The Air Force is Critically Dependent on Science & Technology Advances

- Powered flight
- Supersonic flow
- Communications
- Global positioning
- Stealth / LO
- Long-endurance ISR
- Gas turbine engine
- Night attack
- ICBMs
- Precision strike
- Computer simulations
- High-power lasers
- Aerial refueling
- High-speed flight
- Space ISR
- Space launch
- Directed energy
- Hypersonics
- Rocket flight
- Long-range radar
- 5th-gen fighters
- Blended wing-body
- Unmanned systems
- Cyber operations

Distribution A. Approved for public release; distribution is unlimited.
Global Horizons

Study Methodology

GLOBAL SECTOR

Air
Space
Cyber
Comm/IT
C2ISR
Energy
Enabling
Health
Support
Ed/Train

CORE FUNCTION

Global Threats and Opportunities

GLOBAL PRIVATE SECTORS

RFI, EXPERT SUMMITS

Global Vigilance, Reach and Power dependent upon contested Global Domains and Globalized Industrial Sectors

Global Horizons

United States Air Force Global S&T Vision 2013-2027

AF/ST TR 13-01
1 August 2013

Independent
Senior
Expert Review

COCOM and MAJCOM Requirements

CFMPs, STIPLs

REQUIREMENTS AND PLANS

STRATEGY

Global Horizons

United States Air Force
Global S&T Vision
2013-2027

AF/ST TR 13-01
1 August 2013

Independent
Senior
Expert
Review

COCOM and MAJCOM
Requirements

CFMPs, STIPLs

REQUIREMENTS AND PLANS

STRATEGY

Global Horizons

United States Air Force
Global S&T Vision
2013-2027

AF/ST TR 13-01
1 August 2013

Independent
Senior
Expert
Review

COCOM and MAJCOM
Requirements

CFMPs, STIPLs

REQUIREMENTS AND PLANS

STRATEGY

Global Horizons

United States Air Force
Global S&T Vision
2013-2027

AF/ST TR 13-01
1 August 2013

Independent
Senior
Expert
Review

COCOM and MAJCOM
Requirements

CFMPs, STIPLs

REQUIREMENTS AND PLANS

STRATEGY

Global Horizons

United States Air Force
Global S&T Vision
2013-2027

AF/ST TR 13-01
1 August 2013

Independent
Senior
Expert
Review

COCOM and MAJCOM
Requirements

CFMPs, STIPLs

REQUIREMENTS AND PLANS

STRATEGY

Global Horizons

United States Air Force
Global S&T Vision
2013-2027

AF/ST TR 13-01
1 August 2013

Independent
Senior
Expert
Review

COCOM and MAJCOM
Requirements

CFMPs, STIPLs

REQUIREMENTS AND PLANS

STRATEGY

Global Horizons

United States Air Force
Global S&T Vision
2013-2027

AF/ST TR 13-01
1 August 2013

Independent
Senior
Expert
Review

COCOM and MAJCOM
Requirements

CFMPs, STIPLs

REQUIREMENTS AND PLANS

STRATEGY

Global Horizons

United States Air Force
Global S&T Vision
2013-2027

AF/ST TR 13-01
1 August 2013

Independent
Senior
Expert
Review

COCOM and MAJCOM
Requirements

CFMPs, STIPLs

REQUIREMENTS AND PLANS

STRATEGY

Global Horizons

United States Air Force
Global S&T Vision
2013-2027

AF/ST TR 13-01
1 August 2013

Independent
Senior
Expert
Review

COCOM and MAJCOM
Requirements

CFMPs, STIPLs

REQUIREMENTS AND PLANS

STRATEGY
Global Horizons
1999-2025+

Global Population (% urban, avg age, % middle class)
US Off-shoring (% Change)
CMOS Integrated Circuit Feature Size
Info Tech – Hosts, Users (% Pop), Mobile, Bandwidth (log), Speed
US Computing PhD Degrees
Chinese Computing PhD Degrees
Malware Signatures
Climate Change (Temp, Humidity)
Reserves/Production (Energy, Minerals)
Global R&D (% foreign)

CMOS – Complimentary Metal-Oxide Semiconductor; IC – Integrated Circuit
World Trade Organization (WTO), International Monetary Fund (IMF)
PhD Degrees in Computer Science/Computer Engineering/Computational Mathematics
Global R&D (2011)

