

IDD HP Resilience Program

Cutting-Edge Risk and Resiliency Tools

NAS – Oct 5, 2011

**Homeland
Security**

Science and Technology

Mila Kennett
Infrastructure Protection and Disaster
Management Division

HP Resilience Workshops (2009-2011)

- Designing for a Resilient America: A Stakeholder Summit on High Performance Resilient Buildings and Related Infrastructure
- The Ultra High Performance Concrete (UHPC) Workshop
- Aging Infrastructures Workshop
- Stabilization of Building Workshop
- Security, Energy, and Environmental Summit
- Monitoring and Sensing of Near Collapse Building Workshop
- Near Collapse Buildings Workshop for Emergency Management Personnel
- Advanced Materials and the Infrastructure of the Future Workshop

NIAC AND DHS/S&T/IDD

NIAC Definition:

Infrastructure resilience is the ability to **reduce** the magnitude and/or **duration** of disruptive events. The effectiveness of a resilient infrastructure or enterprise depends upon its ability to **anticipate, absorb, adapt** to, and/or **rapidly recover** from a potentially disruptive event.

HP Resilience Model

- Promotes the adoption of high performance and resilience concepts in a comprehensive and cost effective manner
- Promotes an integrated approach that addresses the capacity of the physical environment to anticipate, absorb, adapt to, and rapidly recover from disruptive events
- Promotes an integrated approach that includes design and construction issues related to:
 - Blast, earthquake, high wind, and flood resistance and cyber security
 - Energy efficiency, environmental sustainability
 - Durability/extension of life and continuity of operations

HP Resilience Stakeholders

HP Resilience Program Taxonomy

Urban Blast Tool (UBT)

NYC Financial District (completed) and Mid Manhattan

- Geared toward the design community and first responders
- Very fast running providing guidance on Airblast loads based on CFD analysis
- Addresses column damage and potential for progressive collapse
- Displays glass debris hazards
- Use for evaluating emergency evacuation rescue and recovery (EERR) systems after an event

**Homeland
Security**

Science and Technology

UBT Codes

- Airblast Codes for data base computations
- DTRA MAZ code for analyzing 3D propagation
- Navy's Gemini code for simulation of underwater explosion and shock propagation in air to model failure of curtain walls or façade
- Gemini code coupled with DYNA or FLEX structural code to predict damage to nearby targets

**Homeland
Security**

Science and Technology

UBT – Future Development

- Develop an interactive version to allow owners to input critical data
- Add ProCAT Model to increase column accuracy in terms of progressive collapse
- Develop UBTs tailored for other major cities in the US
- Create a generic version applicable to most cities in the US
- Analyze and add more structural detailed studies to the UBT models
- Improve accuracy and generate additional EERR equipment fragility models

**Homeland
Security**

Science and Technology

UBT - Demo

Homeland
Security

Science and Technology

Owners Performance Requirements Tool (OPR)

The OPR Tool is a web-based system that allows building owners to:

- Determine specific performance goals for new and existing buildings
- Analyze a range of high-performance requirements based on EISA 2007
- Evaluate tradeoffs between high performance attributes and performance goals required by energy and environmental demands, threats, hazards, and building functions
- Performance goals may range from minimum standards (baseline) to high performance solutions (benchmarks)

**Homeland
Security**

Science and Technology

OPR Tool

The model employs **multi-attribute analysis and performance modeling** that allows the owner to identify performance goals, by evaluating different scenarios based on the following attributes:

- **Energy Conservation**
 - Thermal Transfer
 - Air Leakage
- **Environment**
 - Environmental Footprint
 - Moisture Migration
 - Water Penetration
 - Acoustic Transmission
- **Safety**
 - Seismic
 - Wind
 - Flood
 - Fire
- **Security**
 - Blast
 - CBR
 - Ballistics
 - Continuity of Operations

**Homeland
Security**

Science and Technology

OPR Tool

- Five expert committees were formed to provide the performance and cost data.
- The OPR Tool is expected to be a part of the ASTM E06.55.09 Standard.
- The OPR is being released for external review at:
www.oprtool.org/demo

