Contents

• Global Challenges
• Strategy
• FY 2015 Accomplishments
• FY 2017 Budget
• New Aviation Horizons
• Other Budget Highlights
• Summary
Global Growth in Aviation: Opportunities and Challenges

Major Opportunities / Growing Challenges

Competitiveness—New state backed entrants, e.g., COMAC (China); Growing global R&D

Environment—Very ambitious industry sustainability goals; Large technology advances needed

Mobility—More speed to connect the world’s major cities; Opportunity for commercial supersonic flight

U.S. Technological Leadership Required!

Global Air Passengers by Region (% of Total)

2014 Global Aviation Industry

- 3.3B Passenger Trips
- North America and Europe combined is half of all Passenger Trips
- 58M Jobs
- $2.4T GDP

2034 Global Aviation Industry, est.

- 7B Passenger Trips
- Asia-Pacific Passenger Trips equal to North America and Europe combined
- 105M Jobs
- $6T GDP

Over 36,000 New Aircraft required (replacement and growth) over the 20 year period ($4-$5T value)

Sources: International Air Transport Association, Air Transport Action Group, Boeing

www.nasa.gov
Real and Growing International Competition for the Future of Aviation

We are not the only game in town anymore

- COMAC C919 nearing flight test
- Airbus acquired a US patent for a Mach 4+ supersonic aircraft concept. (July 2015)
- JAXA tested supersonic aircraft concept (July 2015)
 - World’s first successful drop test of a low boom supersonic design
- Airbus E-Fan flew across the English Channel (July 10, 2015)
- Airbus proposed a formation of electric aircraft consortium between EU and US (September 2015)
- Siemens is leading high power electric motor for airplanes
- Toyota and Nissan are eyeing development of electric aircraft
- Drone Market is rapidly growing – by 2020, the civil market will be as large as the military
 - Israel is the world’s largest drone exporter ($4.6B in the last 8 years)
 - Chinese DJI is the world’s biggest consumer small UAS maker by revenue
NASA Aeronautics
NASA Aeronautics Vision for Aviation in the 21st Century

Global

Sustainable

Transformative

6 Strategic Thrusts

- Safe, Efficient Growth in Global Operations
- Innovation in Commercial Supersonic Aircraft
- Ultra-Efficient Commercial Vehicles
- Transition to Low-Carbon Propulsion
- Real-Time System-Wide Safety Assurance
- Assured Autonomy for Aviation Transformation

U.S. leadership for a new era of flight
Technologies and study vehicle concepts that together can simultaneously meet the NASA Subsonic Transport System Level Metrics for noise, emissions, and fuel burn in the N+2 timeframe.
Examples of Recent Progress in Developing Ultra-Efficient Subsonic Transport Concepts

TTBW Aeroservoelastic • FY14
Langley Transonic Dynamics Tunnel

BWB/UHB Low Speed Operability • FY15
National Full-Scale Aerodynamic Complex at Ames

D8/BLI Integrated Benefit • FY13&14
Langley 14- By 22-Foot Subsonic Tunnel

TTBW Aerodynamic Integration • FY16
Ames 11-Foot Transonic Wind Tunnel

BWB Non-circular Fuselage • FY15
Langley Combined Loads Test System (COLTS)

HWB/OWN Performance • FY15
Langley National Transonic Facility
Computational design tools developed that help shape the aircraft based on desired signature on the ground. **Completed Design Tool TC in FY15**

Multiple flight tests to examine areas such as efficiency and also help study community response measurement techniques.

Several comprehensive wind tunnel campaigns conducted to validate performance of designs and help develop tools.

New methods to image the shocks from an aircraft in flight have been invented.
NASA Aeronautics Ready for Flight

