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Outline

Overview of Data Integration

Iterative Hypothesis Testing

I Community Detection

I Mining of Differential Correlation



Data Integration

Classical: Horizontal Integration

I Common measurement platform

I Multiple experiments or sample groups

Modern: Vertical Integration

I Common samples

I Multiple measurement platforms/technologies

I Data with and without response variables



Example: The Cancer Genome Atlas (TCGA)

Representative Dataset: 350 breast cancer tumors

I Gene expression data (18K genes)

I miRNA data (650 miRNAs)

I Copy number data (200K probes)

I Methylation data (22K CG regions)

I Mutation data (12K genes)

Responses

I Survival

I Response to therapy



TCGA: Data Matrix View
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Multi-Tissue eQTL Analysis (GTEx)
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Potential

I Borrowing strength across tissues

I Genetic basis of tissue variation

Complications

I Donors vary by tissue

I Configurations of association
I Common across tissues
I Tissue specific

I Large number of tissues



Potential of Vertical Integration

Statistics: Enhanced power, improved prediction

I Borrowing information across platforms

I Analysis of shared and individual variation across platforms

Genomics: New/enhanced insights into underlying biology

I Relationships between measured genomic features

I Role of genomic features in predicting outcome of interest



The Fine Print (in practice)

Genomics (upstream)

I Preprocessing: imputation, normalization, scaling

I Identification and removal of appropriate covariates

Statistics (midstream)

I Verifying distribution and sparsity assumptions

I Selecting free parameters

I Availability of robust/efficient software



Networks as Models or Summaries

Positives

I Natural representation for pairwise (two-way) relationships

I Amenable to ready interpretation and visualization

Limitations

I Do not capture higher order interactions

I May not capture heterogeneity among samples



Motivating Example: Community Detection

Given network G = (V ,E ) identify sets C1, . . . ,Ck ⊆ V such that

I Edge density within sets Ci is large

I Edge density between sets Ci is small



Iterative Testing for Community Detection

Given: Bt ⊆ V , level α ∈ (0, 1)

For each u ∈ [n] compute p-value

p(u : Bt) ≈ significance of connection between u and Bt

using configuration null model. Then

I Order nodes V s.t. p(u1 : Bt) ≤ · · · ≤ p(un : Bt)

I k0 := largest k such that p(uk : Bt) ≤ (k/n)α

I Bt+1 := {u1, . . . , uk}

Repeat until Bt+1 = Bt



Differential Correlation Mining

I Two sample/treatment
groups

I Common set of variables

I Identify sets of variables
that are differentially
correlated across groups

I Examples: genomic data,
word usage frequencies,
brain activity, etc.

I Distinct from differential
expression and clustering



Example: Breast Cancer Subtypes in TCGA

Figure: Sample correlation from Her-2 and Luminal B cancer subtype
samples. Differentially correlated set of 165 variables (A) and 200
randomly chosen variables (B).



Example: Brain Connectome

Figure: Brain locations of differentially correlated set for languages tasks
versus motor tasks (Data: Human Connectome Project).



Overview

1. Data Integration

I Horizontal

I Vertical

2. Iterative Testing

I Community Detection

I Differential Correlation Mining
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