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Frequentist
Validation Framework

with
“Exact”† Model

†Exact in the sense of verification, not validation.
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“Exact” Model

Given µ ∈ D ⊂ RP , µ: parameter P -vector

umodel( · ;µ) ∈ X(Ω) ,

for Ω a domain in Rd.

Note the field umodel(x;µ) may derive from a
parametrized partial differential equation.†

†In an example we also consider time-dependent fields.
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Measurements of Physical System

Given measurement functionals,

`meas
i : X → R, 1 ≤ i ≤ m ,

assume experiments yield outputs

Y exp
i = `meas

i (uphy)︸ ︷︷ ︸
Y

phy
i

+ ε(ωi), 1 ≤ i ≤ m ,

for ε(ω) a zero-mean Gaussian process.

Note uphy(x) serves to “interpret” Y phy
i .
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Validation Hypothesis

For given µ ∈ D, δ ≥ 0

H(µ):

{
For all µ′ ∈ Nδ(µ) ,

‖Y phy − Y model(µ′)‖ ≤ δ .

Here Y model
i (µ′) = `meas

i (umodel( · ;µ′)), 1 ≤ i ≤ m;
Nδ(µ) a neighborhood in D about µ.

Note: H(µ) FALSE, ∀µ ∈ D ⇒ “unmodeled physics.”
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Statistical Test

For any µ ∈ D,

REJECT H(µ) vs. ACCEPT H(µ)

if and only if

Fε(Y exp, Y model(µ)) > Bδ(µ) ;

require Pr{ErrorType I} ≤ 1− γ.†

† H(µ) TRUE: Pr{REJECT H(µ)} ≤ 1− γ.
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Frequentist
Validation Framework

with
Approximate Model
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Approximate Model

Given µ ∈ D ⊂ RP , µ: parameter P -vector

ũmodel( · ;µ) ∈ X̃(Ω) ⊂ X(Ω) ,

where ũ(µ) ≈ umodel(µ).

Introduce Ỹ model
i (µ) = `meas

i (ũ( · ;µ)), 1 ≤ i ≤ m.
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Measurements of Physical System

Given measurement functionals,

`meas
i : X → R, 1 ≤ i ≤ m ,

assume experiments yield outputs

Y exp
i = `meas

i (uphy)︸ ︷︷ ︸
Y

phy
i

+ ε(ωi), 1 ≤ i ≤ m ,

for ε(ω) a zero-mean Gaussian process.

Note uphy(x) is an “interpretation” of Y phy
i .
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Validation Hypothesis

For given µ ∈ D, δ ≥ 0

H(µ):

{
For all µ′ ∈ Nδ(µ) ,

‖Y phy − Y model(µ′)‖ ≤ δ .

Here Y model
i (µ′) = `meas

i (umodel( · ;µ′)), 1 ≤ i ≤ m;
Nδ(µ) a neighborhood in D about µ.

Note: H(µ) FALSE, ∀µ ∈ D ⇒ “unmodeled physics.”
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Statistical Test

For any µ ∈ D,

REJECT H(µ) vs. ACCEPT H(µ)

if and only if

Fε(Y exp, Ỹ model(µ)) > B̃δ(µ)
Verification

; (≥ Bδ(µ))

require Pr{ErrorType I} ≤ 1− γ.†

† H(µ) TRUE: Pr{REJECT H(µ)} ≤ 1− γ.

NRC Symposium on VVUQ AT Patera 14



Statistical Test

For many µ ∈ D,

REJECT H(µ) vs. ACCEPT H(µ)

if and only if

Fε(Y exp, Ỹ model(µ)) > B̃δ(µ)
Verification

; (≥ Bδ(µ))

require Pr{ErrorType I} ≤ 1− γ.†

† H(µ) TRUE: Pr{REJECT H(µ)} ≤ 1− γ.
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Parametric Manifold Models

Approximation Space

NRC Symposium on VVUQ AT Patera 16



Parametric ManifoldMh

Introduce uh(µ) ∈ Xh ⊂ X: a highly accurate
finite element (FE) surrogate for umodel(µ).

