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Outline

The HIV Care Cascade
I Description
I Care cascade as a way to frame health outcome targets

Summarizing and modeling the HIV care cascade
I Simple summaries
I Mathematical models

Big data opportunity: statistical modeling using EHR
I Opportunities and challenges
I Specific issues with EHR data
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Outline

Case study: Estimate efficacy of ‘test and treat’
I Use EHR data from AMPATH
I Statistical methods for causal inference

Challenges and opportunities
I Statistical modeling and mathematical modeling for complex systems
I Opportunities provided by EHR
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HIV care cascade

Conceptual model describing progression through stages of HIV care

Key stages
I Identify new cases
I Link to care
I Initiate treatment
I Positive treatment outcomes (e.g., viral suppression)
I Retain in care

More recently: used to frame policy goals
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HIV care cascade

Source: aids.gov
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HIV care in LMIC: Evolution of treatment recommendations
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Cascade-based targets: 90-90-90
UNAIDS Report, 2014

90-90-90
An ambitious treatment target 
to help end the AIDS epidemic
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90-90-90: A schematic

Find new cases

90% linked to care

90% initiated on treatment

90% with viral suppression

Find Link ART VS
.90 .90 .90
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Challenges: Rigor vs clarity

Programs / funding agencies need digestible summaries
I Track progress
I Evaluate new policies / interventions

Data are typically highly complex, come from multiple sources
I EHR – experiential data from clinical care
I Country-level summaries from ministries of health
I Others ...

The care cascade is a complex process
I How to represent using a model?
I How to draw principled inferences from the model?
I How to translate model outputs into simple summaries?
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Summarizing and modeling the cascade

Summaries using aggregated data
I Proportion falling in each cascade category
I Rates of transition or progression through the cascade
I Can be for a specific care program, across country or region

Analyses of specific aspects of the cascade
I Identify correlates of transitions through cascade
I Assess effect of specific intervention or policy

Model-based representation of entire cascade
I Mathematical models
I Statistical models
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CDC Morbidity and mortality weekly report 63.47 (2014): 1114.
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CDC MMWR 2011;60:1618-1623.
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Challenges in modeling the full cascade

How to write down the model?
I Data-generating model is complex
I Multiple states
I Progression not ‘linear’

Prevailing mode of analysis: microsimulation from mathematical models
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Mugavero MJ, Norton WE, Saag MS. Health care system and policy factors influencing engagement in
HIV medical care: piecing together the fragments of a fractured health care delivery system. Clin Infect
Dis. 2011;52:S238-S246
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Hallett TB, Eaton JW. “A side door into care cascade for HIV-infected patients?” JAIDS 63 (2013):
S228-S232.
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Smith et al. “Cost-effectiveness of community-based strategies to strengthen the continuum of HIV
care in rural South Africa: a health economic modelling analysis.” The Lancet HIV (2015): e159-e168.
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Mathematical models of the care cascade

Typically assume underlying parametric model
I Stage specific components
I Linked together to form model for entire cascade

Components of the model are informed by different data sources
I Data from individual programs
I Surveillance data
I National registries
I Others

Model is calibrated against target outcomes (e.g. national prevalence rates)

Intervention effects calculated via simulation
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Example: Compare home-testing and treatment strategies
Ying et al., Lancet HIV, 2016
Genberg, Hogan, Braitstein, Lancet HIV, 2016

Model of individual-level progression through 9 HIV disease states

Simulates HIV incidence and prevalence over 45 year period

Uses model to capture effect of specific interventions
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Some model input variables
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Source of selected inputs

Joseph Hogan (JWH @ Brown.edu) HIV Care Cascade June 9, 2016 23 / 78



Joseph Hogan (JWH @ Brown.edu) HIV Care Cascade June 9, 2016 24 / 78



Comparison of treatment initiation policies
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Mathematical modeling: Summary

Strengths

Can represent highly complex system in unified model

Facilitates cost effectiveness analysis

Calibration keeps model tied to observed data

Method of evidence synthesis

Limitations

Representative of specific population?

Calibration identifies one model consistent with observed data

Generating causal effects?

