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Outline

@ The HIV Care Cascade

» Description

» Care cascade as a way to frame health outcome targets

@ Summarizing and modeling the HIV care cascade
» Simple summaries

» Mathematical models

e Big data opportunity: statistical modeling using EHR
» Opportunities and challenges

» Specific issues with EHR data
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Outline

@ Case study: Estimate efficacy of ‘test and treat’
» Use EHR data from AMPATH

» Statistical methods for causal inference
@ Challenges and opportunities

» Statistical modeling and mathematical modeling for complex systems
» Opportunities provided by EHR
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HIV care cascade

@ Conceptual model describing progression through stages of HIV care

o Key stages

v

Identify new cases

Link to care

Initiate treatment

Positive treatment outcomes (e.g., viral suppression)
Retain in care

v vV VvV VY

@ More recently: used to frame policy goals
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HIV care cascade

HIV CARE CONTINUUM:

THE SERIES OF
STEPS A PERSON
WITH HIV TAKES -l'/ -,

FROM INITIAL - ©
DIAGNOSIS

THROUGH THEIR TV S VIRAL SUPPRESSION
SUCCESSFUL g

TREATMENT WITH %

HIV MEDICATION

PRESCRIBED
ANTIRETROVIRAL
THERAPY

Source: aids.gov
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HIV care in LMIC Evolution of treatment recommendatlons

VISION

CD4 < 200 CD4 < 350 CD4 < 350 CD4 < 500 All HIV+
Recommended Recommended + +
: . TB/HIV TB/HIV “Test and treat”
Since 2003 Since 2010 TB/HBV TR/HBY
Scenarios of ARV eligibility
ART regardless of CD4
count for:

e Serodiscordant couples
Pregnant women
Children < 5 years

.
.
Source: WHO 2014
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Cascade-based targets: 90-90-90

UNAIDS Report, 2014

90-90-90
An ambitious treatment target
to help end the AIDS epidemic

@UNAIDS
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90-90-90: A schematic

@ Find new cases
@ 90% linked to care
@ 90% initiated on treatment

@ 90% with viral suppression

@
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Challenges: Rigor vs clarity

@ Programs / funding agencies need digestible summaries
» Track progress

» Evaluate new policies / interventions

» Others ...

e Data are typically highly complex, come from multiple sources
» Country-level summaries from ministries of health

» EHR - experiential data from clinical care

@ The care cascade is a complex process
» How to represent using a model?

» How to draw principled inferences from the model?

» How to translate model outputs into simple summaries?
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Summarizing and modeling the cascade

@ Summaries using aggregated data
» Proportion falling in each cascade category

» Rates of transition or progression through the cascade

» Can be for a specific care program, across country or region

@ Analyses of specific aspects of the cascade

» ldentify correlates of transitions through cascade
» Assess effect of specific intervention or policy

» Mathematical models
» Statistical models
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@ Model-based representation of entire cascade



FIGURE 1. Estimated percentage of persons living with HIV infection, *

by outcome along the HIV care continuum — United States, 2011
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CDC Morbidity and mortality weekly report 63.47 (2014): 1114.
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Challenges in modeling the full cascade

@ How to write down the model?

» Data-generating model is complex
» Multiple states

» Progression not ‘linear’

@ Prevailing mode of analysis: microsimulation from mathematical models
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| Re- -Engagement |
C | ___inCare___|

| Retentlon in Care |

HIV Linkage ART
Diagnosis to Care Recelpt Adherence

Mugavero MJ, Norton WE, Saag MS. Health care system and policy factors influencing engagement in
Dis. 2011;52:5238-5246

HIV medical care: piecing together the fragments of a fractured health care delivery system. Clin Infect
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5228-5232.
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Hallett TB, Eaton JW. “A side door into care cascade for HIV-infected patients?” JAIDS 63 (2013):
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Mathematical models of the care cascade

@ Typically assume underlying parametric model
» Stage specific components

» Linked together to form model for entire cascade

» Data from individual programs
» Surveillance data

» National registries

» Others

@ Components of the model are informed by different data sources

@ Model is calibrated against target outcomes (e.g. national prevalence rates)

@ Intervention effects calculated via simulation
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Example: Compare home-testing and treatment strategies
Ying et al., Lancet HIV, 2016
Genberg, Hogan, Braitstein, Lancet HIV, 2016

@ Model of individual-level progression through 9 HIV disease states
@ Simulates HIV incidence and prevalence over 45 year period