Accomplishments and Planning

2008-2013

N+3 Subsonic & Supersonic Concept/Technology Studies

N+2 Environmentally Responsible Aviation (ERA) Project Initiated

2014/15

NASA Aero Vision and Strategy Established

Ground Testing of N+3 configurations and technologies

8 Integrated Tech Demos Completed, Tech transitioned to industry. HWB ready for Flight Dem/Val.

2016/17

Roadmaps Completed

LBFD PDR Completed

UEST PDR Completed

2018-2026

Ready for X-Plane Integration & Demonstration

ATD-1 Completed and transferred to FAA

ATD-2, 3 Completed & Transferred to FAA

NASA FAA NextGen Research Transition Teams (RTTs) Initiated

Technology Transitions to FAA: MSP, EDA, PDRC, TSAS

NASA Aero Vision

and Strategy

Established

Roadmaps Completed

Ready for NextGen TBO Integration & Demonstration

www.nasa.gov
FY 2017 Budget

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautics</td>
<td>$642.0</td>
<td>$640.0</td>
<td>$790.4</td>
<td>$846.4</td>
<td>$1,060.1</td>
<td>$1,173.3</td>
<td>$1,286.9</td>
<td>$1,294.2</td>
<td>$1,307.6</td>
<td>$1,218.1</td>
<td>$829.7</td>
<td>$839.5</td>
</tr>
<tr>
<td>Airspace Operations and Safety</td>
<td>154.0</td>
<td>159.4</td>
<td>159.2</td>
<td>176.2</td>
<td>189.1</td>
<td>221.5</td>
<td>198.7</td>
<td>200.9</td>
<td>193.2</td>
<td>175.5</td>
<td>167.8</td>
<td></td>
</tr>
<tr>
<td>Advanced Air Vehicles</td>
<td>240.6</td>
<td>298.6</td>
<td>277.4</td>
<td>308.8</td>
<td>311.6</td>
<td>312.6</td>
<td>321.3</td>
<td>315.0</td>
<td>318.9</td>
<td>317.7</td>
<td>326.7</td>
<td></td>
</tr>
<tr>
<td>Integrated Aviation Systems</td>
<td>150.0</td>
<td>210.0</td>
<td>255.4</td>
<td>381.4</td>
<td>493.0</td>
<td>556.7</td>
<td>591.5</td>
<td>612.2</td>
<td>525.0</td>
<td>203.8</td>
<td>210.6</td>
<td></td>
</tr>
<tr>
<td>Transformative Aeronautics Concepts</td>
<td>97.4</td>
<td>122.3</td>
<td>154.4</td>
<td>193.8</td>
<td>179.7</td>
<td>196.2</td>
<td>182.8</td>
<td>179.4</td>
<td>181.0</td>
<td>132.7</td>
<td>134.4</td>
<td></td>
</tr>
</tbody>
</table>
Ten Year Investment Plan–FY 2017 Budget Accelerates Key Components of NASA Aeronautics Plan

Fund the Next Major Steps to Efficient, Clean and Fast Air Transportation Mobility

New Aviation Horizons
Start a continuing series of experimental aircraft to demonstrate and validate high impact concepts and technologies. Five major demonstrations over the next 10+ years in the areas of Ultra-Efficiency, Hybrid-Electric Propulsion, and Low Noise Supersonic Flight

Enabling Tools & Technologies
Major series of ground experiments to ready key technologies for flight
Research and ground demonstration for an advanced small engine core for very high bypass engines and as a hybrid-electric propulsion enabler
Development of next generation physics-based models needed to design advanced configurations

Revolutionizing Operational Efficiency
Accelerate demonstration of full gate-to-gate Trajectory Based Operations

Fostering Advanced Concepts & Future Workforce
Increased investment in new innovation through the NASA workforce and Universities

Leverage Non-Traditional Technology Advances
Pursue challenge prizes in areas such as energy storage, high power electric motors, advanced networking and autonomy

UAS
Strong continued research leadership in enabling UAS integration into the National Airspace. Extending the UAS in the NAS project for an additional 4 years

Hypersonics
Increased investment to ensure a strong National fundamental research capability

Major New Initiative within IASP
Build off of major current developments and accomplishments

Increases to AAVP & TACP

Increase to OASP

Increase to TACP

Increases to IASP & AAVP

Continue to incentivize new innovation
Low Noise Supersonic Flight
First Step to Unlocking a Global Market

Low Boom Flight Demonstrator
- Demonstrate that noise from sonic boom can be reduced to a level acceptable to the population residing under future supersonic flight paths.
- Create a community response database that supports an International effort to develop a noise based rule for supersonic overflight.
- Establish U.S. Leadership for this New Global Market
Hybrid Electric Propulsion (HEP) Flight Demonstrators—Examples

Concept Exploration and Scaling

Aircraft Concept Description
• Electric propulsion distributed along the wing
• High aspect ratio / high wing loading

Benefits
• 5X increase in energy efficiency (compared to conventional General Aviation (GA) configurations)
• Major potential improvement in GA safety
• Enables NASA, Industry and FAA learning on the integration, certification, and operation of HEP systems

Status
• 2017 Phase 1 First Flight

Aircraft Concept Description
• Motor driven tail cone (aft, integrated BLI) propulsor is used to improve propulsive efficiency of aircraft
• Motor driven from generators installed in optimized turbofans

Benefits
• Applicable to conventional transport configurations, enables potential for early adoption of HEP technology
• Ingests fuselage boundary layer, reducing drag and increasing propulsive efficiency
• 5-10% energy reduction, depending on mission range

Status
• High industry interest
• Leading candidate for large scale flight demonstration in the mid 2020’s
• Wind tunnel, powertrain, and integration simulation, testing, and analysis required to validate benefits, explore technical challenges, and reduce the risk of flight test
New Aviation Horizons Flight Demo Plan

Hybrid Electric Propulsion (HEP) Demonstrators

Transport Scale
- Ground Test Risk Reduction
- Preliminary Design
- Design & Build
- Flight Test
- Design & Build
- Flight Test

Small Scale “Build, Fly, Learn”
- Ground Test Risk Reduction
- Preliminary Design
- Design & Build
- Flight Test
- Design & Build
- Flight Test

Potential Candidates
- Ground Test Risk Reduction
- Preliminary Design
- Design & Build
- Flight Test

