

United Launch Alliance

Presentation to the

National Research Council

04 February 2013

Copyright © 2013 United Launch Alliance, LLC Unpublished Work. All Rights Reserved.

United Launch Alliance

- Two World Class Launch Systems Operating as a Single Provider to the U.S. Government
 - Atlas V Product Line, Delta IV Product Line, Delta II Product Line
- More Than a Century of Combined Experience in Expendable Launch Systems & Providing Assured Access to Space
 - Pooled Experience of More Than 1,300 Launches
 - Legacy Reaching Back to the 1950s
- Responsible for Design, Development, Production, Spacecraft Integration, and Launch

Delta 2

ULA Launch History (Through 2012)

Sixty-Six Launches, 100% Mission Success

Sincy and Launches, Loo is mission auccess

ULA Human Spaceflight Programs

Exploration Flight Test

Delta IV HLV Launch of Orion Capsule in 2014

Commercial Crew

Space Launch System

Stage for Heavy Lift in 2017

Broad ULA Support to the Nation's Human Spaceflight Program

Human Spacecraft in 2016

ULA

Exploration Flight Test

- Exploration Flight Test 1 (EFT-1) of LMC Orion Capsule
 - Integrate and Launch on Delta IV HLV
 - Controlled Re-Entry of Orion Capsule
- ULA Effort Includes
 - Mission Unique Accommodations
 - LC-37 Infrastructure Upgrades
 - Modify MST Platforms at Levels 9/10 for 5.5M Capsule
 - Modify Swing Arm #3 umbilical carrier for Orion Interfaces
 - Run EGSE Fiber Optic Cables
- Launch in September 2014
 - 2 MEO Orbits with Targeted Re-entry into Pacific Ocean

Space Launch System

- Two Delta IV 5m Cryogenic Second Stages, Rebranded as NASA Interim Cryogenic Propulsion Stage (ICPS) with the Option for 2 Additional
 - Mission Unique Modifications
 - 18" Tank Stretch
 - Emergency Detection System
 - Common Avionics on DCSS
- Launches from SLC-39 in December 2017 (Uncrewed) and 2021 (Crewed)
 - Lunar free-return mission

Commercial Crew

- Commercial Crew Integrated Capability (CCiCap) Development and Launch of the Boeing CST-100 and Sierra Nevada Dream Chaser on Atlas V-4X2
 - POP through May 2014
- ULA Effort Includes
 - Human Spaceflight Certification
 - Emergency Detection System
 - Dual Engine Centaur
 - Common Avionics
 - LC-41 Modifications
 - Crew Access Tower & Arm
 - Elevator & Stairway
 - Slide Wires

- Two Launch Services (BA Dates)
 - Uncrewed Mission in August 2016
 - Crewed Mission in December 2016

Human Spaceflight Certification

- CCiCap Base Phase includes Integrated HSF Certification Effort
 - Atlas V compliance with NASA CTS-1100 and spacecraft requirements
 - Integrate Crew Safety baseline
 - Integrate Loss of Crew/Mission PRA
 - Integrate Hazard Analyses
- Leverage NASA Atlas V Certification
 - Atlas V certified to NASA Risk Category 3 (highest certification level)
 - Atlas V nuclear safety launch approval
- Human Spaceflight Certification is a combination of technical/operations requirements satisfaction, flight history

NASA can leverage the body of evidence already available for Atlas V HSF Certification

UL 🔨 Advanced Cryogenic Evolved Stage (ACES) United Launch Alliance The best of Centaur and Delta Combined ACES Am Delta IV **Benefits Reduced Cost Increased Performance Mission Flexibility Long Duration** Centaur **Numerous Burns Improved Reliability** 5m Delta IV

13 March 2013 | 11

Redundant IVF Modules

Integrated Vehicle Fluids

- IVF is an Auxiliary Power Unit
 - Burns Waste H2/O2
 - -Small Internal Combustion Engine,
 - Thrusters, Heat exchanger
 - Produces
 - Attitude Thrust
 - Electrical Power
 - Tank Pressurization Gases
 - Prototype hardware in development testing
 - IVF Heat Exchanger selected by NASA "SLS Advanced Technology" for CRAD
- Mission Benefits
 - Mission Flexibility
 - -Large Mass Reduction
 - -Low Penalty Vehicle Disposal
 - Eliminates all Hydrazine, Helium
 - Eliminates Large Batteries
 - -Long Duration, Numerous Burns
 - Block-redundancy for Reliability
 - -Large Functional Margins

Lunar Surface Mission

Mass Fraction more important than ISP, Boil-off & duration combined

13 March 2013 | 13

Mars Orbit Mission

Payload

Cryo Propellant Storage & Transfer

- Cryogenic Propellant Storage and Transfer Technology is key to achieving a feasible chemical propulsion exploration architecture
 - Enables high mass fraction
 - Launch empty in-space tanks to LEO
 - Top off before departure
- □ 2010 NRC report of NASA's technology roadmaps:

Recommendation. Cryogenic Storage and Handling. Reduced gravity cryogenic storage and handling technology is close to a "tipping point," and NASA should perform on-orbit flight testing and flight demonstrations to establish technology readiness.