. .
.
Greedy Samplingsnapshots

uuhh((˜̃µµ11))
uuhh((˜̃µµ22))

uuhh((˜̃µµNN ))

XXhh

MMhh ≡≡ uuhh((µµ)) µµ ∈∈ DD

Approximation Space: X̃D = span{uh(µ̃n), 1 ≤ n ≤ N}.
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Parametric Manifold Models

Approximation Space

Reduced Basis (RB)
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Galerkin Projection

Given weak form (parametrized PDE),

µ ∈ D → A(w, v;µ), ∀ w, v in X(Ω) ,†

ũRB ∈ X̃D satisfies

A(ũRB, v;µ) = 0, ∀ v ∈ X̃D .

Advantage: N = dim(X̃D)� dim(Xh) .

†Note umodel(µ) ∈ X: A(umodel(µ), v;µ) = 0, ∀ v ∈ X;
uh(µ) ∈ Xh: A(uh(µ), v;µ) = 0, ∀ v ∈ Xh.
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A Posteriori Error Estimation

For any µ ∈ D,

‖ũRB(µ)− umodel(µ)‖X
≤ ‖ũRB(µ)− uh(µ)‖X + ‖uh(µ)− umodel(µ)‖X
≈ ‖ũRB(µ)− uh(µ)‖X ; OFFLINE-ONLINE

provide rigorous error bound

‖ũRB(µ)− uh(µ)‖ ≤ ∆h
RB(µ) ,

where ∆h
RB(µ) ≡ Ch

stability(µ) ‖A(ũRB, · ;µ)‖(Xh)′ .
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OFFLINE-ONLINE Computational Strategy

OFFLINE Construct X̃D (once): expensive.

ONLINE Evaluate µ→ ũRB, ∆h
RB: inexpensive.

In the many-query (or real-time) context, amortize
OFFLINE effort over many ONLINE evaluations.

Note: ONLINE cost independent of dim(Xh),
hence choose Xh conservatively rich.
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Parametric Manifold Models

Approximation Space

Reduced Basis (RB)

Empirical Interpolation (EI)
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Collocation

OFFLINE: Given X̃D, identify
quasi optimal interpolation points x̃k;
associated characteristic functions Vk ∈ X̃D;

for 1 ≤ k ≤ N .

ONLINE: For µ ∈ D, form ũEI(µ) ∈ X̃D as

ũEI(x;µ) =
N∑
k=1

uh(x̃k;µ)Vk(x) .†

Advantage: Ω ⊂ Rd replaced by {x̃k}k=1,...,N .

†In practice, EI applied to functions of approximations of uh(µ).
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Parameter Manifold Models

Approximation Space

Reduced Basis (RB)

Empirical Interpolation (EI)

Dirty Laundry
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Issues

Difficulty Palliative

Stability Constant, Ch
stability Successive Constraint

P � 1: µ ∈ D ⊂ RP Domain Decomposition in Ω

D Large: µ ∈ D ⊂ RP Domain Decomposition in D

Nonpolynomial Nonlinearity Empirical Interpolation

Long-Time Integration Space-Time Inf-Sup
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Numerical Example
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Cast of Characters

“Exact” Model:

(µ1, µ2) ∈ D → umodel(t, x;µ) ∈ X

FE Surrogate: dim(Xh) ≈ 3,000

(µ1, µ2) ∈ D → uh(t, x;µ) ∈ Xh

RB Approximate Model: dim(X̃D) ≤ 40 †

(µ1, µ2) ∈ D → ũRB(t, x;µ) ∈ X̃D, ∆h
RB(t, µ)

Physical System: uphy(t, x)

†RB 100× faster (ONLINE) than FE.
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Case I: Model

1100

1100

ΩΩ

ΓΓinin

ze
ro

 fl
ux

ze
ro

 fl
ux

ΓΓ00

ΓΓ∞∞

ΩΩmeme

00.5.5
00.5.5

ΩΩ11
µµ11 ΩΩ00

µµ00 == 11
ΩΩ22
µµ22

∂∂uummoodeldel

∂∂nn
== 11

YY momodedell
ii ((µµ)) ==

11

——ΩΩmeme —— ΩΩmeme

uumomodedell((ttii,, xx;;µµ)) ddxx

∂∂uummoodeldel

∂∂tt
−−∇∇ ·· ((µµkk∇∇uumomodeldel)) == 00 in ΩΩkk

Parametrization: µ ≡ (µ1, µ2) ∈ [0.2, 5]2 ≡ D.
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Case I: Physical System
(fully modeled physics)

