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Code and Solution Verification

Code Verification
e Focuses on identifying failures of the code to correctly implement a
desired numerical algorithm
o Analytical solutions to mathematical equations are used to calculate
error in a corresponding approximate solution

Solution Verification
e Process of quantifying the numerical errors (e.g. round-off, iterative,
and discretization errors) that can cause the numerical solution to be
an in- adequate approximation of the correct solution
¢ One simulates the phenomenon of interest and has no a priori
knowledge of the solution; in such cases error can only be estimated
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Code Verification

Good Software Hygiene

Unit Tests

Regression Tests

High Level Asserts
Symmetry Tests

Jacobian Tests

Parametric Testing

Exact Solutions
Code-to-Code Comparison
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Code Verification

Method of Manufactured Solutions (MMS)
o Exact solution typically not known

o Can manufacture a solution to generate source term from which one
attempts to solve for manufactured solution

o Confirm convergence to solution at expected rate

Pitfalls MASA Library

e Explosion of terms in source
P e Manufactured and Analytical

e Solutions need structure Solution Abstraction Library

similar to application ) )
P e Provides solutions and source

» E.g. Boundary layers terms for many operators
» Exercise terms important
to application e Sources computed by AD

o Released under LGPL

e Software reliability




Maple MMS: 3D Navier-Stokes Energy Term
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But wait, there’s more!
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Solution Verification

Goal-Oriented Error Estimation & Adaptivity
o Typically want to control the error in some functional of the solution
u, say Q(u) and not u
e Error representation: Q(u) — Q(u") = R(u"; p) + A
» pis the solution to the adjoint problem
» A higher-order remainder term

¢ Use adjoint and residual to drive mesh adaptivity

o Under best conditions rigorous bounds on error, but useful indicator
regardless
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Introduction and Problem Statement

Imperfect Paths to Knowledge and Predictive Simulation

THE UNIVERSE
of
PHYSICAL
REALITIES

Observational
Errors

Discretization
Errors

Modeling
Errors

COMPUTATIONAL
MODELS

THEORY /
MATHEMATICAL

OBSERVATIONS
MODELS

VERIFICATION

VALIDATION

Predictive Simulation: the treatment of model and data uncertainties and their
propagation through a computational model to produce predictions of quantities

of interest with quantified uncertainty.
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Models are Imperfect

Mathematical models for complex multi-scale multi-physics systems are not
usually posed as general truth statements about physical reality

Examples of Useful Imperfect Models

e Newtonian mechanics

Continuum mechanics

Chemical reaction mechanisms

RANS turbulence models

e Homogenization of complex materials

v

How do the imperfections of the mathematical models impact the reliability
of the simulations in which they are used?

Validation processes are designed to find out )




Quantities of Interest

Simulations have a purpose: to inform a decision-making process

¢ Quantities are predicted to inform the decision
e These are the Quantities of Interest (Qols)

¢ Models are not (evaluated as) scientific theories

Acceptance of a model is conditional on:
e its purpose
¢ the Qols to be predicted
o the required accuracy




What are Predictions?

Prediction

Purpose of predictive simulation is to predict Qols for which
measurements are not available (otherwise predictions not needed)

Measurements may be unavailable because:
e instruments unavailable
e scenarios of interest inaccessible
e system not yet built

o ethical or legal restrictions

e it's the future

How can we have confidence in the predictions?



Introduction and Problem Statement

Posing a “Predictive Validation” Process

Predictive Validation Question

Does the combination of physical models, uncertainty models and
supporting data yield acceptable credible predictions of the Qols?

Validation Activities

e Inform: Calibrate to match observations

» What parameter values, model errors, etc. are plausible given the
data?

e Challenge: Check that model output consistent with observations

» Are discrepancies explained by plausible errors/uncertainties (in light of
uncertainty models)?
o Assess: Determine impact of uncertainty/error on Qol’s

» Are observed discrepancies between model & data significant to Qol's?

» Are the Qol’s sensitive to models & uncertainties to which the
observations are not?




Validation Expectations are Model Dependent

Interpolation “models”: simple fit to data
o Test for missing dependencies
o Test accuracy of fitting function
e Check that use is in the range of training data

Physics-based models: formulated from theory
e This is what allows extrapolation

e Check that used in domain of applicability
e May include less reliable components:
» Embedded (semi-) empirical models
» Simplifying assumptions
» Inadequacy models
» A validation assessment is needed for these
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Introduction and Problem Statement

Predictive Validation and Uncertainty
Treating Uncertainty is Integral to Predictive Validation
e Uncertainty in data and parameters limit the sensitivity of the
validation process

¢ Uncertainty from model inadequacy enables assessment of impact of
inconsistencies with data on Qol’s

Need Mathematical Treatment of Uncertainty
o We represent with Bayesian probability
e Probabilistic “models” of knowledge/uncertainty

» Data & its uncertainty
» Prior knowledge
» Knowledge of model inadequacy

e Bayesian inference for calibration & model selection
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e Towards Extrapolative Predictions
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An Abstract Setting for Predictions

Consider a model of the form:

R(u,7(6);§) =0

‘R Physics-based system model (e.g. momentum conservation)
u System state

7(u; 0, &) embedded model (e.g constitutive) with parameters 6
& scenario parameters

Observables given by d(u, 7(0); &)
Qols given by g(u, 7(0); &)
R, d and g considered reliable (no uncertainties)

7 may be inadequate and ¢, ¢ may be uncertain )