 NASA OCT established cryogenic propellant storage and transfer project

Summary

- Exploration Missions are technically feasible with capabilities currently under development by NASA and commercial companies
 - NASA's commercial crew program for crew transportation to LEO
 - Advanced upper stage concepts extrapolated for in-space transportation
- Existing chemical propulsion technology can be the basis of feasible beyond Earth exploration missions
 - Existing commercial and in-development super heavy launchers to deliver mass and crew to LEO
 - LO2/LH2 in-space propulsion
 - Propellant mass fraction is driving parameter
 - Passive thermal management
 - LO2/LH2 for ACS, pressurization, thermal management and power (IVF)
 - Propellant storage and transfer capability enables very high mass fraction

Backup

Copyright © 2012 United Launch Alliance, LLC. Unpublished Work. All Rights Reserved.

Further Information

ULA public papers:

2009 Architecture:

http://www.ulalaunch.com/site/docs/publications/AffordableExploratio nArchitecture2009.pdf

2009 DTAL (XEUS):

http://www.ulalaunch.com/site/docs/publications/DualThrustAxisLande r(DTAL)2009.pdf

2012 IVF: <u>http://www.ulalaunch.com/site/docs/publications/IVF-Space-2012.pdf</u>

SpaceWorks LEO:

http://www.ulalaunch.com/site/docs/publications/SEI%20-%20CPS%20Mission%20Sensitivity%20Study%20-%20LEO%20Departure%20-%20revD.pdf

SpaceWorks L1:

http://www.ulalaunch.com/site/docs/publications/SEI%20-%20CPS%20Mission%20Sensitivity%20Study%20-%20L1%20Departure%20revB.pdf

Locations

ACES, DCSS, Centaur Comparison

DCSS 5m 63 klb Propellant 201" diameter 0.87 mass fraction

<u>Centaur</u> 46 klb Propellant 120" diameter 0.90 mass fraction

<u>ACES</u> 110 klb Propellant 196" diameter ~0.92 mass fraction

Advanced Common Evolved Stage (ACES) The Best of Centaur and Delta

Mission Benefits

- Reduced Cost
- Increased Performance
 - Mission Flexibility
 - Improved Reliability

Low Risk Evolution of:

- Existing Atlas V and Delta IV Boosters
 - Existing 5.4M Payload Fairing
- Familiar Stainless Steel Tank Structure
 - Common Avionics
- Existing Fluid and Pneumatic Systems
 - Existing Flight Software
 - Existing RL10C Engine
 - Existing Launch Site with Minimal Modifications

Existing Systems Packaged into Larger More Capable Stage

Auxiliary Power Unit

– Eliminates He, N2H4, Large Batteries

Provides enhanced mission flexibility

- Power for long duration missions
- "Unlimited" Tank Pressurization Cycles, Main Engine Burns
- Increased RCS impulse capability
 - Mid course corrections

Development status

- Key elements in prototype testing
- Integrated brass board ground test 4th Q 2013

Power to payload

- Enroute and while on lunar surface using ACES boil-off

Cryo Propellant Storage & Transfer Ongoing risk Reduction

CRYOTE Ground Test Article 1

- Testing Jan 2012 (LN2)
- Sub scale (2.5' dia)
- Demonstrate: no vent fill, vapor cooling, thermodynamic vent system

CRYOTE Ground Test Article 2

- Testing Dec 2012 (LN2)
- Sub scale (2.5' dia)
- Demonstrate: enhanced no vent fill, vapor cooling, thermodynamic vent system

CRYOTE Ground Test Article 3

- Testing 1Q 2014 (LN2 & LH2)
- Full Scale (10' dia)
- Demonstrate <0.1%/day boil-off equivalent

Engaged with NASA's Cryo Propellant Storage and Transfer program

XEUS eXperimental Enhanced Upper Stage

- Mission kit to enable ACES/CPS to support lunar surface access
 - Affordable
 - Development of kit, not entire stage
 - Large surface payloads (15 mT with SLS)
 - Combine existing upper stage and vertical take off vertical landing technology
- □ Full scale terrestrial technology demonstrator
 - Distributed propulsion, control, impingement, slosh

United Launch Allian