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Goal: Learn the Structure of the Graph
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Time is Important

http://www.mun.ca/biology/desmid/brian/BIOL3530/DEVO10/devo10.html
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Part I: Learning Gene
Regulatory Relationships
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Gene Expression Data
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Multivariate Time-Course Data
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Noiseless Trajectories
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Noiseless Trajectories

Yj(ti ) = Xj(ti ) + εj(ti )
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A Model for the Noiseless Trajectories

For j = 1, . . . , p,

d

dt
Xj(t) = Cj +

p∑
k=1

fjk(Xk(t)),

where fjk is unknown.

d
dtX1(t) = X 2

2 (t) + exp
(
X2(t)

)
d
dtX2(t) = 1 + log

(
X3(t)

)
d
dtX3(t) = 2

12

3
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Challenges in Fitting the Model, Part I

d
dtXj(t) = Cj +

∑p
k=1 fjk(Xk(t))

Challenge: fjk(·) is unknown.

Solution: Approximate with basis functions, ψ1(·), . . . , ψM(·):

d

dt
Xj(t) ≈ Cj +

p∑
k=1

ψ(Xk(t))Tθjk

Ravikumar et al. (2009)
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Challenges in Fitting the Model, Part II

d
dtXj(t) = Cj +

∑p
k=1 fjk (Xk(t)) ≈ Cj +

∑p
k=1 ψ(Xk(t))Tθjk

Challenge: O(Mp2) unknown parameters and N timepoints.

Solution: Group lasso approach to induce sparsity.
hi

hi

Yuan and Lin (2006); Simon and Tibshirani (2012)
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Challenges in Fitting the Model, Part III

d
dtXj(t) = Cj +

∑p
k=1 fjk (Xk(t)) ≈ Cj +

∑p
k=1 ψ(Xk(t))Tθjk

Challenge: Xk(t) is unobserved.

Solution: Estimate Xk(t) using Yk(t1), . . . ,Yk(tN).
hi

hi
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Existing Methods Estimate the Derivative

Wu et al. (2014) and Henderson and Michailidis (2014)
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dt
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p∑
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d

dt
Xj(t) ≈ Cj+

p∑
k=1

ψ
(
X̂k(t)

)
·θjk
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Estimating the Derivative is Hard

15 / 41

d

dt
X̂j(t) and

d

dt
Xj(t)
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Instead, We Can Integrate

The idea of integrating is due to Dattner and Klaassen (2013)
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∫ ti

0

d

dt
Xj(s)ds ≈

∫ ti

0

Cj ds+

∫ ti

0

p∑
k=1

ψ(Xk(s))·θjkds
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Xj(ti )− Xj(0) ≈ tiCj+

p∑
k=1

[∫ ti

0

ψ(Xk(s))ds

]
·θjk
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Estimating the Integral is Easy

17 / 41

∫ ti

0
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Existing Methods Estimate the Derivative

Step 1: For j = 1, . . . , p, let X̂j(·) solve

minimize
Z(·)∈χ(h)

{
n∑

i=1

‖Yj(ti )− Z (ti )‖2

}
.

Step 2: For j = 1, . . . , p, find θ̂j1, . . . , θ̂jp ∈ RM that minimize∫ ∥∥∥∥∥ d

dt
X̂j(t)− Cj −

p∑
k=1

ψ(X̂k(t))Tθjk

∥∥∥∥∥
2

2

dt

+ λ

p∑
k=1

√∫ (
ψ(X̂k(t))Tθjk

)2
dt︸ ︷︷ ︸

standardized group lasso

.

Step 3: The graph estimate is Ê =
{

(j , k) : θ̂jk 6= 0
}

.

Wu et al. (2014) and Henderson and Michailidis (2014)
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Theory – Overview Of Our Results

I We bound ∫
t

{
X̂j(t)− Xj(t)

}2
dt,

which allows us to bound ‖Ψ̂−Ψ‖ in high dimensions.

I We establish variable selection consistency of (standardized)
group lasso regression with errors-in-variables.

I We show that with high probability, GRADE correctly
identifies the parents of each node.

Extending Loh and Wainwright (2012)
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Simulation Results

I NeRDS: Network Reconstruction via Dynamic Systems

I GRADE
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The End Result
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Part II: Learning Functional
Connectivity Among Neurons
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Neuronal Spike Train Data

See e.g. Pillow et al. (2008) 24 / 41
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The Hawkes Process

Hawkes (1971)
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Goal
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The Hawkes Process

λj(t) = µj +

p∑
k=1

∑
i :tk,i≤t

ωj ,k(t − tk,i )

I λj(·) : R+ → R: intensity function

I µj ∈ R: background intensity

I ωj ,k(·) : R+ → R: transfer function

I tk,i ∈ R+: time at which the kth neuron has its ith spike

Hawkes (1971)
28 / 41



Graph Corresponding to the Hawkes Process
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Challenges in Fitting the Model, Part I

λj(t) = µj +
∑p

k=1

∑
i :tk,i≤t ωj ,k(t − tk,i )

Challenge: The transfer function ωj ,k(·) is unknown.

Solution: Approximate with basis functions, ψ1(·), . . . , ψM(·):

λj(t) ≈ µj +

p∑
k=1

∑
i :tk,i≤t

[ψ(t − tk,i )]T βjk
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Challenges in Fitting the Model, Part II

λj(t) = µj +
∑p

k=1

∑
i :tk,i≤t ωj ,k(t − tk,i )

Challenge: Need to estimate p2 transfer functions, where p is large.

Solution: Group lasso to induce sparsity in transfer functions.
hi

hi
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Our Proposal: Neighborhood Selection Approach

Step 1: For j = 1, . . . , p, find β̂j1, . . . , β̂jp ∈ RM that minimize

Lj(βj1, . . . , βjp) + λ

p∑
k=1

‖ψTβj ,k‖2.

Step 2: The graph estimate is Ê =
{

(j , k) : β̂jk 6= 0
}

.

Related Work: Meinshausen and Bühlmann (2006); Zhou et al. (2013a,b);
Bacry et al. (2015); Hansen et al. (2015)
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Theoretical Results

We establish model selection consistency in high dimensions; i.e.
the parent set of each neuron is correctly estimated.

33 / 41



The End Result

1

2

3
4

5

6

7
8

9

34 / 41



The End Result

1

2

3
4

5

6

7
8

9

34 / 41



The End Result

1

2

3
4

5

6

7
8

9

34 / 41



Summary of Pipeline
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Model Selection Consistency
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What Does First-Order Inference Look Like?

I P-value associated with each edge?

I False discovery rate associated with the estimated edge set?

I Posterior distribution?

Model certainly does not hold!

Early work in this direction: papers by J. Taylor, R. & R. Tibshirani, C.-H.
Zhang, M. Buhlmann, A. Montanari, S. van de Geer, and many others
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Summary

I Learn graph structure from temporal data.

I Different data, different models.
I Common themes:

I Do not assume functional form: use
basis expansions.

I Estimate a sparse graph using group
lasso penalties.

I Establish that the estimated graph is
correct w.h.p.
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What is Missing?

I Model and assumptions certainly do not
hold. Now what?

I W.h.p. the estimated graph is 100%
correct — but if not, all bets are off.

I Can I get a p-value for each edge, or a
false discovery rate?

I Do I really believe the estimated graph?
I Next steps for a biological collaborator?
I No gold standard.
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