1100

1100

ΩΩ

ΓΓinin
ze

ro
 fl

ux
ze

ro
 fl

ux

ΓΓ00

ΓΓ∞∞
ΩΩmeme

00.5.5
00.5.5

ΩΩ11
ΩΩ00ΩΩ22

∂∂uuphphyy

∂∂nn
== 11

αα11 == 44
αα22 == 11 αα00 == 11

∂∂uuphphyy

∂∂tt
−−∇∇ ·· ((ααkk∇∇uuphphyy)) == 00 inin ΩΩkk

YY expexp
ii ==

11

——ΩΩmmee —— ΩΩmeme

uuphphyy((ttii,, xx)) ddxx

++ ((ttii;;ωωii))
unknown

Gaussian process

uphy(t, x) = umodel(t, x;µ∗ ≡ (4, 1)
(α1,α2)

) †.
†In practice, umodel(t, x;µ∗) replaced by uh(t, x;µ∗).
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Case I: Validation
(noise: ≈ 1%, uncorrelated)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

µµ∗∗

µµ11

µµ22

PrPr REJECT HH ((µµ∗∗ ≤≤ 00..0505))
reject HH  when HH is true

REJECT

ACCEPT
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Case I: Effort

Experiment (synthetic):

m = 10 repeats× 100 measurements in time

= 1,000 data in total.

Computation: 10,000 ONLINE evaluations

µ→ Ỹ model(µ), ∆h
RB(µ), B̃δ(µ)

⇒ ACCEPT or REJECT H(µ).
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Case II: Model

1100

1100

ΩΩ
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ze
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ux

ΓΓ00

ΓΓ∞∞

ΩΩmeme

00.5.5
00.5.5

ΩΩ11
µµ11 ΩΩ00

µµ00 == 11
ΩΩ22
µµ22

∂∂uummoodeldel

∂∂nn
== 11

YY momodedell
ii ((µµ)) ==

11

——ΩΩmeme —— ΩΩmeme

uumomodedell((ttii,, xx;;µµ)) ddxx

∂∂uummoodeldel

∂∂tt
−−∇∇ ·· ((µµkk∇∇uumomodeldel)) == 00 in ΩΩkk

Parametrization: µ ≡ (µ1, µ2) ∈ [0.2, 5]2 ≡ D.
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Case II: Physical System
(unmodeled physics: crack)

1100

1100

ΩΩ

ΓΓinin

ze
ro

 fl
ux

ze
ro

 fl
ux

ΓΓ00

ΓΓ∞∞

ΩΩmeme

00.5.5
00.5.5

ΩΩ11
ΩΩ00ΩΩ22

∂∂uuphphyy

∂∂nn
== 11

αα11 == 44
αα22 == 11 αα00 == 11

∂∂uuphphyy

∂∂tt
−−∇∇ ·· ((ααkk∇∇uuphphyy)) == 00 inin ΩΩkk

YY expexp
ii ==

11

——ΩΩmmee —— ΩΩmeme

uuphphyy((ttii,, xx)) ddxx

++ ((ttii;;ωωii))
unknown

Gaussian process

ΓΓcracracckk

uphy(t, x) 6= umodel(t, x;µ) for any µ ∈ D.
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Case II: Validation
(noise: ≈ 1%, uncorrelated)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

µµ11

µµ22

REJECT

ACCEPT

µµ∗∗“      ”

Crack Length = 1: crack conflated with
lower conductivity medium.
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Case II: Validation
(noise: ≈ 1%, uncorrelated)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

REJECT

µµ∗∗“      ”

µµ11

µµ22

Crack Length = 1.5: unmodeled physics detected.
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MURI Architecture

while (model insufficient)

propose/update model: µPDE, SPDE;

develop Reduced Order Model (ROM);
ISOMAP, ANOVA, RB/EI, MEPC, . . .

verify ROM;

validate model⇐ Fε (data, ROM);

end

design under uncertainty⇐ ACCEPTED H(µ);
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MURI Domains & Applications

Thermofluids

Acoustics (for Noise Mitigation . . . )

Electromagnetics (for Stealth . . . )

(Multiscale) Materials
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