@ Uses model to capture effect of specific interventions

Home testing and counselling to reduce HIV incidenceina ~ “x ®

generalised epidemic setting: a mathematical modelling
analysis

Roger Ying, Monisha Sharma, Connie Celum, Jared M Baeten, Heidi van Rooyen, James P Hughes, Geoff Garnett, Ruanne V Barnabas

Summary

Background Home HIV testing and counselling (HTC) achieves high levels of HIV testing and linkage to care. LancetHIV2016;3: c275-82

Periodic home HTC, particularly targeted to those with high HIV viral load, might facilitate expansion of antiretroviral  published Online

therapy (ART) coverage. We used a mathematical model to assess the effect of periodic home HTC programmes on May11,2016

HIV incidence in KwaZulu-Natal, South Africa. http://dx.doi.org/101016/
52352-3018(16)30009-1
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HIV Natural History:
The natural history of HIV infection is modeled in stages defined by CD4 count and viral load as shown in Figure

S1.
Susceptible -I Circumcised

Acute CD4>500 200-350 CD4<200

1,000- | | N
10,000 N 1 ‘_’ ‘—)‘ ‘
[ B R b

10,000-
50,000 1 —> | —
N v g

>50,000 - —_ _ —_

Figure S1. Model transition diagram. A diagram of the natural history of HIV infection. All movement is in one
direction except for enrollment in and dropout from interventions from ART.
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The ODEs for the nine disease states are:
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Some model input variables

ng_’f'u(t) The coverage of PrEP (d = 0), ART (d = 1, ...,5), circumcision (d = 6), condom use among HIV-

negative persons (d = 7), condom use among PrEP users (d = 8), and condom use among ART
users (d = 9)

ag'd The HIV-associated mortality

Vg4 The rate of progressing from CD4 stated tod + 1

Wy The rate of progressing from VL statevtov + 1

Yq The reduction in HIV transmission due to circumcision (d = 0), PrEP (d = 1), ART (d = 2), or
condom use (d = 3)

[m] = =
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Source of selected inputs

Joseph Hogan

Valve Reference
Duration of disease by CD4 count
Acute 0-25 year Hontelez et al*
>500 cells per pL 1-88years Celum et al,” Baeten et al"
500-350 cells per puL 1-22 years Celum et al,” Baeten et al*®
350-200 cells per uL 5-90years Celum et al, * Baeten et al**
<200 cells per uL 1.96years Badri et al”
Duration of disease by HIV viral load
Acute 0-25 years Hontelez et al*
<1000 copies per mL 313 years Celum et al,” Baeten et al**
1000-10 000 copies per mL 1-99 years Celum et al, * Baeten et al**
10000-50 000 copies per mL 4-40years Celum et al,** Baeten et al*®
>50000 copies per mL 1-44 years Estimated
Costs*
Annual home HTC with community care  $28.06 per HIV-positive person Smith et al*®
workers $8-22 per HIV-negative person
Parameters based on the HTC study and other published work. For parameters with varying estimates, we
chose values that best fit our data. HTC=home HIV testing and counselling. *2014 US dollars.
Table 1: Key parameters used in model
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Comparison of treatment initiation policies

Joseph Hogan (JWH @ Brown.edu)
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Figure S6. HIV incidence with optimistic ART coverage
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Mathematical modeling: Summary

Strengths
@ Can represent highly complex system in unified model
e Facilitates cost effectiveness analysis
e Calibration keeps model tied to observed data
°

Method of evidence synthesis

Limitations
@ Representative of specific population?
e Calibration identifies one model consistent with observed data
@ Generating causal effects?
@ Observed data may be heavily leveraged

@ Issues with uncertainty quantification
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Big data opportunity: EHR data

Large-scale EHR data can enable statistical models of cascade

Opportunities
@ Longitudinal follow up on 1000’s of individuals
e Sample from well-defined population
@ Reflects actual care setting

@ Possible to develop coherent statistical models of full cascade

Challenges
@ Irregular observation times
@ How to operationalize states of the cascade
@ Dropout, loss to follow up, misclassification

@ Data are observational
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Example: AMPATH Program in western Kenya

o AMPATH: Academic Model Providing Access to Healthcare
e PEPFAR-funded HIV care program based in Eldoret, Kenya

@ Over 250,000 individuals in care at over 100 clinical sites

@ Electronic health record: AMPATH Medical Record System

» data from several million clinical encounters

» augmented with lab data (CD4, others where available)
» stored on a central server

» expanding to mobile data entry
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Statistical model of HIV cascade using EHR data

