = Y werk(Tlm)

Assumes physical observations come
from the one, true physical process

Resulting prediction uncertainty is a
mixture of separate prediction
uncertainties

Estimation with historical data,
typically via EM
Very successful in data-rich settings
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W(AT‘nh v 777M) X Hﬂ-k(nk|T)

Assumes each model prediction is
centered about the truth

Resulting prediction uncertainty
depends on agreement between
separate predictions and uncertainties

Estimation typically via MCMC

Predictions often better, but
uncertainties can be misleading —

depends on amount of shrinkage



Uncertainty Quantification

A definition from an extreme computing workshop Oct, 2009

UQ is the end-to-end study of the reliability of
scientific inferences.

ldeally, UQ results in:
* a quantitative assessment of that reliability

* an inventory of possible sources of error and
uncertainty in the inferences and predictions

* an inventory of the sources of error and
uncertainty accounted for in the assessment

* an inventory of assumptions on which the
assessment is based.

Note: nothing about computational models