Size of circle is relative amount of Annual R&D

Sources: Battelle R&D Magazine, International Monetary Fund, World Bank, CIA World Factbook, OECD

R&D as % GDP

Distribution A. Approved for public release; distribution is unlimited.
Global Environment

Global Forces
- Demographics
- Climate
- Resources (Natural, Talent, Treasure, Time)
- Globalization/Proliferation
- Conflict

Global Sectors
- Manufacturing and Materials
- Transport and Logistics
- Energy and Utilities
- Health and Pharma
- Communications and IT
- Financial Services
- Education and Training

Space: Congested, Competitive, Contested

Cyberspace: threatened by malicious insiders, supply chain attacks, and advanced persistent threats to deceive, degrade, disrupt, destroy

Command and Control (C2) & Intelligence Surveillance and Reconnaissance (ISR) targeted as a center of gravity threatening integrated and resilient global operations

Air: Anti-Access, Area Denial (A2/AD)

Global Vigilance, Reach and Power dependent upon contested Global Domains and Globalized Industrial Sectors

Distribution A. Approved for public release; distribution is unlimited.
Air Challenges and Opportunities

<table>
<thead>
<tr>
<th>Theme</th>
<th>Near (FY13-17)</th>
<th>Mid (FY18–22)</th>
<th>Far (FY23–27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Speed Systems/Directed Energy
Weapons (L)
High Power Microwave missile (L)
Target identification (pulsed lasers) (L)</td>
<td>ISR platforms (L)
Directed Energy
Aircraft:
Mounted a/c self protect (CW electric lasers) (L)</td>
<td>Reusable, responsive platforms (L)
Constrained
Aircraft:
Integrated a/c self protect; speed-of-light strike (L)</td>
<td></td>
</tr>
<tr>
<td>Autonomy/Distributed Decision Making/Fractionated Systems
Distributed mission planning (L)
Sense and avoid (L)
Automat/Autonomous formation flight (L)</td>
<td>Automated terminal area operations (F*)
*Platform and Operations
Cooperative and autonomous control (L)</td>
<td>Human/machine cognitive communications (F*)
Human/machine teaming (F*)</td>
<td></td>
</tr>
<tr>
<td>Advanced Aircraft Adaptive Architecture
Enhanced analysis for V&V (F*)
Certification of composite structures (F*)
Large composite structures (F*)</td>
<td>System-of-system certification (F*)
Processes
Certification:
Modular aircraft architectures (F*)
Plug-and-play avionic interface (L)</td>
<td>Automated assembly and quality assurance (F*)
Processes
Certification:
Universal weapon system interface (L)</td>
<td></td>
</tr>
<tr>
<td>Small Munitions/Long Range Missiles
Cooperative control & selectable effects (L)
Self-realizing and adaptive guidance (L)</td>
<td>Multi-purpose, multi-mode effects packages (L)
Long Range Missiles
Small munitions:
Sensor/seekers, apertures, payload, guidance (L)</td>
<td>Optimized internal carry design (L)
Long Range Missiles
Small munitions:
Real-time adaptive software (L)</td>
<td></td>
</tr>
<tr>
<td>Energy Efficient Aircraft and Propulsion Design
ADVENT/AETD/ESSP (L)
Thermal management/adaptive cycles (F*)
Laminar flow control (F*)
Conformal antennae (F*)</td>
<td>HEETE (L)
Propulsion and Power
Propulsion:
On-demand integrated subsystems (L)
Lightweight, unitized structure (F*)
Adaptive structure and active flow control (F*)</td>
<td>Adaptive HEETE (L)
Propulsion and Power
Propulsion:
Hybrid systems/distributed propulsion (F*)
Supersonic tailless designs (L)
N+1 generation efficient aircraft configurations (F*)</td>
<td></td>
</tr>
</tbody>
</table>

* AF should follow industry, unless a specific AF application

Maturing affordable game changing S&T across the Air Domain allows us to remain ahead of near-peer threats, operate with efficiency and impunity in A2AD environments, and evolve Air Doctrine with new technologies.
Air Domain Highlights