Goal: Compare two treatment policies
@ Treat upon enrollment (test and treat)
@ Treat when CD4 drops below 350

Outcome: Care state following enrollment
e Engaged in care (initial, and at each visit)

e Disengaged from care (one visit to the next)
@ Deceased

@ Lost to follow up

o =3 E 9Dae
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Statistical model of HIV cascade using EHR data

@ Specify statistical model of transitions between states
» Discrete-time state-space model

» State membership depends on covariates

@ Define state membership from messy data

e Causal structural model to compare treatment policies

» Use G computation to estimate causal effects
» Compare / contrast to mathematical modeling

o =3 = E 9Dae
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Operationalize progression through care cascade

State transitions between tj_; and t

Joseph Hogan (JWH @ Brown.edu)
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Transition matrix representation

S; = state at time t;
pie = P(Sj=10]5-1=k)

State at t;
State at t;_; Engaged Disengaged LTFU Death Transfer
Engaged pji1 pj12 0 Pj1a pj1s
Disengaged pj21 Pj22 Pj23  Pjoa 0
LTFU 0 0 1 0 0
Death 0 0 0 1 0
Transfer 0 0 0 0 1

[m] = =
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Can incorporate covariate effects via regression

@ Use multinomial regression for longitudinal data

log{pie(x;) /P (X))} = X[Bye (=1,...,L—1

@ x; = vector of covariates observed just prior to t;
CD4 count

age, gender

treatment

enrollment year

vV vV Vv Vv

e Coefficient Bk is a log relative rate ratio

[m] = =
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Defining state membership

Start at enrollment, ascertain status every 200 days
e Engaged

» Everyone engaged at enrollment

» Remain engaged if visit within 200 day window
@ Disengaged

» No visit within 200 day window

e LTFU

» Can re-engage if new visit appears in next window

» Two consecutive windows disengaged; and
» No further record of visits

o =3 E 9Dae
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Organizing data into states

(enrollment)

Joseph Hogan (JWH @ Brown.edu)
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Organizing data into states

| | | |
| ) | ) | |
t=0 t=200 t=400 t=600
(enrollment)

Joseph Hogan (JWH @ Brown.edu)

HIV Care Cascade



Organizing data into states

| | | |
| T | | |
t=0 =200 t=400 =600
(enrollment) Engaged
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Organizing data into states

| | | |
I T | | |
t=0 =200 t=400 =600
(enrollment) Engaged Engaged
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Organizing data into states

| | | |
I T | | |
t=0 =200 t=400 =600
(enrollment) Engaged Engaged Disengaged
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Summary of available data

Number of subjects in each state under current treatment regime

State
Engaged
Disengagad
Transferred

. LTFU

I . Dm
Ill_
2I]D 10!]

1200 1400 1800 1200

£0000 -

Unique individual
enrollments:
57,596

Unique visits:
1,493,150

count

Observations used in
analysis:
321,834

20000 -

Days smce enml\mem

— L =

[l
N

e
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Transition rate estimates

Time-aggregated estimates
57,000+ individuals
Enrolled between 6/2008 — 9,/2012

State at t;
State at t;_; Engaged Disengaged LTFU Death Transfer
Engaged .86 A1 0 .02 .01
Disengaged 12 .54 .33 .01 0
LTFU 0 0 1 0 0
Death 0 0 0 1 0
Transfer 0 0 0 0 1

] = =
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@ Assumptions

Calculating state probabilities under differential follow up

» First-order Markov structure

» Length of follow up is unrelated to outcome

@ Procedure

» Use data to estimate P(S;)

, P(52151), P(53]S>),.
» Calculate marginal probabilities

P(S) =

> P(Sy) HP Sk|Sk_1)
S51,...5j1

o =3 = E 9Dae
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Predicted probs

Predicted state probabilities under current treatment regime

075
0.25-

i ' | | U ' | | '
200 400 600 800 1000 1200 1400 1600 1800
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Causal structural model to compare treatment policies

Question: Relative to CD4-specific treatment rules, how does ‘treat immediately’
impact progression through the care cascade?
Comparison regimes:

@ Policy 1: Treat immediately (‘test and treat')

@ Policy 2: Treat when CD4 falls below 350
Outcome:

@ State membership probability at each time interval

= =) E E DA
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Causal structural model to compare treatment policies

Structural model

S; = state membership at time t;
aj = treatment assigned at time t;
5j = (ao, e aj)
Ps(S;) = distribution of S; under regime 3;

