Aeronautics Research and Technology Roundtable

July 17 Meeting Summary

Presented to ASEB Meeting, October 22
ARTR Membership

John J. Tracy, Chair
Chief Technology Officer
Senior Vice President of Engineering, Operations and Technology
The Boeing Company

Michael B. Bragg
Dean, College of Engineering
University of Washington

Daniel K. Elwell
President
Elwell and Associates, LLC

Alan H. Epstein
Vice President, Technology & Environment
Pratt & Whitney

Nicholas D. Lappos
Senior Technical Fellow – Advanced Technology Sikorsky Aircraft Corp And Vertical Lift Consortium

Lourdes Maurice
Executive Director of the Office of Environment and Energy
Federal Aviation Administration

M. Granger Morgan
Lord Chair Professor in Engineering Professor and Department Head
Carnegie Mellon University (CMU)

Steven Pennington
Director of Bases, Ranges and Airspace, U.S. Air Force Executive Director, Policy Board on Federal Aviation Department of Defense

Eli Reshotko
Kent H. Smith Professor Emeritus of Engineering
Case Western Reserve University

Thomas E. Romesser
(Retired Chief Technology Officer and Sector Vice President, Advanced Programs and Technology Division
Northrop Grumman Aerospace Systems)

Jaiwon Shin
Associate Administrator,
Aeronautics Research Mission Directorate
NASA

Patricia G. Smith
Aerospace Consultant
Patti Grace Smith Consulting, L.L.C.

Ian A. Waitz
Dean of Engineering, and Jerome C. Hunsaker Professor of Aeronautics and Astronautics
Massachusetts Institute of Technology

Robert Walters
Vice President for Research
Virginia Tech

David W. Yoel
Chief Executive Officer
American Aerospace Advisors, Inc. (AAAI)
Aeronautics Research and Technology Roundtable July 17 Meeting

Statement of Task

“Define and explore critical issues related to NASA’s aeronautics research agenda”

“Frame systems-level research issues”

“Explore options for public-private partnerships that could support rapid, high-confidence knowledge transfer”

“Facilitate candid dialogue among participants, to foster greater partnership among the NASA-related aeronautics community, and, where appropriate, carry awareness of consequences to the wider public”

NASA briefed the Roundtable about ARMD’s plans for flight research

NASA will increase flight research in a number of areas as it ends some programs and can increase funding for flight research projects.

NASA is exploring new aircraft configurations.

Flight demonstration is a requirement for enabling overland commercial supersonic flight. (Focus is on data to change regulation, not developing a prototype.)

Providing autonomy capability for the community.
• Establish a National Flight Research Alliance
 – A flexible partnership across the aviation industry to rapidly and cost effectively bring the most appropriate flight assets to bear on critical flight research needs
Possible X-Aircraft and X-System Flight Experiments

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe, Efficient Growth in Global Operations</td>
<td>Enable full NextGen and develop technologies to substantially reduce aircraft safety risks</td>
</tr>
<tr>
<td>Innovation in Commercial Supersonic Aircraft</td>
<td>Achieve a low-boom standard</td>
</tr>
<tr>
<td>Ultra-Efficient Commercial Vehicles</td>
<td>Pioneer technologies for big leaps in efficiency and environmental performance</td>
</tr>
<tr>
<td>Transition to Low-Carbon Propulsion</td>
<td>Characterize drop-in alternative fuels and pioneer low-carbon propulsion technology</td>
</tr>
<tr>
<td>Real-Time System-Wide Safety Assurance</td>
<td>Develop an integrated prototype of a real-time safety monitoring and assurance system</td>
</tr>
<tr>
<td>Assured Autonomy for Aviation Transformation</td>
<td>Develop high impact aviation autonomy applications</td>
</tr>
<tr>
<td>Full TBO integration</td>
<td></td>
</tr>
<tr>
<td>Low Boom Demonstration</td>
<td></td>
</tr>
<tr>
<td>New Configurations & Integrated Technologies</td>
<td></td>
</tr>
<tr>
<td>Alternative Energy and New Propulsion Systems</td>
<td></td>
</tr>
<tr>
<td>Complex System-Wide Interactions among Flight & Ground Systems</td>
<td></td>
</tr>
<tr>
<td>UAS Integration & Autonomy Applications</td>
<td></td>
</tr>
</tbody>
</table>
Characteristics of A New Era of Experimental Flight?

• Partnership – Flight Experimentation has always had a strong emphasis on partnership
 – Enable an inclusive partnership among the aviation community
 – Expand to non-traditional partners

• Risk & Technology – Recapture ability to take risk and utilize emerging technologies to reduce cost of flight

• Assets – Expand the stable of available U.S. assets for flight experimentation
 – Utilize Live Virtual Constructive-Distributed Environment (LVC-DE) to establish a virtual test range for X-Systems type experiments

• Expanded Perspective – X-Aircraft and X-Systems
 – Enable evolution and transformation of the aviation system to meet future needs