**Homeland
Security**

Science and Technology

OPR Tool

- **OPR outputs** are based on analyzing multiple attributes simultaneously
- **OPR predictions** relies on the consensus and knowledge of the technical committees
- The model is strictly **performance based** and does not identify prescriptive solutions

Homeland Security
 Science and Technology

OPR Tool Website

**Homeland
Security**

Science and Technology

ABOUT | CONTACT

Owner Project Requirements (OPR) Tool

for Performance Based Design

*developed and managed by the National Institute of Building Sciences
in partnership with Department of Homeland Security/Science and Technology Directorate*

The Owners Performance Requirements (OPR) Tool helps building owners identify priorities and prepare a performance plan for a project by selecting targets for each of the attributes identified as comprising high performance by the Energy Independence and Security Act of 2007 (EISA). The OPR Tool, focused in this version on the building envelope for office buildings, establishes a performance based plan for the owner to provide to the design team at the beginning of project programming. [Learn more....](#)

Please Sign In

Username:

Password:

Remember my login at this computer.

LOG IN

REGISTER

RESET PASSWORD

Resources

- [OPR Resource 1](#)
 - [OPR Resource 1a](#)
 - [OPR Resource 1b](#)
- [OPR Resource 2](#)
 - [OPR Resource 2a](#)
 - [OPR Resource 2b](#)
- [OPR Resource 3](#)
 - [OPR Resource 3a](#)
 - [OPR Resource 3b](#)

PROJECT REQUIREMENTS REPORT

Project Information

Scenario Name: Trial 1	Project Type: Existing Building Retrofit	Location: Pittsburgh, PA
Gross Building Area: 100000 SF	Number of Floors: 3 (Including 1 below grade)	Quality: Class B
Performance Targets:	P++ Enhanced Performance R++ Enhanced Resilience	Ri-- Moderate Risk

Life Cycle Baseline Information

Use Period (TCO)	25 Years	Unit Cost	Occupancy Information
		Energy Cost (\$/Kbtu)	Census (GSF/Occupant) 150
Service Life (Years)		Service & Maintain Cost (\$/GSF)	Operation (Hours/Week) 40
Whole-building	50 Years	Annual Escalation Trend	Operation (Weeks/Year) 51
Exterior Wall	30 Years	Energy	Indirect Project Cost
Exterior Glazing	20 Years	Service & Maintain	Construct 10%
Roof System	15 Years	Present Value Discount Rate	Design, Test, Commission 12%

Facility Resilience

Safety

Seismic

Seismic Design Category SDC C

Performance Benchmark: Reduced Damage

Extent of Damage and Continuity of Operations: Moderate damage to cladding may occur but cladding remains anchored to building structure. Seals and gaskets may tear and ability to provide weather protection is locally compromised. Glass edge damage may occur and glass may fall off setting blocks, but glass breakage is mitigated. The building remains safe to occupy; structural and nonstructural repairs are minor. There shall be no failure or gross permanent distortion of the building envelope system anchorage and framing. Minor cracking and deformation of cladding may occur, but is not expected. Interstory drift limits all structures: 0.0075h to 0.01h; h = story height

Performance Standard(s)

IBC-2009
 ASCE 7-05
 ASCE 41-06
 NEHRP Recommended Provisions for Seismic Regulations
 FEMA E-74
 ASTM E 2026

IRVS Buildings, Subways, and Tunnels

Main Menu

U.S. DEPARTMENT OF
HOMELAND SECURITY

Homeland Security

Science and Technology

Integrated Rapid Visual Screening Tier 1

Rapid Visual Screening

Administrative Functions

Change Passwords

Exit

This program was developed by and for DHS S&T pursuant to a contract with the National Institute of Building Sciences.

