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1. Integration of diverse HD data
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The Value of Big Data for Inference

 Big data: demonstrated value in private and public sector [FTC 2016]
e Caveat: bigger data does not necessarily lead to better inferences

e Accuracy of predictions using big data is severely affected by biases
— Lack of replicability [CATS 2016]: under-sampling, variability across studies
— Confusion of correlation vs causation: observational vs interventional data

e |tisimportant to quantify and unmask hidden biases
— Strength of evidence for predictor accuracy: confidence intervals, p-values
— Necessary conditions for replicability: sample size, noise, missing values
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Data diversity and integration

 Most Big Data applications make use of diverse data sources for
— Better predictors: targeted advertising, credit worthiness, learning outcome
— Better descriptive models: 3D Nucleome, Connectome, ImageNet

e But good integration requires more sophisticated methods

— Integration with weighting or normalization of the data sources

— Assessment of bias and replicability is more difficult, esp in high dimension
e Data integration falls into several categories

1. Integration of diverse data within a single study

2. Integration of primary data across several studies
3. Integration of meta-data across several studies
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Integration of diverse data within a single study

 Experimenter controls data heterogeneity and experiment design
— Technical noise diversity: batch effects, misregistration, multi-modalities

— Biological diversity: mixed population, longitudinal study, inter-species

e Examples

— Integrated Personal Omics Profile (IPOP) [Chen 2012]
— Inferring inter-species co-expression networks [Wang 2009]

— Socio-collaborative database retrieval systems [Hsiao 2015]
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*Chen et al, Personal omics profiling reveals dynamic molecular and medical phenotypes, Cell 2012.
*Wang et al, Meta-analysis of Inter-species Liver Co-expression Networks Elucidates Traits Associated with Common Human Diseases, PLoS

Computational Biology, 2008

*Hsiao, Kulesza, Hero, Social collaborative retrieval, IEEE J Selected Topics in Signal Processing, 2014.
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Integration of primary data across studies

 Federated experiments: data heterogeneity is uncontrolled
— Benefit of increased sample size can often lead to improved power
— Must account for technical/biological variability, diverse sample coverage
e Examples
— Combining genotype information across T2D GWAS studies [Morris 2013]
— Combining ADHD-200 multisite brain connectomics studies [Sripada 2014]
— Combining expertly and crowdsourced annotated databases [Deng 2009]

Ventral Attention Network

Increased in ADHD [l
Decreased in ADHD [}

Morris 2013, PPI network GRAIL connectivity plot Sripada 2014: attention network

*Morris et al, Large-scale association analysis provides insights into genetic architecture and pathophysiology of T2 diabetes, Nat Gen 2013.
*Sripada et al, Disrupted network architecture of the resting brain in attention-deficit/hyperactivity disorder, Human brain mapping, 2014.
*Deng et al, Imagenet: A large-scale hierarchical image database, Computer Vision and Pattern Recognition, 2009
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Integration of meta-data across studies

e Meta-analysis of meta-data from many related published studies
— Combining aggregated effect sizes, computed p-values, imputed relations
— Combining lists of variables, e.g. rankings of influential genes or pathways
e Examples
— Combining p-values from multiple RNAseq studies [Rau 2014]
— Aligning co-expression networks from multiple PPI studies [Singh 2008]
— ldentifying hub nodes in integrated correlation networks [Langfelder 2013]

Hero, JASA 2011

DA A

Graphlet motifs

Graphlet histograms

12345678 9101112

Two interaction networks

*Rau, Marot, Jaffrezik, Differential meta-analysis of RNA-seq data from multiple studies, BMC Bioinformatics 2014
*Singh et al, Global alighment of multiple protein interaction networks with application to functional orthology detection. PNAS 2008
*Langfelder et al, When is hub gene selection better than standard meta-analysis? PLoS One, 2013.
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Statistical Principles for Data Integration

 How to best design integration function z such that z(X,Y)
integrates datasets X,Y?