Observed data may be heavily leveraged

Issues with uncertainty quantification
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Big data opportunity: EHR data

Large-scale EHR data can enable statistical models of cascade

Opportunities

Longitudinal follow up on 1000’s of individuals

Sample from well-defined population

Reflects actual care setting

Possible to develop coherent statistical models of full cascade

Challenges

Irregular observation times

How to operationalize states of the cascade

Dropout, loss to follow up, misclassification

Data are observational
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Example: AMPATH Program in western Kenya

AMPATH: Academic Model Providing Access to Healthcare

PEPFAR-funded HIV care program based in Eldoret, Kenya

Over 250,000 individuals in care at over 100 clinical sites

Electronic health record: AMPATH Medical Record System
I data from several million clinical encounters
I augmented with lab data (CD4, others where available)
I stored on a central server
I expanding to mobile data entry
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Statistical model of HIV cascade using EHR data

Goal: Compare two treatment policies

Treat upon enrollment (test and treat)

Treat when CD4 drops below 350

Outcome: Care state following enrollment

Engaged in care (initial, and at each visit)

Disengaged from care (one visit to the next)

Deceased

Lost to follow up
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Statistical model of HIV cascade using EHR data

Specify statistical model of transitions between states
I Discrete-time state-space model
I State membership depends on covariates

Define state membership from messy data

Causal structural model to compare treatment policies
I Use G computation to estimate causal effects
I Compare / contrast to mathematical modeling
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Operationalize progression through care cascade:

State transitions between tj−1 and tj

Engaged

Disengaged

LTFU

Transfer

Death
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Transition matrix representation

Sj = state at time tj

pjk` = P(Sj = ` | Sj−1 = k)

State at tj

State at tj−1 Engaged Disengaged LTFU Death Transfer

Engaged pj11 pj12 0 pj14 pj15

Disengaged pj21 pj22 pj23 pj24 0

LTFU 0 0 1 0 0

Death 0 0 0 1 0

Transfer 0 0 0 0 1
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Can incorporate covariate effects via regression

Use multinomial regression for longitudinal data

log{pjk`(xxx j)/pjkL(xxx j)} = xxxTj βββjk` ` = 1, . . . , L− 1

xxx j = vector of covariates observed just prior to tj
I CD4 count
I age, gender
I treatment
I enrollment year

Coefficient βββjk` is a log relative rate ratio
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Defining state membership

Start at enrollment, ascertain status every 200 days

Engaged
I Everyone engaged at enrollment
I Remain engaged if visit within 200 day window

Disengaged
I No visit within 200 day window
I Can re-engage if new visit appears in next window

LTFU
I Two consecutive windows disengaged; and
I No further record of visits
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Organizing data into states

t=0

(enrollment)
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Organizing data into states

t=0

(enrollment)

t=200 t=400 t=600
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Organizing data into states

t=0

(enrollment)

t=200

Engaged

t=400 t=600
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Organizing data into states

t=0

(enrollment)

t=200

Engaged

t=400

Engaged

t=600
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Organizing data into states

t=0

(enrollment)

t=200

Engaged

t=400

Engaged

t=600

Disengaged
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t=0
Enrollment	
  date:
Feb	
  23rd 2011

t=200
Engaged

t=400
Disengaged

t=600
Engaged

ID:	
  48647

t=800
Engaged

t=1000
Engaged

t=0
Enrollment	
  date:
Apr	
  9th 2010

t=200
Engaged

t=400
Disengaged

t=600
Engaged

ID:	
  55894

t=800
Disengaged

t=1000
Disengaged

t=1200
LTFU

t=0
Enrollment	
  date:
June	
  3rd 2008

t=200
Engaged

t=400
Engaged

t=600
Deceased

ID:	
  74500
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Summary of available data

Unique individual
enrollments:
57,596

Unique visits:
1,493,150

Observations used in
analysis:
321,834
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Transition rate estimates

Time-aggregated estimates
57,000+ individuals
Enrolled between 6/2008 – 9/2012

State at tj

State at tj−1 Engaged Disengaged LTFU Death Transfer

Engaged .86 .11 0 .02 .01

Disengaged .12 .54 .33 .01 0

LTFU 0 0 1 0 0

Death 0 0 0 1 0

Transfer 0 0 0 0 1
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Calculating state probabilities under differential follow up

Assumptions
I First-order Markov structure
I Length of follow up is unrelated to outcome

Procedure
I Use data to estimate P(SSS1), P(SSS2 |SSS1), P(SSS3 |SSS2), . . .
I Calculate marginal probabilities

P̂(SSS j) =
∑

SSS1,...,SSS j−1

P̂(SSS1)
∏
k

P̂(SSSk |SSSk−1)
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Causal structural model to compare treatment policies

Question: Relative to CD4-specific treatment rules, how does ‘treat immediately’
impact progression through the care cascade?

