
© 2016 Spirae, LLC 

Microgrids: Distributed 
Controls Perspective 

QER Public Outreach Workshop 

Andrew Merton, Ph.D.  |  February 2016 



2 

Spirae: Who We Are 
Spirae supports the transformation of the grid from centralized to distributed, enabling the integration of 
renewable resources, enhancing energy resilience, engaging prosumers, and stimulating flexible business models. 
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Spirae’s Wave™ control platform 
provides a scalable architecture for 
integrating and managing high levels of 
renewable and distributed energy 
resources (DER) at the edge of the grid. 

Centralized Generation Distributed Energy Resources (DER) 

Transformation 
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Spirae’s Wave™ Control Concept 
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Case Study 1: Necker Island 
Objective: Maximize renewable penetration to reduce diesel 

consumption by at least 75% 
System Summary 

– Remote island resort (BVI); 1995 MWh annual demand; 350 kW peak 
– Assets 

• (3×) 400 kVA Caterpillar Generator Sets 
• 320 kW PV Solar Plant 
• 900 kW Wind Turbine 
• 1000 kWh Battery Energy Storage System 
• Demand Response/Load Shed: pool heating, reverse-osmosis plant 

– Operational Constraints 
• Support complete suite of microgrid operations: black start, RE curtailment, etc. 
• Enforce genset minimum loading and run times/cool down periods 
• Recharge BESS with RE resources 
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Case Study 1: Necker Island—MicroGrid Use Cases 
Service load using 100% renewable resources 

– Pre-position BESS SoC and set mode to frequency and voltage master 
– Wind turbine able to provide volt/VAR support  
– Redirect extra-RE generation to BESS; curtail if necessary 

Service load with mix of conventional and RE resources 
– Maintain minimum load on generator sets (~100 kVA) 
– Prioritize direct consumption of RE resources: Wind and PV 

Black start and power system transitions 
– Leverage BESS when appropriate to energize system, transfer frequency and 

voltage control 
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Case Study 2: Flathead Electric Cooperative (FEC) 
Objective: Minimize monthly peak demand 
System Summary 

– Libby to Kalispell, MT; 65,000+ meters; ~240 MW winter peak (06:00-08:00) 
– Assets 

• Fleet of 600+ in-home electric water heaters distributed (non-uniformly) across 25 
substations; FEC’s goal is to recruit 5000 units over the next few years 

• Future: Expand program to include heat pumps (or other) 
– Operational Constraints 

• Single dispatch per household per workday; holidays and weekends excluded 
• Individual water heater engagement not to exceed 3 hours per day 
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Case Study 2: FEC—Solution Strategy 
Demand Response (DR) Application 

– Monitor the load forecast and, if conditions warrant, create and execute a 
dispatch plan to reduce the peak demand 

– Load forecast, updated at regular intervals, calibrated using realized (observed) 
power system, weather, and calendar data  

– Assets are grouped (e.g., by substation) and dispatched to maximize the 
expected demand reduction subject to minimizing the “snapback” i.e., stagger 
(feather) the start and end times 
• Dispatch schedule = {start time, duration, active power setpoint (if available)} 
• Note: Do not need to restore communications with individual assets to “release” from event 
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Case Study Comparison 
Necker Island 

– Microgrid solution 
– High speed communication 

requirements 
• Modbus/DNP3 

– Automated mode and setpoint 
control of all assets 

– 24/7 operations 
– On-site Operator interacts with 

the system 

FEC 
– DERMS solution 
– “Slow motion” process 

• Power line communications (Aclara) 
– Scalable to accommodate 100s 

to 1000s of end-user assets 
• Subscription manager to 

add/remove assets and to integrate 
with new asset classes 

– Opportunistic dispatch strategy 
– Hosted solution 

• Precursor to cloud implementation 
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Recommendations 
Align power system objective(s) with asset and communication 

capabilities 
– E.g., Webservice API may limit solution space 

• Working with Green Mountain Power to develop and integrate control of Tesla Power Walls 
(3.3 kW/ 7.0 kWh) into DR App to work in concert with Rainforest water heater control for 
peak load management (both are webservice implementations) 

• May not be able to perform volt/VAR (available modes, aggregation, etc.) 

Explore/advocate methods to reduce cost to implement 
– E.g., Capital to upgrade infrastructure or acquire new assets can be expensive 

• Seneca Nation interested in microgrid solution to separate from National Grid by combining 
in-situ (diesel) generation with planned 300 kW PV and 150 kW/600 kWh BESS 

• Solution strategy: Drive energy import/export to (near) zero at the boundary; no need to 
separate and re-sync 
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 The subsequent slides are provided to further illustrate 
application specific design principles and concepts. 

Support Slides 
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Example: Dispatch Plan Evolution(1 of 2) 
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Example: Dispatch Plan Evolution (2 of 2) 
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FEC Simulation: Forecast and Dispatch Plan Evolution 

Note(s) 
• Simulation study results, assuming no 

dispatchable assets, used to test/verify 
that the dispatch plan(s) update as the 
realized “month-to-date” peak increases. 

• Realized power demand (black) v. 
forecasted demand (blue) 

• Initial target = 170 MW (dotted red) 
• At midnight, the DR determines that the 

assets will need to be dispatched each day 
(dark red) 
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FEC Simulation: Forecast and Dispatch Plan Evolution 

Note(s) 
• At 04:00 MDT, minimal changes to the 

load forecast and dispatch plan(s) 
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FEC Simulation: Forecast and Dispatch Plan Evolution 

Note(s) 
• At 08:00 MDT, nearing initial scheduled 

dispatch 
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FEC Simulation: Forecast and Dispatch Plan Evolution 

Note(s) 
• At 12:00 MDT, a new “month-to-date” 

peak has been realized (190 MW) 
• All subsequent dispatch plans updated to 

reflect the new target of 190 MW 
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FEC Simulation: Forecast and Dispatch Plan Evolution 

Note(s) 
• By 20:00 the realized “month-to-date” has 

exceeded 191 MW 
• All subsequent dispatch plans have been 

updated including the cancelation of 
Friday’s dispatch (since the forecast peak 
is not expected to exceed 191 MW) 
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