e |deally, the integration function should depend on inference task
e Assume model f(X,Y|8) = joint density given a parameter 6

e Fisher’s sufficiency principle: z(X,Y) = T(X,Y) = the minimal
sufficient statistic satisfying Fisher-Neyman Factorization,

fX,Y10) = go(T(X,Y))R(X,Y)

* Bayes imputation principle: if 8 = Z is latent variable w/ prior f(Z)
(X,Y) = amax,f(X,Y|Z)f(Z), maximum mode imputation
AT Ez1x,7), minimum MSE imputation

o “All statistical models are wrong but some are useful” (G. Box) “".'i
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Challenges for Integrating Ultra HD Data

Map of REDCap Consortium Partners View fullscreen map

National Library of Medicine Map Satellite

Twenty Four Years of Growth:
¥ NCBI Data and User Services 25

All NCBI Use .I'\NMISI:I;VIMII |
/"“‘\_._
2
-
- |
. =
L

, I ":;a\'nf.": :
N GO g le . Map datz €2016  Terms of Use  Report a map emor
https://www.nlm.nih.gov/about/2015CJ.html http://projectredcap.org/

 C(Cloud data archiving is evolving into cloud computing capacity

e Full integration of ultra high dimensional data sets remains impractical
— Distributed learning: local info sharing w/ loopy BP for GMs [Wainright 2008]
— Sometimes local info sharing is sufficient, e.g., GGMs [Meng 2014]

e Privacy issues may allow only partial access to datasets
— Privacy heterogeneity: site-specific levels of privacy protection [Song 2015]
— Inference is complicated by challenging missing data problem [Duchi 2014]
Wainright and Jordan, M. Wainwright and M. Jordan, Graphical models, exponential families, and variational inference, Foundations&Trends in ML 2008.
Meng et al, Distributed Learning of Gaussian Graphical Models via Marginal Likelihoods, /EEE Trans on Signal Processing, 2014.

Song et al, Learning from Data with Heterogeneous Noise using SGD, AISTATS 2015
Duchi et al, Privacy Aware Learning, Journal of the Association for Computing Machinery, 2014


https://www.nlm.nih.gov/about/2015CJ.html
http://projectredcap.org/
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Exposures, the Exposome, Exposomics

TRESS

L

o.

pe

-‘\'u
Exposome \
Reactive electrophiles
Metals A

Endocrine disrupters
Immune modulators
Receptor-binding proteins

— ———

Internal
chemical
environment

Xenobiotics
Inflammation

Oxidative stress
Gut flora

Gene
Expression

Multi-
dimensional
Metabolite Models of
Expression Hec.":1|th and
Disease

Protein
Expression

Phenotypic
Data

time



CATS Inference Workshop 2016 Alfred Hero, Univ. Michigan

2006-2015 DARPA Predicting Health and Disease

Label Pre-challenge | post-challenge
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Zaas et al, Cell, Host and Microbe, 2000 Huang et al, PLoS Genetics, 2011
Chen et al, IEEE Trans. Biomedical Eng, 2010 Woods et al, PLoS One, 2012
Chen et al BMC Bioinformatics, 2011 Bazot et al, BMC Bioinformatics, 2013
Puig et al IEEE Trans. Signal Processing, 2011 Zaas et al, Science Translation Medicine, 2014

Liu et al, BMC Bioinformatics, 2016 Mclain et al, J. Infectious Diseases, 2016
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2006-2015 DARPA Predicting Health and Disease

2 Collections
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Blood RNA Expression Blood RNA Expression
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(Day 0)
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University of Virginia
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uvith acute Sx infectiory
ARVI — Acute Respiratory Viral Infection
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PHD - 7 challenge studies performed*

e 121 human subjects in 7 cohorts quarantined for 5+ days

 Samples collected 3 times per day from each subject

e QOver 16,600 samples assayed

e Attack rate was approximately 50%

e Factors complicating statistically accurate inference
— High dimension, cohort variability, assay variability, missing samples

