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Verification

Code and Solution Verification

Code Verification
• Focuses on identifying failures of the code to correctly implement a

desired numerical algorithm

• Analytical solutions to mathematical equations are used to calculate
error in a corresponding approximate solution

Solution Verification
• Process of quantifying the numerical errors (e.g. round-off, iterative,

and discretization errors) that can cause the numerical solution to be
an in- adequate approximation of the correct solution

• One simulates the phenomenon of interest and has no a priori
knowledge of the solution; in such cases error can only be estimated
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Verification

Code Verification

Good Software Hygiene
• Unit Tests

• Regression Tests

• High Level Asserts

• Symmetry Tests

• Jacobian Tests

• Parametric Testing

• Exact Solutions

• Code-to-Code Comparison

Robert Moser 4 / 33



Verification

Code Verification

Method of Manufactured Solutions (MMS)
• Exact solution typically not known

• Can manufacture a solution to generate source term from which one
attempts to solve for manufactured solution

• Confirm convergence to solution at expected rate

Pitfalls
• Explosion of terms in source

• Solutions need structure
similar to application

I E.g. Boundary layers
I Exercise terms important

to application

• Software reliability

MASA Library

• Manufactured and Analytical
Solution Abstraction Library

• Provides solutions and source
terms for many operators

• Sources computed by AD

• Released under LGPL

Robert Moser 5 / 33



Verification

Maple MMS: 3D Navier-Stokes Energy Term
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Verification

But wait, there’s more!
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Verification

Solution Verification
Goal-Oriented Error Estimation & Adaptivity
• Typically want to control the error in some functional of the solution

u, say Q(u) and not u
• Error representation: Q(u)− Q(uh) = R(uh; p) + ∆

I p is the solution to the adjoint problem
I ∆ higher-order remainder term

• Use adjoint and residual to drive mesh adaptivity

• Under best conditions rigorous bounds on error, but useful indicator
regardless

× =
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Introduction and Problem Statement

Imperfect Paths to Knowledge and Predictive Simulation

of

THE UNIVERSE

REALITIES

PHYSICAL

VALIDATION VERIFICATION
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Errors
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MODELS

COMPUTATIONAL
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Errors
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Errors

KNOWLEDGE

DECISION

Predictive Simulation: the treatment of model and data uncertainties and their
propagation through a computational model to produce predictions of quantities
of interest with quantified uncertainty.
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Introduction and Problem Statement

Models are Imperfect

Mathematical models for complex multi-scale multi-physics systems are not
usually posed as general truth statements about physical reality

Examples of Useful Imperfect Models

• Newtonian mechanics

• Continuum mechanics

• Chemical reaction mechanisms

• RANS turbulence models

• Homogenization of complex materials

How do the imperfections of the mathematical models impact the reliability
of the simulations in which they are used?

Validation processes are designed to find out
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Introduction and Problem Statement

Quantities of Interest

Simulations have a purpose: to inform a decision-making process

• Quantities are predicted to inform the decision

• These are the Quantities of Interest (QoIs)

• Models are not (evaluated as) scientific theories

Acceptance of a model is conditional on:
• its purpose

• the QoIs to be predicted

• the required accuracy
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Introduction and Problem Statement

What are Predictions?

Prediction
Purpose of predictive simulation is to predict QoIs for which
measurements are not available (otherwise predictions not needed)

Measurements may be unavailable because:

• instruments unavailable

• scenarios of interest inaccessible

• system not yet built

• ethical or legal restrictions

• it’s the future

How can we have confidence in the predictions?
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Introduction and Problem Statement

Posing a “Predictive Validation” Process

Predictive Validation Question
Does the combination of physical models, uncertainty models and
supporting data yield acceptable credible predictions of the QoIs?

Validation Activities
• Inform: Calibrate to match observations

I What parameter values, model errors, etc. are plausible given the
data?