Comparison regimes:

Policy 1: Treat immediately (‘test and treat’)

Policy 2: Treat when CD4 falls below 350

Outcome:

State membership probability at each time interval
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Causal structural model to compare treatment policies
Structural model

SSS j = state membership at time tj

aj = treatment assigned at time tj

aj = (a0, . . . , aj)

Paj (SSS j) = distribution of SSS j under regime aj

To compare two different regimes a and a∗, want to compare

Pa(SSSJ) and Pa∗(SSSJ)

Example: ‘treat immediately’ is the regime

aJ = (1, 1, 1, . . . , 1)
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Statistical and computational issues

1 Differential lengths of follow up
I Depends on enrollment time
I Make MAR assumption to estimate state membership probabilities

2 Treatment not randomized
I Adjust for age, gender, (time-varying) CD4
I Use G computation algorithm

3 Requires high-dimensional integration over time-varying covariates
I Need model for covariates
I Use Monte Carlo integration
I Similarities to mathematical modeling
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Schematic: Evolution of longitudinal data

X0

V

S1 X1 A1 S2 X2 A2 S3A0

S = state membership

X = CD4 count

A = treatment

V = gender, age at enrollment
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Assumptions needed

Treatment is randomly allocated for individuals sharing same observed-data history
I CD4, age, gender, treatment, state
I (Keeping it simple for this example)

Length of follow up depends only on observed-data history

First-order Markov dependence
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Implementation

CD4 model has 3 categories
I < 350
I ≥ 350
I missing

Aj represents most recently observed treatment status

Fit sequence of observed-data models for j = 1, . . . , J

P(Sj |Aj−1,Xj−1,V )

P(Xj |Aj−1,Xj−1, Sj−1,V )

Use G computation implemented with Monte-Carlo simulation
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G computation for estimating causal quantities

Method of imputing ‘counterfactual’ outcomes under different treatment regimes

Specify sequence of observed-data models
I Outcome models
I Covariate models
I Models can be arbitrarily complex (machine learning)

Use these models to generate predicted outcome under specific regimes
I Requires averaging these over regime-specific covariate paths
I High-dimensional integration over longitudinal data

Integral calculated using Monte Carlo simulation
I Similarities to microsimulation
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G computation for estimating causal quantities

Target: Pa0(SSS1) when a0 = 1
(state membership distribution if everyone receives treatment at baseline)

Confounders: X0 = baseline CD4 count, V = (age, gender)

G computation:

P1(SSS1) =

∫
P(SSS1 |A0 = 1,X0,V ) P(X0,V ) d(X0,V )

Implementation

P̂1(SSS1) = (1/n)
n∑

i=1

P̂(SSS1 |A0 = 1,X0i ,Vi)
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Treat if CD4<350

Joseph Hogan (JWH @ Brown.edu) HIV Care Cascade June 9, 2016 53 / 78



Treat upon enrollment (‘test and treat’)

Joseph Hogan (JWH @ Brown.edu) HIV Care Cascade June 9, 2016 54 / 78



Inferences

Next few slides:

Compare proportions in each state over time

Use rate difference, 95% confidence interval

Based on 100 bootstrap samples (about 2 hrs on iMac)
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Engaged in care
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Mortality
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Loss to follow up

Joseph Hogan (JWH @ Brown.edu) HIV Care Cascade June 9, 2016 58 / 78



Substantive conclusions

Inferences suggest strong benefit of treatment
I Higher engagement in care
I Lower loss to follow up

Importance of LTFU finding
I Many of those LTFU are likely to be deceased
I Estimates available from ‘tracing’ data
I Mortality can be as high as 20% (Yiannoutsos et al, 2016)

Consequence: Preventing LTFU ⇒ preventing mortality
I Quantifying this = data integration problem
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Compare and contrast

G computation using statistical models
I Observed data typically sampled from target population
I Based on a sequence of (simple) models fit to observed data
I These models can be checked from data
I Bigger data ⇒ more complex models
I Integration carried out using simulation

Microsimulation from mathematical model
I Data come from multiple sources
I Based on a single model of a complex system
I Questions about whether ‘fitted’ model corresponds to a data-generating

mechanism for a target population
I Simulation-based also, but does the simulation integrate in the right way to assess

causal effects?
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Mathematical and statistical modeling for causal inference

Mathematical Modeling: Focus on the model (more model, less data)

Statistical modeling: Focus on the data (more data, less model)

Importance of EHR data
I More opportunities to make data-driven statistical modeling the starting point
I Yields decisions / inferences that are ‘closer to the data’
I ‘Gold mine’: requires right tools to extract the gold
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Opportunities

Data quality

Methodology

Representing and evaluating evidence
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Opportunities: Data quality

Good data ⇒ good evidence

AMPATH has developed high-functioning EHR
I ‘This only works at AMPATH’
I Why not similar systems for other LMIC?