Challenge Virus Year Location IRE protocol Duration (hrs) # Subjects  # Time Points
DEEL RSV 2008 Ketroscreen FroU000E 7 UG 166 20 21
DEE2 HINZ 2000 Retroscreen Pro000067 50 166 17 21
DEE3 HiN1 2000 Retroscreen Pro00018132 166 24 20
DEE4 HiN1 2010 Retroscreen Pro00019238 166 19 21
DEES HINZ2 2011 Retroscreen Pro00029521 G0 21 23

HRV UVA HRV 2008 Umniv. of Virginia  Pro00003477 120 20 15

HREV Duke HRV 2010 Duke Univ. Pro00022448 136 30 19

*Data available on GEO, accession number GSE73072
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Selected findings

* Novel factor analysis method isolates pan-viral Sx/Asx ARVI signature [1,2]
e Sparse ENet mRNA predictor developed and validated on all studies [3]
 ARVIsignature appears as a strong sentinel imprint at baseline [4]

e Use of a personalized reference sample can improve predictor [5]

e Whole blood mRNA is overall best modality for ARVI prediction

Questions

e Could more baseline samples further improve prediction accuracy?

e Could some combination of non-invasive modalities do as well as blood?
e How well do findings generalize to a wildtype (unquarantined) sample?

New DARPA Biochronicity study designed to answer these questions

[1] Huang et al, Temporal Dynamics of Host Molecular Responses Differentiate Sx and Asx Influenza ..., PLoS Genetics, 2011
[2] Woods et al, A Host Transcriptional Signature for Pre-symptomatic Detection of Infection..., PLoS One, 2013

[3] Woods et al, A Host-Based RT-PCR Gene Expression Signature to ldentify ARVI, Sci Transl Med, 2013

[4] Hero and Rajaratnam, Large scale correlation mining for biomolecular network discovery, in Big Data Over Networks 2015

[5] Liu et al, An individualized predictor of health and disease using paired reference and target, BMC Bioinformatics 2016.
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2015-2016 DARPA Biochronicity

3X Daily Collections

3X Daily Collections
HRV

(Day 0)

Blood RNA Expression Blood RNA Expression

Blood Plasma Blood Plasma
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|_Cognitive Assessments |
)

Analytical Modeling Inference tasks Analytical Modelingl DARPA BC Team
Establish_basgline of health Pl: G. Ginsburg
Detect circadian patterns Duke University
Predict ARVI susceptibility University of Michigan
Predict ARVI onset University of Virginia
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Data Integration: Database Point of View

Clinical data symptoms
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Data Integration: Inference Point of View
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Biomarker Discovery: Bayesian Linear Unmixing (BLU)

Inference task: estimate small number of explanatory variables: M, A
Each column of matrix X vector follows linear mixing model x = Ma + n

0.6
0.2
0.2

FammEn

B =

sample

+

(3 factor model)
 Full matrix model: [x,,..., x,]=-X=MA+N

o BLU is a factor analysis method using specially adapted priors on M,A
« Non-negative factor loadings (cols M)
o Factor scores (cols A) are proportions (sum-to-one)

o Unsupervised BLU (uBLU) uses reversible jump model to estimate
#factors=rank(M)

o Full posterior distribution f(A,M |X) obtained by Gibbs sampling.

Huang et al, Temporal Dynamics of Host Molecular Responses Differentiate Sx and Asy Influenza A Infection, PLoS Genetics, 2011
Bazot et al, Unsupervised Bayesian linear unmixing of gene expression microarrays, BMC Bioinformatics, 2013
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MRNA uBLU vs Symptom Scores for DEE2

BLU/PNMF Factor 1 scores Symptom scores
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e Factor 1 scores: are in strong concordance with symptoms
e Factor 1 loadings: TRIM22, IFI144, IFIT1, IFIT3, LY6GE, LAMP3, OAS1, OAS2,..
e Factor 1 variables constitute “ARVI signature” that has been validated

Huang et al, Temporal Dynamics of Host Molecular Responses Differentiate Sx and Asy Influenza A Infection, PLoS Genetics, 2011
Bazot et al, Unsupervised Bayesian linear unmixing of gene expression microarrays, BMC Bioinformatics, 2013
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uBLU compared to other FA methods
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Bazot et al, Unsupervised Bayesian linear unmixing of gene expression microarrays, BMC Bioinformatics, 2013
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Validation with NCI Pathway Interaction Database