• Challenge: Check that model output consistent with observations
I Are discrepancies explained by plausible errors/uncertainties (in light of

uncertainty models)?
• Assess: Determine impact of uncertainty/error on QoI’s

I Are observed discrepancies between model & data significant to QoI’s?
I Are the QoI’s sensitive to models & uncertainties to which the

observations are not?

Robert Moser 13 / 33



Introduction and Problem Statement

Validation Expectations are Model Dependent

Interpolation “models”: simple fit to data
• Test for missing dependencies

• Test accuracy of fitting function

• Check that use is in the range of training data

Physics-based models: formulated from theory
• This is what allows extrapolation

• Check that used in domain of applicability
• May include less reliable components:

I Embedded (semi-) empirical models
I Simplifying assumptions
I Inadequacy models
I A validation assessment is needed for these
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Introduction and Problem Statement

Predictive Validation and Uncertainty
Treating Uncertainty is Integral to Predictive Validation
• Uncertainty in data and parameters limit the sensitivity of the

validation process

• Uncertainty from model inadequacy enables assessment of impact of
inconsistencies with data on QoI’s

Need Mathematical Treatment of Uncertainty

• We represent with Bayesian probability

• Probabilistic “models” of knowledge/uncertainty

I Data & its uncertainty
I Prior knowledge
I Knowledge of model inadequacy

• Bayesian inference for calibration & model selection
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Towards Extrapolative Predictions

An Abstract Setting for Predictions

Consider a model of the form:

R(u, τ(θ); ξ) = 0

• R Physics-based system model (e.g. momentum conservation)
• u System state
• τ(u; θ, ξ) embedded model (e.g constitutive) with parameters θ
• ξ scenario parameters

• Observables given by d(u, τ(θ); ξ)

• QoIs given by q(u, τ(θ); ξ)

• R, d and q considered reliable (no uncertainties)

τ may be inadequate and θ, ξ may be uncertain
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Towards Extrapolative Predictions

Data Uncertainty and Model Inadequacy

0 =R(u, τ(θ) + εmod; ξ)

D =d(u, τ(θ) + εmod; ξ) + εexp

Q =q(u, τ(θ) + εmod; ξ)

Predictive Uncertainty

0 =R(u, τ(θ); ξ)

D =d(u, τ(θ); ξ) + εexp + ε̃mod

Q =?

Kennedy & O’Hagen

Uncertainty in predictions, q, arise from uncertain parameters, θ, ξ
AND model inadequacy εmod

Some Caveats:
• all sources of uncertainty have been identified
• the data are accurate with well characterized uncertainties
• computational models are reliable (verified)
• numerical solutions are well resolved
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Towards Extrapolative Predictions

A Processes for Predictive Validation

1.Inform models τm and εmod

• Use data for observables Dc from scenarios ξc

• Bayesian inference to calibrate θi for models τm
i and meta-parameters

for εmodi for model classes i

• Bayesian model selection among model classes i

2. Challenge selected models
• Use data for observables Dv from scenarios ξv (include Dc from ξc)

• Are physics + uncertainty models consistent with observations?
(Bayesian hypothesis testing?)

• Uncertainty models must account for all discrepancies between
physics models and observations

Robert Moser 19 / 33



Towards Extrapolative Predictions

A Processes for Predictive Validation

3. Asses validity of predictions
• Does scenario ξp exercise τm outside the conditions in which it has

been challenged? (requires characterization of relevant “conditions”)

• Are prediction quantities q sensitive to uncertainties to which
observed quantities are not?

• Are prediction uncertainties in q too large for decision maker

Entitled to make predictions only if answers to questions in (3) are
“no”
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Current Tools

Tools for Calibration

• Bayesian model calibration

• Bayesian model selection

Determine:
• Values of the parameters that are consistent with the

calibration data

• Includes learning about the model error.

π(θ|Dcal)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
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prior︷ ︸︸ ︷
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Current Tools

Tools for Calibration

• Bayesian model calibration

• Bayesian model selection

Identify:
• The most plausible error structure for model error

• The best among a set of approximate or
phenomenological models.

