

# **Aeronautics Research and Technology Roundtable**

July 17 Meeting Summary

Presented to ASEB Meeting, October 22

# ARTR Membership

**John J. Tracy, Chair**

Chief Technology Officer  
Senior Vice President of Engineering, Operations  
and Technology  
The Boeing Company

**Michael B. Bragg**

Dean, College of Engineering  
University of Washington

**Daniel K. Elwell**

President  
Elwell and Associates, LLC

**Alan H. Epstein**

Vice President, Technology & Environment  
Pratt & Whitney

**Mike Hirschberg**

Executive Director  
American Helicopter Society (AHS) International

**Bruce J. Holmes**

Chief Executive Officer  
NextGen AeroSciences, LLC

**Margaret T. Jenny**

President  
RTCA, Inc.

**Nicholas D. Lappos**

Senior Technical Fellow – Advanced  
Technology Sikorsky Aircraft Corp And Vertical  
Lift Consortium

**Lourdes Maurice**

Executive Director of the Office of  
Environment and  
Energy  
Federal Aviation Administration

**M. Granger Morgan**

Lord Chair Professor in Engineering Professor  
and Department Head  
Carnegie Mellon University (CMU)

**Steven Pennington**

Director of Bases, Ranges and Airspace, U.S.  
Air Force Executive Director, Policy Board on  
Federal Aviation  
Department of Defense

**Eli Reshotko**

Kent H. Smith Professor Emeritus of  
Engineering  
Case Western Reserve University

**Thomas E. Romesser**

(Retired Chief Technology Officer and Sector  
Vice President, Advanced Programs and  
Technology Division  
Northrop Grumman Aerospace Systems)

**Jaiwon Shin**

Associate Administrator,  
Aeronautics Research Mission Directorate  
NASA

**Patricia G. Smith**

Aerospace Consultant  
Patti Grace Smith Consulting, L.L.C.

**Ian A. Waitz**

Dean of Engineering, and Jerome C.  
Hunsaker  
Professor of Aeronautics and  
Astronautics  
Massachusetts Institute of Technology

**Robert Walters**

Vice President for Research  
Virginia Tech

**David W. Yoel**

Chief Executive Officer  
American Aerospace Advisors, Inc. (AAA)

# Aeronautics Research and Technology Roundtable July 17 Meeting

## Statement of Task

“Define and explore critical issues related to NASA’s aeronautics research agenda”

“Frame systems-level research issues”

“Explore options for public-private partnerships that could support rapid, high-confidence knowledge transfer”

“Facilitate candid dialogue among participants, to foster greater partnership among the NASA-related aeronautics community, and, where appropriate, carry awareness of consequences to the wider public”

**NASA briefed the Roundtable about ARMD’s plans for flight research**

**NASA will increase flight research in a number of areas as it ends some programs and can increase funding for flight research projects.**

**NASA is exploring new aircraft configurations.**

**Flight demonstration is a requirement for enabling overland commercial supersonic flight. (Focus is on data to change regulation, not developing a prototype.)**

**Providing autonomy capability for the community.**

- Establish a National Flight Research Alliance
  - A flexible partnership across the aviation industry to rapidly and cost effectively bring the most appropriate flight assets to bear on critical flight research needs

# Future Flight Research Needs Point to a Broader Range of Aircraft and System Applications

## Possible X-Aircraft and X-System Flight Experiments

Full TBO integration



### **Safe, Efficient Growth in Global Operations**

- Enable full NextGen and develop technologies to substantially reduce aircraft safety risks

Low Boom Demonstration



### **Innovation in Commercial Supersonic Aircraft**

- Achieve a low-boom standard

New Configurations & Integrated Technologies



### **Ultra-Efficient Commercial Vehicles**

- Pioneer technologies for big leaps in efficiency and environmental performance

Alternative Energy and New Propulsion Systems



### **Transition to Low-Carbon Propulsion**

- Characterize drop-in alternative fuels and pioneer low-carbon propulsion technology

Complex System-Wide Interactions among Flight & Ground Systems



### **Real-Time System-Wide Safety Assurance**

- Develop an integrated prototype of a real-time safety monitoring and assurance system

UAS Integration & Autonomy Applications



### **Assured Autonomy for Aviation Transformation**

- Develop high impact aviation autonomy applications

# Characteristics of A New Era of Experimental Flight?

- Partnership – Flight Experimentation has always had a strong emphasis on partnership
  - Enable an inclusive partnership among the aviation community
  - Expand to non-traditional partners
- Risk & Technology – Recapture ability to take risk and utilize emerging technologies to reduce cost of flight
- Assets – Expand the stable of available U.S. assets for flight experimentation
  - Utilize Live Virtual Constructive-Distributed Environment (LVC-DE) to establish a virtual test range for X-Systems type experiments
- Expanded Perspective – X-Aircraft and X-Systems
  - Enable evolution and transformation of the aviation system to meet future needs