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Quantum information science ® CHICAGO | @ e

All physical systems are governed by the laws of quantum mechanics

Quantum information processing
e creating, controlling, and communicating information at the quantum level
* using atoms, ions, photons, solid state systems
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Solve problems intractable to Distribute quantum states Sense physical degrees of
classical computers, simulating between distant parties for freedom with high precision
large physical systems, factoring ultra-secure cryptography down to nanometer scales
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Counterintuitive effects: “quantum weirdness” % CHICAGO | @ oo

Classic bit: Quantum bit (qubit):
e.g. electron charge e.g. electron spin
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Quantum bits rewrite the rules and can outperform classical bits for
specialized tasks:

e algorithms for searches and factoring prime numbers

* secure communication and encryption

e simulating complex systems
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Power of classical scaling ® CHICAGO

e S o
L

Intel Core-17 CPU Intel Core-17 CPU
* Four cores * Four cores
e 700 million transistors e 700 million transistors

DOUBLING THE NUMBER OF TRANSISTORS DOUBLES

THE COMPUTATION POWER (ROUGHLY)
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Power of quantum scaling % CHICAGO | @ oo
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Classical memory sites
to record state of device

Simulate dynamics:
exponentiate

Quantum computer
size

m 2°0 = 10" sites 10'° by 10*°> matrices

100 qubits ~103° sites 1039 by 10°° matrices
¥ "o 7 1

Quantum computer “Mark 1” Adding ONE qubit

e 10,000 qubits (equiv. to a transistor) DOUBLES the power of

* Maximum interconnectivity a quantum computer

DOUBLING THE NUMBER OF QUBITS CREATES
A COMPUTER 210,000 AS POWERFUL (ROUGHLY)
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Superconducting loops
A resistance-free current
oscillates back and forth around
acircuit loop. An injected
microwave signal excites

the current into super-
position states.

Longevity (seconds)
0.00005

Logic success rate
99.4%

Laser

Electron

Trapped ions

Electrically charged atoms, or
ions, have quantum energies
that depend on the location of
electrons. Tuned lasers cool
and trap the ions, and put
them in superposition states.

>1000

Microwaves

Silicon quantum dots

These “artificial atoms”
are made by adding an
electron toa small piece

of pure silicon. Microwaves
control the electron’s
quantum state.

0.03

Topological qubits
Quasiparticles can be seen
in the behavior of electrons
channeled through semi-
conductor structures.Their
braided paths can encode
quantum information.

N/A

Electron

Laser

Diamond vacancies

A nitrogen atom and a
vacancy add an electronto a
diamond lattice. Its quantum
spin state, along with those
of nearby carbon nuclei,
can be controlled with light.

10

Company support

Google, IBM, Quantum Circuits i

) Pros
Fast working. Build on existing
semiconductor industry.

© Cons

Collapse easily and must
be kept cold.

Very stable. Highest
achieved gate fidelities.

Slow operation. Many
lasers are needed.

Science 354, 1091 (2016)

Stable. Build on existing
semiconductor industry.

Only a few entangled.
Must be kept cold.

Microsoft,

Bell Labs

Greatly reduce
errors.

Existence not yet
confirmed.

Quantum Diamond
Technologies

Can operate at
room temperature.

Difficult to
entangle.
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Material: maintain “guantumness” % CHICAGO

5 BILLION TRANSISTORS PRODUCED EACH SECOND

20 MILLION TRANSISTORS PER PERSON EACH YEAR
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Ensemble electron spin coherence in semiconductors ®CHICAGO | @ s,

Time- evolution of Faraday rotation Quantum dots
02 *4»’3_‘_"’"”“‘ e chemically-synthesized
' e e single crystal QD
% 01 i e size distribution (5%)
A RV * size control: 2-10 nm
o) [~ T
E e surface flexibility: cap
X - ligand chemistry
-0.1 ZnSe (300 K) TEM of a CdSe QD - Inorganic capping
02 (J.M. Kikkawa et al., 1997, 1998) |
012 3 45 6 T8 40 A QDs, H=1.0T
Time (ns) [T ' ]
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(B Beschoten, M Poggio et al., 2001)
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Delay (ps) (J.A. Gupta et al., PRB 1999, 2001, 2002)
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Single spins in semiconductors: embracing defects ® CHICAGO | @ oz

Optically-detected magnetic resonance
GHz room temperature operation

mS: +1 P
"""" : 2.87 GHz.~
LTSRS -,
Reoss:.oes -,
LSS round e T
State .
— i mS - O
(S=1) @ Microwaves