- Key Challenge will be Contested Environment (A2/AD)
 - Future adversaries will have 5th Aircraft, UAVs & systems to undermine our ability to operate with impunity
 - Anti-GPS
 - Comms Attacks (Voice/Datalink)
 - Attacks on C2 (Cyber)
 - Anti-UAV, IADS, etc…
 - Drives our focus to new capabilities to regain our critical edge
 - Assured Comms
 - Precision Navigation & Timing (PNT) – Cold Atom
 - Long range precision strike
 - Hypersonics
 - Directed energy Weapons
 - Precise targeting, disrupt/destroy electronics, sensing, blind/destroy sensors
 - Precision effects, fast response, low collateral damage, deep magazine, low costs
 - High power microwave – non-lethal effects to disperse crowds and disrupt electronics
Cold-Atom Inertial Navigation Systems
For GPS-Denied Environments

Position Uncertainty for 3 Scenarios

36 h loiter
20,000 m
20 m
1-3 m

Flight half-way around world
1000 m
1 m
1-3 m

Ballistic missile flight
500 m
0.1 m
1-3 m

Cold atom INS: potentially provide orders of magnitude better performance than laser-based INS, and accuracy comparable to GPS for GPS-denied environments

Distribution A. Approved for public release; distribution is unlimited.
Providing Enhanced Range & Persistence

- For Combat Air Force: Adaptive Versatile Engine Technology (ADVENT) & Adaptive Engine Technology Development (AETD)

- For Mobility/ISR: Highly Energy Efficient Turbine Engine (HEETE)

- Integrated Propulsion Power and Thermal (INPPAT)

- Supersonic Turbine Engine for Long Range (STELR)

- Efficient Small Scale Propulsion (ESSP)

- Legacy Fleet: Aerodynamic efficiencies / drag reduction – microvanes/winglets/laminar flow
RPAs Role in Future Operations

- RPAs will be potentially called upon to do a larger set of missions
 - ISR
 - Precision strike
 - Refueling
 - Transport
 - Long-range bombing

- RPAs will need to be able to work as a part of mixed manned-unmanned aircraft team

- Requires systems to
 - Better support integrated operations
 - Better ability to work autonomously
 - Better ability to work in conjunction with other UAVs
 - Better ability to work with manned oversight/coordination
Need Advanced Remote Cockpits to Support RPA Pilot SA

- **Challenges to pilot situation awareness**
 - Time lags
 - Intermittent/Noisy data
 - Limited transmission of situationally relevant information
 - Visual (soda straw, size/distance)
 - Auditory
 - Tactile/Kinesthetic
 - Olfactory
 - Poor user interfaces for many systems
 - Little support for team tasks
 - Mission Context
 - Information Needs
 - Needed Imagery
 - Automation
 - Out-of-the-loop problems
 - Understandability of actions/intentions

Mishaps involving significant human factors shortcomings
- Pioneer - 59% (55 of 93)
- Predator - 76% (16 of 21)
- Global Hawk - 25% (1 of 4)

AF Scientific Advisory Board Report, 2003
Autonomy Is An Underlying Theme Across Many Air Force Missions

Remotely Piloted Vehicles

Space

C2&ISR

Cyber Operations

Logistics

Distribution A. Approved for public release; distribution is unlimited.
Space Highlights

- Modern operations are highly dependent on space assets to provide comms, precision navigation and superior battlefield SA.
- Space will be congested, contested and competitive
- Need to be able to defend space assets to maintain our advantages, be agile to attacks and changing operational needs, and rapidly insert new capabilities
 - Highly distributed and disaggregated space assets
 - More agile, reliable, and defensible posture
 - Low-cost, small satellites
 - Flexible, quick, easy, inexpensive launch
 - Improved space situation awareness
 - Tracking 10’s of thousands of objects
 - Understanding their impact on our operations
 - Additive manufacturing
 - Long term promise for rapid response and parts in space
Cyberspace Highlights

- **Mission assurance and empowerment**
 - Enhanced cyber situational awareness for air, space, and cyber commanders enabled by automated network and mission mapping
 - Early vulnerability detection and enemy behavior forecasting enabled by advanced cyber ranges, including high fidelity, real-time modeling and simulation
 - Develop offensive cyber capabilities to augment kinetic operations during wartime scenarios to affect strategic, operational and tactical missions