Data Uncertainty and Model Inadequacy

0 =R(u, 7(0) + €mod;: &) 0 =R(u,7(6);€)
D :d(U, T(e) + €mod, 5) + Ecxp D :d(U7 7—(9); 5) + 6exp + gmod
QZQ(uvT(e) +€mod;£) Q="
Predictive Uncertainty J Kennedy & O’Hagen )
Uncertainty in predictions, q, arise from uncertain parameters, 6, &
AND model inadequacy €04 J

Some Caveats:
¢ all sources of uncertainty have been identified
¢ the data are accurate with well characterized uncertainties
e computational models are reliable (verified)
¢ numerical solutions are well resolved
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A Processes for Predictive Validation

1.Inform models 7" and ¢,,.4
e Use data for observables D, from scenarios &,

e Bayesian inference to calibrate 6; for models 7/ and meta-parameters
for emoqj for model classes i

e Bayesian model selection among model classes i

2. Challenge selected models
o Use data for observables D, from scenarios &, (include D, from &;)
e Are physics + uncertainty models consistent with observations?
(Bayesian hypothesis testing?)
o Uncertainty models must account for all discrepancies between
physics models and observations




A Processes for Predictive Validation

3. Asses validity of predictions
¢ Does scenario &, exercise 7" outside the conditions in which it has
been challenged? (requires characterization of relevant “conditions”)
o Are prediction quantities g sensitive to uncertainties to which
observed quantities are not?
o Are prediction uncertainties in g too large for decision maker

Entitled to make predictions only if answers to questions in (3) are
“nOH
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Current Tools

Tools for Calibration

® Bayesian model calibration
® Bayesian model selection

likelihood prior

(60| Dear) =
— W(Dca/)
posterior N——
evidence

——
7(Dear|0) 7(0)

Determine:

® \Values of the parameters that are consistent with the

calibration data
® |ncludes learning about the model error.

[Jdue to Model Error
[l due to Parameteric Uncertainty

* Observations

Robert Moser
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Tools for Calibration

|dentify:
® The most plausible error structure for model error

® The best among a set of approximate or
phenomenological models.

® Bayesian model calibration
® Bayesian model selection

—M1 Best
—M2 Best

M1 Uncertainty
[CIM2 Uncertainty

* Observations

evidence prior plausibility

——f ——
7(Deat|Mj, M) w(M;|M)
7(Dgar| M)

7|'(1\/Ii|Dca/: M) =
N————

posterior plausibility

Robert Moser
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Tools for Validation

. . ® Reject models that are less consistent with the
® Bayesian model selection calibrationldata

® Consistency metric ® Keep the models that best trades-off the principle of
parsimony with the goodness-of-fit

My = Ms <— 7I'(M1‘Dca/,M) > W(Mg‘Dca/,M)

7(Dear|M1) 7(My, M)
7(Dear|M2) 7(Ma, M)
—_——— —— —

Bayes factor prior odds

Inf(Deat|M1)] = E [In[(Dea 6, M )]] — KL (n(ewoca,,Mo I w(e\Mo)

log evidence data fit

model complexity

(model complexity ; goodness of fit ; prior) J




Tools for Validation

® Bayesian model selection

. . Need a quantitative characterization of consistency of model
¢ Consistency metric predictions with validation data. J

0.35

03 ® This is different from accuracy

025 which assess whether

02 observations and model

015, predictions are “close enough”

0.1

0.05 ® To entitle prediction, uncertainty
o models must plausibly account for
’ : e ® : ° all discrepancies between physics

models and observations.

Consistent }
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Data Reduction Modeling

Assessing uncertainties in data is NOT primarily statistical
Why is it needed?

o Very likely that quantities we wish to measure are not directly
measurable in an experiment

e Have to infer the values from other measurements using a
mathematical model

o Estimate/recover uncertainties in legacy experimental data

Impact on Validation and UQ
e Our philosophy: All mathematical models must be validated

e Must incorporate uncertainty of both the measured data and the data
reduction model into the final uncertainty quantification of the data




Data Reduction Modeling

Traditional calibration schematic:

Data <

y

Inversion
Process

Validation
— Model J “| Process

A
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Data Reduction Modeling

Data Reduction Modeling

Incorporation of data reduction model:

Calibration DATA
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Challenges

Complexity of Analysis
e DRM’s may be complex multi-physics models in their own right
o Need very reliable validation and uncertainty analysis
o Logical dependencies of measurements

Cooperation of Experimental and Computational Scientists

o As data consumers, computational scientists must be able to properly
characterize uncertainty in the data, including any data reduction
models

e Requires many details of experimental procedures - some data
producers may be reluctant to share such details or may simply be
unavailable (legacy data)
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Final Remarks

Verification
e Techniques of code verification are well established but not as widely
used as they should be
o Techniques of solution verification can be further developed
» Strengthen a posteriori error estimates of Qol’s for complex problems
o Bigger issue is adoption, e.g.:
» Few application codes support adjoints
» Even error estimates based on grid refinement are often not used

e Distinct from Validation and UQ




Final Remarks

Validation and UQ
¢ Involve much larger conceptual & research issues
Unobserved prediction Qol’s (predictive validation)
Importance of reliable physics models enabling extrapolation
Critical role of inadequacy models esp. for “embedded models”
Need observational data with well characterized uncertainties, but in
many problems, this is not available...
» Uncertainty modeling: mathematically encoding the often qualitative
generally incomplete physical information that we have

e Priors, model inadequacy and data uncertainties

vV vy VvYyy

Important, but I did not Discuss
Algorithms & software

Decision making
Rare events

Education & socialization
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