Table 6 NCl-curated pathway associations of group of genes contributing to uBLU inflammatory component

Pathway name Genes P-value
FN-gamma pathway CASP1, CEBPE, IL1B, IRF1, IRFg, PRKCD, SOC51, STATY, 1.34e-09
STAT3

PDGFR-beta signaling pathway DOCE4, EIF2AKZ, FYN, HCE, LYN, PRECD, SLA, SRC, 1. 26e-08

STAT1, STAT3, STATSA, STATSE
L23-mediated signaling events CCL2, O0CLY, CXCL9, IL1B, STATY, STATS, STATSA 2.18e-07
Signaling events mediated by TCPTP EIF2AKZ, SRC, STAT1, STATS, STATSA, STATSE, STATe 6.382-07
Signaling events mediated by PTP1B FYN, HCE, LYN, SRC, STAT3, STATSA, STATSB 2.40e-06
GMCSF-mediated signaling events CCL2, LYM, STATY, STATS, STATSA, STATSB 3.70e-06
L12-mediated signaling events HLA-A, IL1B, S50C51, STATI, STAT3, STATSA, STATA 1.32e-05
L&-mediated signaling events CEBPB, HCEK, IRF1, PRECD, STAT1, STAT3 1.80e-05

NB: P-value is 2 orders of magnitude better than the corresponding
pathway association table for NMF

Bazot et al, Unsupervised Bayesian linear unmixing of gene expression microarrays, BMC Bioinformatics, 2013
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Multi-study HRV/RSV/H3N2 Application of uBLU

Factor 1 scores
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BLU can easily be extended to diverse datatypes
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Y. Yilmaz and A. Hero, Multimodal Factor Analysis, IEEE Workshop on Machine Learning for Signal Processing, 2015
Y. Yilmaz and A. Hero, Multimodal Event Detection in Twitter Hashtag Networks, to appear J. Sig. Proc Systems, 2016.
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Paired Reference Predictor

Inference task: state classification 3. Personalized predictor variables
1. Each target sample paired w/ ref. iscte st octod e
(:J time >
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X, =| | _—
vell2, .. } 4. Leads to improved state classification
Sr’ e {l’ 2’ s ;n} Predictor w/o references Predictor w/ references
®  region 2 -
2. Structured-sparse learning model pani . regond| gayit
o024 e T 024y
§ 01 lb1 § 0.1447%e
The reference chip g E ol. } E ol }
[ W(ref) . Witarget) ] [SC ore of class ll IR g Ll
O T ——— : Score of class 2
W target chip score of class 3 0.1 _ 0.4 0.1 s 04
Zero columns: These genes are not selected. - 0 . 0 0 "o 02
1 score of class 3 01 '0-4-0.2score of class 2 score of class 3 o —0.4-0'2

score of class 2
Liu et al, An individualized predictor of health and disease using paired reference and target samples, BMC Bioinformatics, 2016
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Testing Gene Pathways: Gene Set Enrichment Analysis

Inference task: test Sx/Asx differential
expression of pathways at each time

GSEA integrates variables into known
molecular pathways: sets of genes with
similar function [Irrizary 2009]

GSEA p-value time profile refects
statistical significance of Sx vs Asx

differential expression at each time point.
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Irrizary et al, Gene set enrichment analysis made simple, Stat. Meth. Med Res, 2009
Huang et al, Temporal Dynamics of Host Molecular Responses Differentiate Sx and Asx Influenza A Infection, PLoS Genetics, 2011
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Integrated Network of Temporally Similar Pathways

Inference task: cluster pathways

Spectral clustering of p-value
into groups w/ similar pv profiles

profiles classifies pathways
having similar patterns of

Correlation between GSEA p-value differential expression

time-courses yields a pathway
correlation matrix.