- **Agility and Resilience**
 - Effective mix of redundancy, diversity, and fractionation for survivability
 - Reduction of attack surface, critical mission segregation, and attack containment
 - Autonomous compromise detection and repair (self healing) and real-time response to threats
 - Transition from signature based cyber sensors to behavior understanding to enhance high performance attack detection
 - Active defense requires rapid maneuver enabled by dynamic, reconfigurable architectures (e.g., IP hoping, multilevel polymorphism)
Cyberspace Highlights

- **Optimized human-machine systems**
 - Measurement of physiological, perceptual, and cognitive states to enable personnel selection, customized training, and (user, mission, and environment) tailored augmented cognition.
 - High performance visualization and analytic tools to enhance situational awareness, accelerate threat discovery, and empower task performance.
 - Autonomy appropriately distributed between operators and machines, enabled by increased transparency of autonomy and increased human “on the loop” or supervisory control.

- **Software and hardware foundations of trust**
 - Operator trust in systems (e.g., sensors, communications, navigation, C2) enabled by trusted foundries, anti-tamper technologies, and supply chain assurance, as well as effective mixes of government, commercial off the shelf, and open source software.
 - Formal verification and validation of complex, large scale interdependent systems.
 - Advanced vulnerability analysis, automated reverse engineering, real-time forensics tools.
 - High speed encryption, quantum communication, and quantum encryption for confidentiality and integrity.
C2ISR Highlights

- Data transformed into higher levels of SA
 - Swimming in sensors, drowning in data
 - Integrate data and provide rapid “at a glance understanding of information” using cognitive engineering tools

- Integrated networked operations (connect 4th gen and 5th gen aircraft), sensors, command centers across air, space, cyber, sea, ground
 - Secure, resilient, agile, and high capacity air-space-and-surface network to enable joint and multinational global C2 and ISR.
 - Fully integrate weapon systems and PCPAD across air, space, and cyberspace to achieve synchronized effects
 - Provide processing to provide the right information to each user based on goals/decision needs
 - Cognitive modeling to provide better funneling of information under limited bandwidths

- Effective human/automation teams
 - Develop flexible autonomy and all-source fusion technologies for enhanced analysis and planning capabilities for C2 and ISR.
Future C2 & ISR

Integrated Networked Operations

Trusted Resilient Software & Cyberspace

Effective Human & Automation Teams

Data Transformed Into Higher Levels Of Situation Awareness

Built on a platform for rapid innovation, prototyping and testing

Distribution A. Approved for public release; distribution is unlimited.
Mission Support Recommendations

- Experiment with new cross-domain Digital Design Tools
 - Identify pilot programs to integrate System of System concept trades & digital design tools
 - Verify claims the new tools reduce development time by at least 25% and save program costs

- Reinvigorate a technology demonstration prototype program
 - Reallocate resources to increase the number of technology demonstrations
 - Explore feasibility and utility of creating small, independent rapid prototype teams comprised of Product Centers, Labs, Users, Academia, and Industry
 - Leverage external technical talent through Open Challenges and produce novel technologies and solutions at a fraction of the time and cost to conventional processes
System Design, Material, & Manufacturing Highlights

- Open system architectures
 - Plug-n-play, modular, standardized components
 - Standardized interfaces
 - Critical for technological agility
 - Threats change, technology changes
 - Need to be able to rapidly modernize

- More efficient systems
 - Design for maintainability
 - Design for operability (human-system integration)
 - Energy efficiency

- Seamless thread from design to manufacturing to maintainability
 - Rapid prototyping test environments
 - Significant build up of modeling and simulation tools
 - Digital thread
 - Connectivity of test data/models to provide integrated information on a system
 - Digital twin
 - Lifetime model of system to make maintenance & logistics customized

- Additive manufacturing
Agile Manufacturing for Rapid & Affordable Fielding

Affordable Capability...... New Systems /sub-systems

Networked Collaborative Design: 60% less time

Flex Weapons

Open Architecture ISR Pod

From S&T to the Field: Faster @ Less Cost

Model-Based/ Virtual Mfg: 50% less time

Direct Digital & Additive Mfg:
Small lot production

Auto/Digital Inspection:
20% less time

Automated Assembly:
30% less time

Distribution A. Approved for public release; distribution is unlimited.
Sets Air Force Science and Technology Vision 2013-2027
