
1© 2018 Riffyn Inc

Never Miss a Discovery ®
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“Data that goes into a database should obey what I 
call the CAP principle. It should be complete, it 
should be accurate, and it should be permanent, 
so you never have to do it again. 

Otherwise, there’s no progress.”

— Sydney Brenner, Nobel Laureate, 2004
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* Error rate = R&D results that fail to reproduce, leading to wasted 
resources, failed tech transfers and missed discoveries.
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Chemicals/Materials

Energy
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Mining and Metals

Pulp, Paper, Textiles

Water/Wastewater

Other
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Sources:
2013 R&D Magazine Global Funding Forecast
NSF Science and Engineering Indicators 2012

CIA World Fact Book
Prinz, et al., Believe it or not: how much can we rely on published data on potential drug targets?, Nat. Rev. Drug Disc., 2011

Begley & Ellis, Raise Standards for Preclinical Cancer Research, Nature, 483, 2012
Ioannidis & Khoury, Improving Validation Practices in “Omics” Research, Science, 334, 2011

Halford, The Second Annual State of Translational Research, Sigma-Aldrich / AAAS, 2014
Freedman, et al., The Economics of Reproducibility in Preclinical Research, PLOS Biology, 2015

R&D Spend

$420B
R&D losses

$105B>25%
error rate*

Annual R&D Spend ($B)

The problem in science today: >$100B of lost R&D productivity each year
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“It often takes us 2-3 months to assemble 
the data from a single development batch”

- senior scientist global pharmaceutical company
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Researchers spend 80% of their time cleaning and 
organizing data, instead of learning from it

20%
learning

80%
cleaning
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Wrangler
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Data Wrangler
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“Assessing the impact of batch variations 
on product quality is quite challenging.”

“We want integrated data for rapid 
correlative analysis across workflow &
sample genealogy.”

“We are trying to escape Excel hell.”

“Our existing systems are too inflexible to 
support our changing processes.”

Statements of pain in R&D

Animal DMPK studies

Biologics Bioprocessing

Screening / Fermentation

Antibody Bio-panning

R&D data issues
• quality
• access
• integration
• interpretation
• system flexibility
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But we, as a society, are failing to

to teach the principles,
develop the tools, &

build the culture

of quality in R&D

Clean data starts with quality experiments
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Examples from the front lines of science
The bad, the ugly and the hopeful
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Examples selected from stages of  the typical biotech development lifecycle

animal DMPK 
studies

cell line 
screening 

bioprocess 
process 

development

downstream 
process 

development

analytical 
chemistry 
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Example 1: 
Unreliable microtiter plate assay
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Example 2:
“Regression to the mean” – screening hits don’t hold up over time
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<0A-> Prepare corn mash | i | corn mash | resource name

Collected aggregate experiment data set 
from Riffyn. Identified common controls

Assessed media lot-to-lot effects on control strains

Model fit to control for lot-effects and temperature effects. Most of variation in product titer 
attributable to these 2 factors, not the candidate strains

Lot	effect Temperature	effect

1 2

3

CONCLUSION: Candidate strains 
thought to be hits were not hits 
(indistinguishable from parent).

4

Bad	data?
(Excluded	from		further	analysis)
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Site 1 Site 2

MEAN
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Testing Day 1

Testing Day 3

Testing Day 2

Example 3:
Pre-clinical testing results don’t match across independent sites

Same compound and protocol across 2 R&D sites

animal DMPK 
studies
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2 L 2 0 0 , 0 0 0 L

YI
EL

D

BEFORE

PD MFG

XX% yield drop
$X lost product

12 months transfer time

0.5 L

Example 4:
Fermentation scale-up—troublesome tech transfers to full-scale manufacturing

bioprocess 
process 

development

analytical 
chemistry 
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Example 4:
Fermentation process development—initial state
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HIGH NOISE -> Unknowable process behavior
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Redeveloped product assay
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Example 4: 
Fermentation process development—after quality campaign
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2 L 2 0 0 , 0 0 0 L
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XX% yield drop
$X lost product

12 months transfer time
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Exact performance match
across scales

3-4 months transfer time
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Example 4: 
Fermentation scale-up: before & after quality improvement and data integration
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Example 5:
High-throughput strain screening artifacts and unreproducible hits

96 well plate data

As
sa

y 
va

lu
e

Microtiter plate #

Root cause



20© 2018 Riffyn Inc

6X reduction in screening error doubles rate of strain improvement

1X R&D pace

2007 2008 2009 2010

2X R&D pace

6X error reduction

Year

Source: Gardner, TS (2013) Trends in Biotech. 31:3, 123-125.

BEFORE VARIANCE 
REDUCTION

AFTER VARIANCE 
REDUCTION

30% relative error
5% relative error
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Learning from history
Reduced decision-making error delivers faster progress

Improved data quality and integration revolutionizes the auto industry

Total Quality 
Implementation

Toyota

Nissan

Average for 
GM, Ford, 
and Chrysler
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Lessons of manufacturing quality

Define 

Measure

Analyze / Improve

Control

DMAIC (6-sigma)
(Mfg)

Design

Measure

Analyze / Improve

Share

Iterate

TRANSLATION TO R&D
(R&D)
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But we, as a society, are failing to

to teach the principles,
develop the tools, &

build the culture

of quality in R&D

Clean data starts with quality experiments
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We need to recognize our experiments as measurement systems

and teach our future scientists accordingly
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Never Miss a Discovery™

Riffyn’s mission is to help scientists deliver 
research we can trust and build upon 
efficiently.