Thresholding of correlation matrix
yields correlation graph .ccieon sicnaiing

Complement cascade

IL1 T g
IL10 -5
IRS '

Cell adhesion

Cell surface receptor signal transduction &
CMV HCMV i P

Reactive oxygen stress
TNF -alpha
P TLR signaling /
Oxidative stress

Apoptosis

Huang et al, Temporal Dynamics of Host Molecular Responses Differentiate Sx and Asx Influenza A Infection, PLoS Genetics, 2011
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Outline

3. Network inference
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Goals of network inference

Discover communities/pathways  Discover nodes of high centrality...

External (inter-community) edge highest highest LEVC
Internal (within-community) edge eigencentrality & betweeness
------- Right cut
— —\Nrong cut O highest highest degree
N closeness & ego
'l
L]
[
’
]

Hub discovery table

Sub-
n
o (29

¥ Ny =2 Nedges

|“*~-\._‘ 2 9 20
/‘\ 31 0 1
T 49 i 1
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(1, G, obtained by partitioning
adjacency matrix A (spectral clustering)
.. While controlling class errors ...while controlling false discoveries

P(Vl A Vl,true not emptY) P(de > OlHO)
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Multimodal network inference

Combine information from several
observed networks

Networks may have different
provenances

Edges derived from correlations of node

attributes, e.g., behavior
Edges directly from node pair relations

Network integration methods
Edge averaging [1]: a4, + (1 — a)A,
Multicriteria optim [2,3]:Pareto fronts
Centrality[4,5]: p-value aggregation
Latent variable methods[6,7]: LSBM

[1] Taylor, Shai, Stanley, Mucha, arXiv:1511.05271, May 2016

[2] Hsiao, Xu, Calder, Hero, NIPS 2012. arXiv:1110.3741

[3] Oselio, Kulesza, Hero, IEEE JSTSP 2014. arXiv:1309.5124

[4] Hero and Rajaratnam, JASA 2011. arXiv:1102.1204

[5] Chen, Wei, Newstadt, Simmons, H, IEEE ICIP, 2015. arxiv 1502.07432

Socio-collaborative retrieval [6]
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Often Network is High Dimensional

e Large number p of nodes: e.g.,
— p=1.4 billion for Twitter
— p=12-30 thousand for genome

Small number n of samples: e.g.,

— n=3 tweets per day per user
— n=17 human subjects assayed

Q: conditions on n,p ensuring high quality of network inferences?

Attributional (Correlation) network
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e How reliable are node degrees
in the recovered network?

Relational network

g 70
a8 e L ]

]

I.‘...’.-’:l % :-I.

- .r.r'a: 'l':l:: ll:

Tel la"w
- & 8

s
o
)
-ﬂ
. 8 .

Spammer IP

Adjacency matrix A Relational network

e What is resiliency of clusters to

spurious inter-cluster edges?




CATS Inference Workshop 2016

Alfred Hero, Univ. Michigan

High Dimensional Error Analysis

e Standard asymptotic regimes:
e C(Classical (CLT) regime: p fixed, n— oo. Not useful for large networks
 Mixed high dimensional setting: p, n = 0. Not useful for small samples

e New asymptotic regime (Hero and Rajaratnam 2011, 2012, 2016):

e Purely high dimensional setting: n fixed, p— 0.

Useful for large networks

Asymptotic framework

Terminology

Sample size

Dimension

Application setting

References

n

!l‘

Classical (or sample increasing)

small dimensional

fixed

“small data"”

Fisher |28, 29], Rao |68, 69],
Neyman and Pearson [61], Wilks [84],
Wald [79, 80, 81, 82],

Cramér [16, 15], Le Cam [51, 52],
Chernoff [13]. Kiefer and Wolfowitz[46],
Bahadur [3], Efron [22]

Mixed asymptotics

high dimensional

veryv high dimensional

ultra high dimensional

“medium sized” data
(mega or giga scales)

Donoho [20], Zhao and Yu |87],
Meinshausen and Bithlmann [58],
Candes and Tao [10]. Bickel. Ritov, and Tsybakov[6],
Peng, Wang, Zhou, and Zhu |64), Wainwright [77, 78],
Khare, Oh, and Rajaratnam, |44