π(Mi |Dcal ,M)︸ ︷︷ ︸
posterior plausibility

=

evidence︷ ︸︸ ︷
π(Dcal |Mi ,M)

prior plausibility︷ ︸︸ ︷
π(Mi |M)

π(Dcal |M)

d
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M1 Uncertainty

M2 Uncertainty

M1 Best Estimate

M2 Best Estimate

Observations
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Current Tools

Tools for Validation

• Bayesian model selection

• Consistency metric

• Reject models that are less consistent with the
calibration data

• Keep the models that best trades-off the principle of
parsimony with the goodness-of-fit

M1 � M2 ⇐⇒ π(M1|Dcal ,M) > π(M2|Dcal ,M)

π(Dcal |M1)

π(Dcal |M2)︸ ︷︷ ︸
Bayes factor

π(M1,M)

π(M2,M)︸ ︷︷ ︸
prior odds

> 1

ln[π(Dcal |M1)]︸ ︷︷ ︸
log evidence

= E [ln[π(Dcal |θ,M1)]]︸ ︷︷ ︸
data fit

−KL

(
π(θ|Dcal ,M1) || π(θ|M1)

)
︸ ︷︷ ︸

model complexity

(
model complexity ; goodness of fit ; prior

)
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Current Tools

Tools for Validation

• Bayesian model selection

• Consistency metric
Need a quantitative characterization of consistency of model
predictions with validation data.
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• This is different from accuracy
which assess whether
observations and model
predictions are “close enough”

• To entitle prediction, uncertainty
models must plausibly account for
all discrepancies between physics
models and observations.
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Data Reduction Modeling

Data Reduction Modeling

Assessing uncertainties in data is NOT primarily statistical

Why is it needed?
• Very likely that quantities we wish to measure are not directly

measurable in an experiment

• Have to infer the values from other measurements using a
mathematical model

• Estimate/recover uncertainties in legacy experimental data

Impact on Validation and UQ
• Our philosophy: All mathematical models must be validated

• Must incorporate uncertainty of both the measured data and the data
reduction model into the final uncertainty quantification of the data
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Data Reduction Modeling

Data Reduction Modeling

Traditional calibration schematic:

Validation
Process

Inversion 
Process

Model

Data
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Data Reduction Modeling

Data Reduction Modeling

Incorporation of data reduction model:

Validation

Calibration

Model

Validation

Calibration

Data Reduction 
ModelInstrument

DATA

Robert Moser 29 / 33



Data Reduction Modeling

Challenges

Complexity of Analysis
• DRM’s may be complex multi-physics models in their own right

• Need very reliable validation and uncertainty analysis

• Logical dependencies of measurements

Cooperation of Experimental and Computational Scientists
• As data consumers, computational scientists must be able to properly

characterize uncertainty in the data, including any data reduction
models

• Requires many details of experimental procedures - some data
producers may be reluctant to share such details or may simply be
unavailable (legacy data)
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Concluding Remarks

Final Remarks

Verification
• Techniques of code verification are well established but not as widely

used as they should be
• Techniques of solution verification can be further developed

I Strengthen a posteriori error estimates of QoI’s for complex problems
• Bigger issue is adoption, e.g.:

I Few application codes support adjoints
I Even error estimates based on grid refinement are often not used

• Distinct from Validation and UQ
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Concluding Remarks

Final Remarks
Validation and UQ
• Involve much larger conceptual & research issues

I Unobserved prediction QoI’s (predictive validation)
I Importance of reliable physics models enabling extrapolation
I Critical role of inadequacy models esp. for “embedded models”
I Need observational data with well characterized uncertainties, but in

many problems, this is not available...
I Uncertainty modeling: mathematically encoding the often qualitative

generally incomplete physical information that we have
• Priors, model inadequacy and data uncertainties

Important, but I did not Discuss
• Algorithms & software

• Decision making

• Rare events

• Education & socialization
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