Opportunity for collaboration between statistics and informatics
I e.g., embedding statistical analyses in EHR systems
I e.g., refining EHR design to respond to statistical needs
I real-time updates related to benchmarks
I reinforcement learning
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Opportunities: Methodology

Currently: Mathematical models influence trt recommendations for LMIC

EHR presents important new opportunities
I Larger databases ⇒ more complex statistical models

EHR data are rich but messy

Lots of prospectors circling the gold mine

Statistical principles could hardly be more important!
I Distinguishing causal from predictive inference
I Understanding what the data can and cannot tell us
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Opportunities: Methodology

Can mathematical modeling techniques enrich statistical models?

Import / represent missing information
I Incomplete covariate histories
I Unmeasured confounders

Integrate outside data
I Bias adjustment using tracing data (e.g., to correct mortality estimates)
I Data on individual-level behavior (e.g., social networks)

Bayesian platform provides formal mechanism for this
I Weight model inputs according to strength of evidence

Goal: Bend the complexity/resolution curve
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Opportunities: Generating and grading evidence

EHR can be used for
I Monitoring outcomes

(Lee, Hogan, et al., 2016 CROI)
I Evaluation of treatment strategies

(Hu, Hogan, et al., JASA in revision)
I Development of patient-level decision support

(Liu et al., JASA 2013)

Requires framework for grading evidence
I Well-defined population?
I Distinguish sources of uncertainty?
I Check model fit?
I External validation?
I Reproducibility?
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Thank you!

Joseph Hogan (JWH @ Brown.edu) HIV Care Cascade June 9, 2016 69 / 78



Temporal trends in transition from engaged
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Temporal trends in transition from disengaged
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Covariate effects: transition from engaged
(Adjusted for calendar year)

Engaged Disengaged Death

Transition probability .86 .12 .01

Male — 1.19* 1.76*

Age > 35 — 0.67* 1.01

CD4<350, ART− — — —

CD4<350, ART+ — 0.20* 0.42*

CD4≥350, ART− — 0.38* 0.10*

CD4≥350, ART+ — 0.11* 0.09*
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Covariate effects: transition from disengaged
(Adjusted for calendar year)

Engaged Disengaged LTFU Death

Transition probability .12 .54 .33 .01

Male — 0.96 0.92* 1.05

Age > 35 — 0.94* 0.98 1.23

CD4<350, ART− — — — —

CD4<350, ART+ — 0.40* 0.33* 0.67*

CD4≥350, ART− — 0.81* 0.71* 0.35*

CD4≥350, ART+ — 0.34* 0.25* 0.12*
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G computation for estimating causal quantities

Target: Pa0,a1(SSS2)

Pa0,a1(S2) =

∫
P(S2 |A0 = a0,A1 = a1,X0,X1, S1,V )

P(X1 |A0 = a0,X0,V , S1)

P(S1 |A0 = a0,X0,V )

P(X0,V )

d(S1,X1,X0,V )
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G computation for estimating causal quantities

Target: Pa0,a1(SSS2)

Pa0,a1(S2) =

∫
P(S2 |A1 = a1,X1, S1,V )

P(X1 |A0 = a0,X0,V , S1)

P(S1 |A0 = a0,X0,V )

P(X0,V )

d(S1,X1,X0,V )

First-order Markov
assumption

Joseph Hogan (JWH @ Brown.edu) HIV Care Cascade June 9, 2016 75 / 78



G computation for estimating causal quantities

Target: Pa0,a1(SSS2)

Pa0,a1(S2) =

∫
P(S2 |A1 = a1,X1, S1,V )

P(X1 |A0 = a0,X0,V , S1)

P(S1 |A0 = a0,X0,V )

P(X0,V )

d(S1,X1,X0,V )

Multinomial regression
models for state
transitions
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G computation for estimating causal quantities

Target: Pa0,a1(SSS2)

Pa0,a1(S2) =

∫
P(S2 |A1 = a1,X1, S1,V )

P(X1 |A0 = a0,X0,V , S1)

P(S1 |A0 = a0,X0,V )

P(X0,V )

d(S1,X1,X0,V )

Need to specify new
model for CD4 evolution
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G computation for estimating causal quantities

Target: Pa0,a1(SSS2)

S̃1i ∼ P̂(S1 |A0 = a0,X0i ,Vi)

X̃1i ∼ P̂(X1 |A0 = a0,X0i ,Vi , S̃1i)

P̂a0,a1(S2) = (1/n)
∑
i

P̂(S2 |A1 = a1, X̃1i , S̃1i ,Vi)

Calculate via Monte Carlo
simulation based on fitted
models
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