Purely high dimensional

purely high dimensional

fixed

“Big Data™
(lera, peta and exascales)

Hero and Rajaratnam [35]
Hero and Rajaratnam [36]
Firouzi, Hero and Rajaratnam [25]

Hero and Rajaratnam, Large scale correlation mining, Journ. Am. Stat. Assoc., 2011
Hero and Rajaratnam, Hub discovery in partial correlation graphs, /EEE Trans linformation Theory, 2012
Hero and Rajaratnam, Foundational principles for large-scale inference, /EEE Proceedings, 2016
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Phase transitions for correlation networks

e When n << p there can be many false edges (FE) in the graph
 There is a critical phase transition below which FE’s dominate

Multivariate Gaussian sample with diagonal 100 x 100 covariance matrix

n=101, p=100 n=25, p=100 n=10, p=100
200 200 200
150 150 150
100 100 100
50 50 50
0 0 0
= 0 1 =1 0 1 -1 0 1
Sample correlation value Sample correlatigh value Sample correlation vglue
p. = 10.34 p. = +0.63 p. = +0.89

Follows from
Pec = \/1 — Cn(p — 1)_2/(”_4) <:| purely high D

analysis
* There is a similar critical phase transition threshold for false hubs
Hero and Rajaratnam, Large scale correlation mining, Journ. Am. Stat. Assoc., 2011
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Critical threshold scaling law: n=0(log(p)):
he “blessi  high dir . e

PHASE TRANSITION THRESHOLD
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Hero and Rajaratnam, Hub discovery in partial correlation graphs, IEEE Trans IT 2012
Hero and Rajaratnam, Foundational principles for large-scale inference, |IEEE Proceedings 2016
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The “blessing of high dimensionality”

x 10° PHASE TRANSITION THRESHOLD
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Hero and Rajaratnam, Hub discovery in partial correlation graphs, IEEE Trans IT 2012
Hero and Rajaratnam, Foundational principles for large-scale inference, |IEEE Proceedings 2016
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From phase transitions to false discovery probability

Asymptotics of hub screening’: (H and Rajaratnam 2012):
Assume that rows of X are i.i.d. with bounded elliptically
contoured density and row sparse covariance X.

Theorem

Let p and p = p, satisfy lim,_,o p'/°(p — 1)(1 — p2)("=2)/2 =

[p — en -
Then

_ 1 — exp(—Asp,n/2), 0=1
AAlNgp > 0) = { 1 —exp(—Aspn), 0>1

Spn = (75 ) Polo ) ()

Po(p,n) =2B((n—2)/2,1/2) / (1—u nz4du

Hero and Rajaratnam, Hub discovery in partial correlation graphs IEEE Trans IT 2012
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Application to H3N2 DEE2 Study

Hero and Rajaratnam, Large scale correlation mining for biomolecular network discovery, in Big
Data Over Networks, 2015
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Sentinel Pathway Analysis: Pre-inoc Samples

e Screen correlation at FWER 107°: 1658 genes, 8718 edges
e Screen partial correlation at FWER 107°: 39 genes, 111 edges

agzios, | Fo La
. I A I . 093174/ | A
nes1es : y qﬂ ' \ 094488 / =T
ERET 1 f e W | _Ba0e9 /|
|. Bozi2 ] O ggeg \ : [ ] o
I e | { 0gE13|
=ia B 1 . a3l |
us 0.9826 0 3 p | \ C,QSB‘M_ F,
HE PR g g Py osaena’
‘ rézasy g oano o920 | viege S [ESEY
0 337 \ By 054125 | \ y ! d /
Nt X O :3;— il \ | 087553,
IFOT | / \ [ N [
A\ (fergks / A
- : “"‘ 095200 - -

sy

Data Over Networks, 2015
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P-value Waterfall Plot: Pre-inoc Samples

e A more explicit way to visualize the hubs in previous graph

 This plot summarizes statistical significance and minimal
correlation of all 37 hubs of varying degrees d € {1, ..., 13}