For Help, Press the F1 Key

Buildings and Infrastructure Protection Series
**Field Guide for Integrated
Rapid Visual Screening
of Buildings**

Buildings and Infrastructure Protection Series
**Rapid Visual Screening
of Tunnels**

P-XXX / December 200

Infrastructure and Geophysical Division
In cooperation with F

Buildings and Infrastructure Protection Series

Rapid Visual Screening of Subways

P-XXX / December 20

Infrastructure and Geophysical Division
In cooperation with FEMA

IRVS Family

- Designed to prepare rapid but comprehensive assessments
- A simple, quick, and reliable tool for obtaining a preliminary risk assessment rating.
- Reliability depends on time devoted to collection of information and field inspections
- Can support other more thorough assessments
- Expected to save millions of dollars to federal, state, local government, and private sector
- An all hazard approach
- Computes risk and resilience providing scores and ratings
- Flexible methodology based on dictionaries and scores which are easy to adapt to institutional needs

**Homeland
Security**

Science and Technology

IRVS: Buildings

Consequences	Threat Rating	Vulnerability
<ul style="list-style-type: none"> • Locality Type • Number of Occupants • Replacement Value • On Historic Registry • Business Continuity • Physical Loss Impact 	<ul style="list-style-type: none"> • Occupancy Use • Number of Occupants • Site Population Density • Visibility/Symbolic Value • Target Density • Overall Site Accessibility • Target Potential 	<ul style="list-style-type: none"> • Site • Architecture • Building Envelope • Structural Components and Systems • Mechanical/Electrical/Plumbing (MEP) Systems • Security

IRVS: Mass Transit Stations

Consequences	Threat Rating	Vulnerability
<ul style="list-style-type: none">▪ Number of Tracks▪ Number of Station Levels▪ Impact of Physical Loss▪ Number of Riders per day▪ Commercial, and Industrial Facilities▪ Adjacent Stations▪ Adjacent Critical Infrastructure▪ Social Effect of Loss▪ Replacement Value▪ Operational Redundancy▪ Function Criticality	<ul style="list-style-type: none">▪ Visibility▪ Historic Nature/Landmark Status▪ Number of Riders per day▪ Previous Threats▪ Accessibility▪ Elevation▪ Site Locality▪ Adjacent Critical Infrastructure▪ Function Criticality▪ Storage Use	<ul style="list-style-type: none">▪ Site▪ Architectural▪ Structural▪ Ventilation (including HVAC)▪ Fire Systems▪ Operations (including power supply, lighting, etc.)▪ Non-Structural▪ Physical Security

IRVS: Tunnels

Consequences	Threat Rating	Vulnerability
<ul style="list-style-type: none">▪ Impact of Physical Loss▪ Number of Vehicles/Trains per Day▪ Nearby Commercial Facilities▪ Adjacent Critical Infrastructure▪ Social Effect of Loss▪ Replacement Value▪ Operational Redundancy▪ Function Criticality	<ul style="list-style-type: none">▪ Visibility▪ Historic Nature▪ Number of Vehicles/Trains per day▪ Previous Threats▪ Accessibility▪ Elevation▪ Site Locality▪ Adjacent Critical Infrastructure▪ Function Criticality	<ul style="list-style-type: none">▪ Site▪ Architectural▪ Structural▪ Ventilation (including HVAC)▪ Fire Systems▪ Operations (including power supply, lighting, etc.)▪ Non-Structural▪ Physical Security

IRVS Analytical Background

- **Methodology:** knowledge is embedded in the tool. Major tool interactions are automatically calculated. Pre assigned weights, interaction logic, and context-based algorithms based on knowledge and tool validations
- **Risk:** For man made hazards, deals with target attractiveness . For natural hazards, it uses probability of occurrence. Risk is calculated as follows: $R = C \times T \times V$
- **Resilience:** computes robustness (R1), resourcefulness (R2), and recovery(R3) using information, such as hardening, training, and redundancies. Resilience is calculated as follows: $\text{Resilience} = R1 \times R2 \times R3$

**Homeland
Security**

Science and Technology

IRVS Scores

Risk and Resiliency Summary

RVS Building/Facility:	Demo of Bldg 1
Facility ID#:	0001
Assessment Date:	2/2/2002
Site Type:	Building