To compare two different regimes 3 and 3", want to compare

Pg(s_/) and Pg*(s_/)

Example: ‘treat immediately’ is the regime

a = (1,1,1,...,1)

[m] = =
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Statistical and computational issues

© Differential lengths of follow up
» Depends on enrollment time
» Make MAR assumption to estimate state membership probabilities

@ Treatment not randomized

» Adjust for age, gender, (time-varying) CD4
» Use G computation algorithm

» Need model for covariates

» Use Monte Carlo integration

» Similarities to mathematical modeling

o =) = DA
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CD4 count
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|

gender, age at enrollment
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Assumptions needed

@ Treatment is randomly allocated for individuals sharing same observed-data history
» CD4, age, gender, treatment, state
» (Keeping it simple for this example)

@ Length of follow up depends only on observed-data history

e First-order Markov dependence

o =3 = E 9Dae
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Implementation

@ CD4 model has 3 categories

» <350
» > 350
> missing

@ A; represents most recently observed treatment status

e Fit sequence of observed-data models for j =1,...,J

P(S;|Aj-1, Xj-1, V)
P(Xi | Aji—1, Xj-1, 51, V)

@ Use G computation implemented with Monte-Carlo simulation
[m] = =
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G computation for estimating causal quantities

Method of imputing ‘counterfactual’ outcomes under different treatment regimes

@ Specify sequence of observed-data models

» Outcome models
» Covariate models
» Models can be arbitrarily complex (machine learning)

@ Use these models to generate predicted outcome under specific regimes

» Requires averaging these over regime-specific covariate paths
» High-dimensional integration over longitudinal data

@ Integral calculated using Monte Carlo simulation
» Similarities to microsimulation
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G computation for estimating causal quantities
Target: P, (S1) when a9 =1
(state membership distribution if everyone receives treatment at baseline)

Confounders: X; = baseline CD4 count, V = (age, gender)

G computation:

PS) = [ PSi1A)=1.%. V) P, V) (X, V)
Implementation

Pi(S1) = (1/n)zn:,3(51]A0:1,X0,-, Vi)

i=1

=] (=)
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Treat if CD4<350
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Predicted probs
o
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Predicted state probabilities under treat if CD4<350
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Treat upon enrollment (‘test and treat’)

Predicted state probabilities under treat immediately plan

1.00 =

0.75 -
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_g Engaged
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«g ) Transferred
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o
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0.00 -
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Inferences

Next few slides:
e Compare proportions in each state over time

o Use rate difference, 95% confidence interval

@ Based on 100 bootstrap samples (about 2 hrs on iMac)

= =) E E DA
Joseph Hogan (JWH @ Brown.edu) HIV Care Cascade



Engaged in care

Treat immediately vs treat if cd4<350 plan: Engaged in care
0.12-

010- P ;¢ ¢ ¢ ¢ ¢
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Mortality

Mortality
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Loss to follow up

Lost to follow up
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Substantive conclusions

@ Inferences suggest strong benefit of treatment
» Higher engagement in care
» Lower loss to follow up

@ Importance of LTFU finding

» Many of those LTFU are likely to be deceased
» Estimates available from ‘tracing’ data

» Mortality can be as high as 20% (Yiannoutsos et al, 2016)

e Consequence: Preventing LTFU = preventing mortality
» Quantifying this = data integration problem

= =) E E DA
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Compare and contrast

e G computation using statistical models

v

Observed data typically sampled from target population
Based on a sequence of (simple) models fit to observed data
These models can be checked from data

Bigger data = more complex models

Integration carried out using simulation

v vV VvV VY

@ Microsimulation from mathematical model

» Data come from multiple sources

» Based on a single model of a complex system

» Questions about whether ‘fitted’ model corresponds to a data-generating
mechanism for a target population

» Simulation-based also, but does the simulation integrate in the right way to assess
causal effects?
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Mathematical and statistical modeling for causal inference

e Mathematical Modeling: Focus on the model (more model, less data)
e Statistical modeling: Focus on the data (more data, less model)
@ Importance of EHR data

» More opportunities to make data-driven statistical modeling the starting point
» Yields decisions / inferences that are ‘closer to the data’

» ‘Gold mine’: requires right tools to extract the gold

= =) E E DA
Joseph Hogan (JWH @ Brown.edu) HIV Care Cascade
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Opportunities

e Data quality

@ Methodology

@ Representing and evaluating evidence

Joseph Hogan (JWH @ Brown.edu)

HIV Care Cascade



Opportunities: Data quality

@ Good data = good evidence

@ AMPATH has developed high-functioning EHR

» ‘This only works at AMPATH’
» Why not similar systems for other LMIC?