H3N2 D2: pvalues for Pre samples
0 T T T T T T T

-200

400 st rnErRinRiit.b

600

-800

-1000

-1200

Score (log(A)=loglog(1-pv(i))")

-1400 »;--_-._.-;,-._-.._m..:I('_:

FRIEEOC-3 1

-1600|- X-BioC-5_t FX-BioB-Mt > ~AFFX-BioC-3 i
. d>1 0 ‘\AFFX-BloC-S t
FFX-BioC-3 t
4gool 912 d>11 |
d> 18X BioCc3y AFFX-BioC-3 1
2000 LAEEX:BioC 3 ¢ I 1 | . : | |

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
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P-value Waterfall Plot: Post-inoc Sx Samples

e This plot shows all of the 12,000+ nodes (Affymetrix genes) -
statistical significance and partial correlations for Sx samples.

p-values. Curves indexed over vertex degrees ranges di::ﬂ,...E?'
100 | | | | | |

— . ARRB2
' I CTAGE?
-200 '

- & AT R ..
s N :;f &\ \ CTAG?
-300 -
\‘ ARREZ
-400 d>1

'EGO ] ] ] ] ] ]
0.4 0.9 0.6 0.7 0.8 0.8 1

-100

loglog(1-pv(i))”

log(})

Hero and Rajaratnam, Hub discovery in partial correlation graphs, IEEE Trans IT 2012
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Extensions

e Theory provides universal phase transitions and scaling laws for
significance testing of hubs in sparse correlation networks.

 Applies to mixed-type data under elliptical multivariate joint dsn

 Worthwhile extensions
— Heterogeneous populations having multi-modal distribution
— Missing entries of the correlation matrix
— Significance testing of more general network motifs than hubs (stars)
— Higher order correlation, e.g., mutual information

 Note: purely high dimensional regime of small n and large p may
not be useful for other inference tasks [Hero and Rajarathnam 2016]

Hero and Rajaratnam, Foundational principles for large-scale inference, IEEE Proceedings 2016
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Scaling laws across inference tasks

e Correlation graph inference tasks can be rank ordered in sample
complexity from logarithmically easy to exponentially hard in p

NUMBER OF SAMPLES n
Hero and Rajaratnam, Foundational principles for large-scale inference, IEEE Proceedings 2016

Detection Support recovery Param. estimation Perform. estimation
A . , 2 2 * e 2
P(Ne > 0) | P({sa8}]=0) | ElNQ-QI2] [ JEl(falx) — F(x)2]dx
pe ni zpue—nﬁ p]u -;Z ﬂ_2/(1+p).ﬁ
_ L’
logp _, P 5 o plo‘“‘p — « ooz P 5«
ES
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Implication: right size the task to sample size

Sequential data collection: adapt inference task to achievable
accuracy

: S t : .
X Detection 1ppor Estimation
— > Recovery —P> —
Task Task Task

urmber of samp'es

Time

[
»

A few samples T More samples T Lots of samples T

Detect Recover support Estimate correlations

[2] Firouzi, Rajarathnam and Hero, Two-stage Sampling, Prediction and Adaptive Regression
via Correlation Screening (SPARCS), arxiv 1502:06189.
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Outline

4. Concluding remarks
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Concluding Remarks

 New principles for reliable multimodality data integration are needed
— Methods should be closely tied to inference task
— Study of phase transitions and error behavior is fundamentally important
— High dimensional analysis can be practically useful

 Many problems are open, including:

— Integrating highly dichotomous data

e Sparse graphical models for heterogenous data [Zhou 2014]

e Posterior Pareto analysis [Hero, Fleury, 2003], [Hsiao, Xu, Calder, H, NIPS 2012]
— Integrating time varying dynamic network data

e Spectral correlation networks [Firouzi, Wei, H 2013]

e Kalman tracking nets and DBN’s [Xu, Kliger, H 2014]
— Phase transitions for aggregated data

» Aggregated homogeneous SBM’s [Dane et al, 2016]

— Integration of directed and undirected graphical models [Wainright&Jordan
2008], [Rao, States, Engel, H 2007], [Gleich 2016]
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