Scales		Scores and Color Mapping			
Risk Color Scale	0-30	30-50	50-70	70-100	
Resiliency Color Scale	100-70	70-50	50-30	30-0	

Summary Categories	Internal Intrusion	Internal Explosive	Internal CBR	Explosive Zone 1	Explosive Zone 2	Explosive Zone 3	CBR Zone 1	CBR Zone 2	CBR Zone 3
Total Consequences (%)	66.83 %	59.61 %	57.91 %	61.97 %	59.33 %	69.13 %	57.41 %	61.75 %	65.10 %
Total Threat (%)	27.18 %	66.34 %	62.83 %	85.34 %	58.67 %	49.69 %	84.00 %	71.16 %	53.30 %
Total Vulnerabilities (%)	8.92 %	61.04 %	61.62 %	56.01 %	57.28 %	57.10 %	57.42 %	56.99 %	60.93 %
Total Risk Percent (%)	25.30 %	62.26 %	60.75 %	66.66 %	58.42 %	58.10 %	65.18 %	63.03 %	59.57 %

Summary Categories	Earthquake General Shaking	Earthquake Ground Failure	Flood Stillwater	Flood Velocity Surge	Wind Hurricane	Wind Tornado	Wind Other	Landslide Rainfall	Fire From Earthquake	Fire From Blast	Fire From Arson
	61.31 %	59.45 %	61.04 %	59.50 %	61.30 %	61.97 %	61.33 %	61.47 %	61.15 %	63.67 %	62.90 %
Total Threat (%)	0.00 %	0.00 %	77.76 %	78.22 %	54.31 %	48.44 %	52.10 %	62.05 %	0.00 %	67.89 %	29.80 %
Total Vulnerabilities (%)	30.30 %	35.30 %	35.34 %	41.30 %	42.99 %	38.99 %	39.50 %	33.16 %	2.04 %	3.19 %	3.12 %
Total Risk Percent (%)	0.00 %	0.00 %	55.15 %	57.71 %	52.31 %	48.92 %	50.16 %	50.19 %	0.00 %	23.97 %	18.02 %

IRVS Scores

mfrmRVS_Summary_TotalRisk																	
Total Risk Summaries - All Assessments																	
Buildings			Total Risk														
Site Name	Facility ID#	Assessment Date	Total Risk All Scenarios	Total Resiliency	Intrusion	Blast Interior	CBR Interior	Blast Exterior	CBR Exterior	Seismic	Flood	Wind	Fire	Internal Intrusion	Internal Explosive	Internal CBR	Explosive Zone 1
Test 2	Test 2	3/10/2011	62.2	18.3	65.8	49.5	70.4	53.8	59.5	72.1	71.8	77.7	57.3	65.8	49.5	70.4	50.9
Test site 3	333	3/11/2011	47.6	35.4	51.5	46.1	53.2	33.5	36.7	38.0	61.9	36.5	45.7	51.5	46.1	53.2	29.3
Test site 4	4444	3/14/2011	19.5	71.5	11.7	15.2	11.2	20.8	20.2	17.8	13.9	24.3	13.9	11.7	15.2	11.2	13.5

Mass Transit Stations																	
Mass Transit Stations			Details per Threat / Hazard														
Site Name	Facility ID#	Assessment Date	Total Risk All Scenarios	Total Resiliency	Blast Internal	Blast External	Blast Direct	Blast Collateral	CBR Internal	CBR Tunnel	CBR External	Fire Internal	Fire External	Tunnel Track	Other Flood	Other Collision	Other Cyber
Mass Transit 1	666	3/14/2011	17.6	99.4	5.0	9.5	4.1	0.6	0.5	3.0	10.7	3.8	0.5	3.3	22.6	5.0	
Mass Transit 1	666	3/14/2011	29.0	90.8	9.9	24.5	23.3	1.1	1.0	25.7	24.8	29.7	1.2	13.4	36.4	20.5	