@ Opportunity for collaboration between statistics and informatics
e.g., embedding statistical analyses in EHR systems

e.g., refining EHR design to respond to statistical needs

real-time updates related to benchmarks

reinforcement learning

v vV VvV VY

=} = = E C
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Opportunities: Methodology

Currently: Mathematical models influence trt recommendations for LMIC

@ EHR presents important new opportunities
» Larger databases = more complex statistical models

e EHR data are rich but messy
@ Lots of prospectors circling the gold mine

e Statistical principles could hardly be more important!

» Distinguishing causal from predictive inference
» Understanding what the data can and cannot tell us
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Opportunities: Methodology
Can mathematical modeling techniques enrich statistical models?

e Import / represent missing information

» Incomplete covariate histories
» Unmeasured confounders

@ Integrate outside data

» Bias adjustment using tracing data (e.g., to correct mortality estimates)
» Data on individual-level behavior (e.g., social networks)

@ Bayesian platform provides formal mechanism for this
» Weight model inputs according to strength of evidence

Goal: Bend the complexity/resolution curve
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Opportunities: Generating and grading evidence

@ EHR can be used for

» Monitoring outcomes
(Lee, Hogan, et al., 2016 CROI)

» Evaluation of treatment strategies
(Hu, Hogan, et al., JASA in revision)

» Development of patient-level decision support
(Liu et al., JASA 2013)

@ Requires framework for grading evidence
» Well-defined population?

Distinguish sources of uncertainty?

Check model fit?

External validation?

Reproducibility?

v

vV VvV V

o =) = = DAC
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Thank you!
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Temporal trends in transition from

STP in logit scale
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Temporal trends in transition from

STP
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Covariate effects: transition from engaged
(Adjusted for calendar year)

Engaged Disengaged Death

Transition probability .86 12 .01

Male — 1.19% 1.76*
Age > 35 — 0.67* 1.01
CD4<350, ART— — — —

CD4<350, ART+ — 0.20%* 0.42%*
CD4>350, ART— — 0.38* 0.10*
CD4>350, ART+ — 0.11* 0.09*

By <> «Z» <Tr T DaC
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Covariate effects: transition from disengaged
(Adjusted for calendar year)

Engaged Disengaged LTFU Death

Transition probability 12 .54 .33 .01

Male — 0.96 0.92* 1.05
Age > 35 — 0.94* 098 1.23
CD4<350, ART— — — — —

CD4<350, ART+ — 0.40* 0.33* 0.67*
CD4>350, ART— — 0.81* 0.71* 0.35*
CD4>350, ART+ — 0.34* 0.25*% 0.12*
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G computation for estimating causal quantities

Target: P, .,(S2)

Pao,al(52) =

/P(Sz Ay = a0, A1 = a1, Xo, X0, S1, V)

P(X1| Ao = a9, Xo, V, 51)

P(S1| Ao = ag, Xo, V)
P(Xo, V)

d(517 Xla X07 V)

= =) E E DA
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G computation for estimating causal quantities

Target: P, ., (S2)

Pao,81(52) = /P(52 ’ Al = 317X1,517 V)

P(X1| Ao = a0, X0, V, S1)
P(51 ] Ao = a0, Xo, V)
P(Xo, V)

d(S1, X1, Xo, V)

First-order Markov
assumption

=} (=)
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G computation for estimating causal quantities
Target: P, ., (S2)

Pao,81(52) = /P(52 ’ Al = 317X1,517 V)

P(X1| Ao = a0, X0, V, 51)
P(S1] Ao = a0, Xo, V)

Multinomial regression
models for state
transitions
P(Xo, V)
d(Sb X17 XO? V)

= =) E E DA
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G computation for estimating causal quantities

Target: P, ., (S2)

P30731(52) = /P(52 | Al - a].?X].; 517 V)

P(Xl ’ AO - a07)<0a V7 51)

P(51 |A0 = ag, Xo, V)
P(X07 V)

Need to specify new
model for CD4 evolution

= =) E E DA
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G computation for estimating causal quantities
Target: P, .,(S2)

Sy~ 13(51 | Ao = ao, Xoi, Vi)
Xii ~ P(Xi| Ao = ao, Xoi, Vi, 51i)
P80731(52) =

(1/”)2 P(S:| A = a1, Xii, Sy Vi)

Calculate via Monte Carlo

simulation based on fitted
models

= =) E E DA
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