Science 326, 1520 (2009)

e Optical spin polarization and readout via
photoluminescence

* Microwave spin control... room temperature
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Computation-driven exploration: new materials % CHICAGO | @ oo

(coll
Galli group, U Chicago)

Proc. Natl. Acad. Sci. 107, 8513 (2010)
Nat. Comm. 7, 12935 (2016)
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Silicon carbide (SiC) as a quantum host % CHICAGO | #9 oo,

Flexible material properties 6” Wafers for.
e over 250 crystalline forms (polytypes) purchase \"5 B

* variable properties (e.g. band gap) /(N | }'ww L
e spin qubits in most common polytypes* W e ”jﬁ“:’

Device friendly

* Sl/p/n-type wafers for purchase
 commercial high-power electronics
 commercial optoelectronics

* high quality MEMS/NEMS

Heteroepitaxy
» substrate for GaN, graphene, SiC polytypes
e can be grown epitaxially on Si

Cree/Purdue 1 kB SiC BJT NVRAM
with NMOS Control Logic (1995)

Appl. Phys. Lett. (2014)
*Nat. Com. 4, 1819 (2013
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Detection of a single spin in a SiC wafer ® CHICAGO | @ e
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Year

Phys. Rev. X 7, 021046 (2017)
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Quantum coherent interfaces: light-matter control % CHICAGO | @ oo

3C-SiC/nD

J. Vuckovic, Stanford

PNAS 114, 4060 (2017)

A A ’.QG\ I
Integrated quantum nanophotonics P .@. oV
. ) ) scattered \ I , !
* single photon quantum optical switches =
e platform for controlled entanglement m O O O QO
* controlling light-matter interactions probe transmitted

Ch. 2 Ch.3

Science 354, 847 (2016)
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Rapid developments in materials engineering % CHICAGO | @ o2,

'Y F", Doped diamond
v 1L LYY YLL!
Engineering and patterning
spins

* wafer-scale implantation
* lithography

Atomic-level placement and
characterization

 STM techniques

e structural imaging

Ad,,, (pm)

-100 W 100

Argonne &

NATIONAL LABORATORY

UNSW Michelle Simmons APL Materials 5, 026105 (2017)
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Quantum states for communication and sensing % CHICAGO
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Human Hela cell

a Nanodlamond

Plastlc anchor

Nano Lett. 14, 4959 (2014) Nature Nano. 6, 358 (2011)

guantum sensors enable magnetic field, electric field, and temperature measurements
cryogenic, room temperature and higher temperature operation (up to 700 K)
biologically-inert and compatible with living cells (intracellular probes)

high spatial resolution using nanoparticles, tunable size, high sensitivity

Every qubit is also a sensor
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Quantum sensing % CHICAGO | @ o2,
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Nanometer-scale NMR imaging % CHICAGO | @ o2,
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* Measured trimethyl phosphate J-coupling and xylene chemical shift
* NMR j-coupling at micron scale

RugarD.etal{ <+ ~10 hours of signal averaging; 1 picoliter; ~3 Hz resolution , Nature Nano.

10, 120-124 ( arxiv: 1705.08887

Many geometries have had success making nanoscale nuclear spin density images

Recent demonstrations of single proton sensitivity
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Recent large-scale demonstrations % CHICAGO

Loophole-free Bell mequahty test & entangled electrons > 1 km
- Nature 526, 682 (2015)

“Ground-to-satellite quantum teleportation”
(1400 km) arXiv:1707.00934
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Industrial engagement: focused % CHICAGO | @ oo

=" Microsoft

NORTHROP GRUMMAN

—

Google Plans to Demonstrate the Supremacy of
Quantum Computing

By the end of 2017, Google hopes to make a 49-qubit chip that will prove quantum
computers can beat classical machines nature
By RACHEL COURTLAND

Posted 24 May 2017 | 15:00 GMT

COMPUTING

IBM Will Unleash Commercial "Universal" Quantum
Computers This Year

The cloud-based "IBM Q" service is not expected to outperform conventional computers—yet

By Davide Castelvecchi, Nature on March 6, 2017
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Summary and outlook % CHICAGO | @ oo

Number of scientific discoveries

experiment and theory working together driving research
several emerging physical systems with exquisite control
applications in computing, communication, and sensing
impressive success with density functional theory

D000

Challenges for materials

creating materials with highly coherent quantum states
developing theoretical tools to search for novel materials
constructing atomic-scale characterization/imaging techniques
explore layered 2D and hybrid guantum materials

D000
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