Tunnels																	
Tunnels			Details per Threat / Hazard														
Site Name	Facility ID#	Assessment Date	Total Risk All Scenarios	Total Resiliency	Blast Internal	Blast External	Blast Direct	Blast Collateral	CBR Internal	CBR Tunnel	CBR External	Fire Internal	Fire External	Tunnel Track	Other Flood	Other Collision	Other Cyber
Tunnel 1	5555	3/14/2011	10.6	99.8	4.6	11.3	7.1		4.6	13.3	0.7			5.1	2.3		5.1
Tunnel 1	5555	3/14/2011	38.0	55.5	14.6	43.0	34.1		22.2	46.9	2.6			23.5	18.9		23.5

[Close](#)

**Homeland
Security**

Science and Technology

HP Materials Databases

- **AMD** provides a platform for the systematic organization of advanced materials through the documentation and search ability of their high-performance properties

The screenshot shows the AMD website with a blue header. The top navigation bar includes links for 'ABOUT', 'COUNCIL MEMBERSHIP', 'CONTACT', and 'SEARCH'. Below the header, a banner features a photograph of various colored materials. The main content area has a 'Sample Material' section with a brief description. A central column is titled 'NEW MATERIALS' and lists 'Casing Material 2' and 'Micro Material 1' with their respective details. To the right, a 'FEATURED CASE STUDY' section highlights 'Home Depot House' with details like date (12/30/2009), location (Durham, NC USA), type (Residence Hall), and material (Insulation 4A). A 'NEW PUBLICATIONS' section lists 'CRD-C166-92 Standard Test Method for Static Modulus of Elasticity of Concrete in Tension' and 'FED. TEST METHOD STD. NO. 372 Test for Critical Radiant Flux of Carpet Flooring'.

- **SITE**, an online database for security products meeting ISC, VA, and DOD requirements

The screenshot shows the SITE website with a blue header. The top navigation bar includes links for 'ABOUT', 'INTERAGENCY SECURITY COMMITTEE', and 'CONTACT'. Below the header, a banner features a photograph of a modern building. The main content area has a 'Sample Products' section with a brief description. A central column is titled 'BROWSE PRODUCTS & TECHNOLOGIES' and lists categories like Site, Building Envelope, Structural System, Utilities & Distribution Systems, Building Systems, Security Systems, and Functional Spaces. The bottom of the page includes a footer with the National Institute of Building Sciences logo and contact information.

**Homeland
Security**

Science and Technology

BIPS Publications

Publications

- Aging Infrastructure
- RVS Manuals
- Update of FEMA 426
- Update of FEMA 428
- Preventing Structures from Collapsing
- Designing for a Resilient America
- Security, Energy, and the Environment

Homeland Security

Science and Technology

IDD High Performance Resilience Program

The High Performance – Integrated Design Resilience Program

The High Performance – Integrated Design Resilience program's overall goal is to provide the built environment with enhanced blast and CBR resistance that meets all performance requirements needed by our nation's buildings and infrastructure at the highest possible level. The program promotes an integrated approach that combines all hazards (natural and man-made), aging/extension of life, and continuity of operations to anticipate, absorb, adapt to, and rapidly recover from a disruptive event. The achieved resilience reduces the impact of the event and the duration of its effect through resourcefulness, robustness, and rapid recovery.

The program is supported by three primary paradigms: 1) that it is possible to provide a built environment that has the highest level of performance and resiliency in a comprehensive and cost effective manner; 2) that to achieve this, all facets of the process from design to operation must be integrated and 3) that through high performance and integrated design infrastructure can achieve resilience from a disruptive event.

High Performance – Integrated Design Resilience Program

Science and Technology Directorate
Infrastructure and Geophysical Division
U.S. Department of Homeland Security

Science and Technology Directorate
Infrastructure and Geophysical Division
U.S. Department of Homeland Security

Homeland Security

<http://www.dhs.gov/files/programs/high-performance-integrated-design-program.shtml>