

Challenges in Uncertainty Quantification and Model Validation

Habib N. Najm

hnnajm@sandia.gov

Sandia National Laboratories,
Livermore, CA

NRC BMSA Panel, Mar. 2012

The Scope of UQ and Model Validation

Uncertainty Quantification:

- Global sensitivity analysis
- Model calibration, parameter estimation
- Forward uncertainty propagation

Validation:

- Interpolation – prediction within calibration region
- Extrapolation – prediction outside calibration region
- Statistical evaluation of model performance
 - against data
 - compared to other models
- A model is “valid” if it predicts a Quantity of Interest (QoI) with desired accuracy, under conditions of interest

State of the Art

UQ:

- Probabilistic UQ framework
- Functional representation of random variables
 - Polynomial Chaos (PC) expansion
- Inverse: Statistical inference
- Forward: Adaptive sparse quadrature sampling methods

Validation:

- Cross validation
- Posterior predictive
- Model discrepancy
- Model plausibility and model comparison

Published information is frequently inadequate

- Calibration not at conditions of interest
- At best: nominal parameter values and error bars
 - Correlations can be crucial to predictive uncertainty

Insufficient measurements

- Time and expense of experimental studies
- Need to constrain a large number of parameters

Many cases where measurements are simply not possible

- Expert elicitation
- Physical constraints, maximum entropy

Challenges in PC UQ – 2 – High-Dimensionality

- # degrees-of-freedom, PCE dimension, determined by
 - Number of uncertain parameters
 - Correlation structure of random fields
- Impacts:
 - # sparse quadrature samples – high-D integrals
 - Computational feasibility
- Reduction of # degrees of freedom
 - Sensitivity analysis
 - Dependencies/correlations among parameters
 - Dominant eigenmodes of random fields
 - Manifold learning: Isomap, Diffusion maps
 - Sparsification: Compressed Sensing, LASSO

- Bifurcative response at critical parameter values
 - Rayleigh-Bénard convection
 - Transition to turbulence
 - Chemical ignition
- Discontinuous dependence on parameter space
 - Failure of global PCEs in terms of smooth basis
 - \Leftrightarrow failure of Fourier series in representing a step function
- Local PC methods
 - Subdivide parametric space: regions of smooth behavior
 - Local PC, with compact support basis, on each region
 - A spectral-element vs. spectral construction
 - Meshing; Domain mapping

- Systems with limit-cycle or chaotic dynamics
- Large amplification of phase errors over long time horizon
- PC order needs to be increased in time to retain accuracy
- Time shifting/scaling remedies
- e.g.: Futile to attempt representation of detailed turbulent velocity field $v(x, t; \omega)$ as a PCE
 - Fast loss of correlation due to energy cascade
 - Problem studied in 60's and 70's
- Focus on flow statistics, e.g. Mean/RMS quantities
 - Well behaved
 - Frequently of more practical relevance

- Data is under conditions outside regime of interest
- Quantities of interest not observable
- Identifying the observable to calibrate to accurately constrain prediction of a given QoI
 - e.g. in climate modeling
- Cross validation combinatorial choices
- Cost of evaluation of marginal likelihoods
 - Bayes Factors; Model plausibility
- Quantifying model discrepancy, or model bias
 - Error modeling choices
 - Confounding of bias and precision errors

Closure

- Increasing practical relevance of computational predictions
 - Need for effective VVUQ in large scale computing
- Difficult to constrain complex physical model parameters
 - Too many knobs
- Multimodel ensembles
 - Model averaging does not address correlated models
- Calibration versus predictive skill
 - Observables versus Qols
- VVUQ technical challenges
 - Math
 - Algorithmic
 - Computational