Learning From Time

Daniela Witten
Departments of Statistics & Biostatistics
University of Washington

June 9, 2016

1/41



Collaborators

Ali Shojaie Shizhe Chen

2/41



Graphical Model

* o

3/41



Graphical Model

@
\k‘<— Node

3/41



Graphical Model

‘\'/ »

3/41



Goal: Learn the Structure of the Graph

o\ Potential
. W& Edge

4/41



Goal: Learn the Structure of the Graph

Potential
Edge

4/41



Time is Important

mesodermal myoblasts multinucleate muscle
progenitor myotube fiber

B P gD

http://www.mun.ca/biology/desmid/brian/BIOL3530/DEV010/devo10.html
5/41



Time is Important

mesodermal myoblasts multinucleate muscle
progenitor myotube i

& DD o D

5/41



Time is Important

mesodermal myoblasts multinucleate muscle
progenitor myotube i

& vl = 9

5/41



Time is Important

mesodermal myoblasts multinucleate
progenitor myotube

& D i

5/41



Time is Important

mesodermal myoblasts multinucleate
progenitor myotube

S N o o

5/41



Time is Important

mesodermal
progenitor

&)@@
@@

myoblasts multinucleate
myotube

5/41



Time is Important

mesodermal myoblasts multinucleate
progenitor myotube

®0©

5/41



Part |: Learning Gene
Regulatory Relationships
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Estimating the Derivative is Hard
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Estimating the Integral is Easy
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Theory — Overview Of Our Results

» We bound

which allows us to bound |[¥ — W|| in high dimensions.

» We establish variable selection consistency of (standardized)
group lasso regression with

» We show that with high probability, GRADE correctly
identifies the of each node.

Extending Loh and Wainwright (2012)
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Simulation Results

» NeRDS: Network Reconstruction via Dynamic Systems

» GRADE
50 timepoints 400 timepoints
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Part |l: Learning Functional
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See e.g. Pillow et al. (2008)
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The Hawkes Process
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The Hawkes Process

(t) = pj+ Z Z wj k(t = tk i)

k=1 I':tky,'St

> : intensity function

v

1j € R: background intensity

v

wjk(-) : RT — R: transfer function
tki € R*: time at which the kth neuron has its ith spike

v

Hawkes (1971)
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Graph Corresponding to the Hawkes Process
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Challenge: Need to estimate p? transfer functions, where p is large.

Solution: Group lasso to induce sparsity in transfer functions.
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Theoretical Results

We establish model selection consistency in high dimensions; i.e.
the set of each neuron is correctly estimated.
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Model Selection Consistency
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Model Selection Consistency
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Model Selection Consistency

e e s
As the number of
timepoints grows, this is ,
unlikely to happen.
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Model Selection Consistency
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Model certainly !

Early work in this direction: papers by J. Taylor, R. & R. Tibshirani, C.-H.
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» Do not assume functional form: use
basis expansions.

» Estimate a sparse graph using group
lasso penalties.

» Establish that the estimated graph is
correct w.h.p.
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Model and assumptions certainly
. Now what?

W.h.p. the estimated graph is 100%
correct — but if not,

v

v

Can | get a p-value for each edge, or a
?

v

Do I really the estimated graph?

» Next steps for a biological collaborator?
» No gold standard.
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