Fully integrated UEST Demonstrator
- Preliminary Design
- Design & Build
- Flight Test

- FY17 FY18 FY19 FY20 FY21 FY22 FY23 FY24 FY25 FY26

Purpose: Built Ultra-Efficient Subsonic Transport (UEST) Demonstrators

Validated ability for U.S. Industry to Build Transformative Aircraft that use 50% less energy and contain noise within the airport boundary

Validated HEP Concepts, Technologies And Integration for U.S. Industry to Lead the Clean Propulsion Revolution

Enables Low Boom Regulatory Standard and validated ability for industry to produce and operate commercial low noise supersonic aircraft

www.nasa.gov
TBO: Concept to Demo
Next Step in NASA Research and NextGen Development

Gate-to-Gate Optimization
Gate-to-Gate Trajectory Based Operations
Initial Integrated Demand Management

ATD-2
Complex Terminal Area Trajectory Management

ATD-1

2015 2017 2020 2025

Initial Concept Demo
Fully Integrated Field Demo

Concept Validation
Technology Maturation

Architectural Definition
Tech Gap Assessment

Fast-time Simulation
Human In The Loop Simulation
Integrated Field Demo

Gate-to-Gate 4DT TBO: Complete gate-to-gate flight optimization incorporating system constraints and user request.

ATD-1: Efficient descent, approach, and landing for all flights inbound to an airport
ATD-2: Coordinated preflight, taxi, takeoff, and departure paths for all outbound flights at an airport

Enables airlines to optimize efficient operations into and out of busy airports and terminal area airspace

Enable airlines to optimize efficient operations into and out of busy airports and terminal area airspace

Develop and Demonstrate NextGen Capabilities:
Reducing fuel use and flight delays

IDM TBO: Integrates departure, en route, and descent flight operations for greater optimization

www.nasa.gov
Extend UAS in the NAS Project

Phase 2 MOPS Project Goal and Technical Challenges (TC)

Extend the UAS Integration in the NAS Project (UAS-NAS) through 2020 to support FAA and RTCA in the development of Phase 2 Minimum Operational Performance Standards (MOPS)

SC228 Phase 2 Goal: Develop Minimum Operational Performance Standards for Detect and Avoid and Command and Control equipment for extended operations of UAS in Class D, E, and perhaps G airspace.

UAS-NAS Phase 2 MOPS continues to support the RTCA SC-228 MOPS development
Accelerate Development of Advanced Physics Based Design and Analysis Capabilities

With the request, ARMD fully funds new design tools called for in NASA’s recent Computational Fluid Dynamics 2030 study

- Enable tools to advance on schedule with the Ultra-Efficient Subsonic Transport (UEST) X-Planes
- Utilize tools in UEST design studies
- Acquire flight validation data from the UEST Flight Tests
Increase Investment in New Innovation

Internal NASA Researcher Driven and External University Driven

University Leadership Initiative

• Expand and Accelerate “University Aeronautics Leadership” research initiative
 – Help solve most complex challenges associated with High Efficiency, Clean Aviation;
 – Leverage capability of universities to bring together best and brightest minds across many disciplines;
 – Universities propose their own technical challenges undertaking an innovative, multi-disciplinary research portfolio to address those challenges.

Convergent Aero Solutions

Multi-Function Structures
Adaptive Digital Materials

Digital Twin

• Expand and Accelerate NASA Aeronautics Convergent Aeronautics Solutions Project
 – Targeted increase to support rapid feasibility assessments for transformative technology concepts for High Efficiency, Clean Aviation
 – Project initiation in FY15 – many more high quality concepts than could be funded – high confidence in project expansion
NASA Hypersonics
Increased investment to sustain National capability

NASA

- Focus on fundamental research (long term emphasis with near term impact)
- Fully utilizes data from DoD demonstrations to advance and validate methods and technologies
- Performs independent studies to assess technical readiness for advanced capabilities
- Maintains unique facilities & skills with unique expertise to benefit broad community (OGA, industry & universities)

DoD

- Focus on operational mission (especially in near-term)
- In-house expertise aligned with mission need
- Enhancing test capabilities
- Significant investment (especially in demonstrations)

Fundamental research base for country & future missions

Share valuable data that NASA cannot afford to create

Provide subject matter experts and key facilities

Develop new military capability
New Era For NASA Aeronautics

Investing In Our Future - Investments in NASA’s cutting edge aeronautics research today are investments in a cleaner, greener, safer, quieter and faster tomorrow for American aviation:

• A future where Americans are working in stable, well-paying jobs.
• A future where we fly on aircraft that consume half as much fuel and generate only one quarter of current emissions.
• A future where flight is fueled by greener energy sources.
• A future where our air transportation system is able to absorb nearly four billion more passengers over the next 20 years without compromising the safety of our skies.
• A future where our airports are better neighbors because they contain noise within the airport boundary.
• A future where people can travel to most cities in the world in six hours or less in an airplane that can fly faster than the speed of sound on bio-fuels.