Statistics in cyber security
How we can help, with examples
A statistician’s journey in cyber

2000-2007 – Data science for national security
 • Sshh, it’s a secret

2007-2014 – Worked for LANL
 • Focused in enterprise network anomaly detection research
 • Published a lot
 • Made tools that were licensed commercially

2014-2017 – Adventures in deploying commercial solutions
 • Worked for a consulting company
 • Deploying enterprise anomaly detection solutions at large scale

2017-Present – Lead the Data Science team for Microsoft’s Windows Defender Advanced Threat Protection product suite
Windows Defender Advanced Threat Protection

- Measures data from enterprise Windows machines
- Sends data in near real time to Microsoft Azure
- Detection algorithms are applied
- Detections are reported back to the customer security operation
- Automated response to many detections
Some things I learned along the way

- Industry solutions are mostly heuristic/rule based
 - There is much room for data driven methods

- Supervised ML is starting to penetrate the industry
 - Microsoft uses them extensively in Anti-virus
 - But labeled data can be hard to come by, especially outside of the Anti-virus domain

- Data is hard!
 - Quality and sensor gaps are a major issue
 - Volume and velocity is incredible
 - A lot of my work has been in justifying the need for better collection
 - More in Melissa’s talk coming up

- Adversaries constantly innovate
 - That’s their job
 - To counter this, we need agility and general data driven solutions

- We need more statisticians!
 - We think probabilistically instead of deterministically
 - We like interpretability
 - critical to produce useful solutions
 - We don’t use black boxes
 - We try to understand the data
Two basic areas of need in cyber security

- **Detection**
 - Identify the presence of an attacker in near real time
 - Anomaly detection
 - Supervised learning
 - Heavy tails
 - Low SNR
 - Non-stationary null and alternative
 - High dimensional
 - Graph Topology

- **Risk**
 - Establish risk scores for users and machines
 - Statistical process control
 - Multidimensional
 - Millions of users/assets under monitoring
Rules and Supervised ML
The state of the art today

Positives
- Gotta cover the knowns
- Very good TP performance
 - High precision
- Good interpretation
 - We know why they match
- Capture the expert knowledge efficiently

Negatives
- Require labeled data
 - This is hard to get and ever changing
- Not general
 - Missing FNs
 - Especially Advanced Persistent Threat
- Not scalable
 - Require heavy maintenance
 - New ones all the time
 - Performance degradation
- No control over alarm rate
 - If it alarms it alarms
Anomaly detection Positives and Negatives

Positives
- Unknowns/Generality
 - No assumption on attack
 - Just modeling normal
- Scales well
 - Fully automated updating
 - Handles non-stationarity
 - Means less maintenance cost long run
 - Can control alarm rate explicitly
- Scores provide natural prioritization
 - Look at the weirdest thing first
 - Good for hunting
- High resolution
 - One model per asset/user/pair of connected machines, etc

Negatives
- Ease of combination
 - Identify comprehensive kill chain
- Finds more FN

- Reduced FP performance
 - Unless you combine well
- Requires modeling expertise
 - Statisticians can help!
- Can be difficult to interpret
 - Unless you use interpretable models and interpretable, attack-consistent combinations
Rules

Supervised ML

Anomaly Detection

We need good methods to combine

Alerting and Hunting

Raw telemetry
Comprehensive kill chain anomaly detection

Initial penetration
- Deviations in Email behavior due to phishing barrage

Persistence and callback
- Deviations in processes, command lines, registry, etc
- Deviations on network, low reputation, beaconsing, etc
- Credential deviations

C2/Recon
- Deviations in network comms
- Internal Port deviations
- Deviations in HTML/DNS requests for covert channel C2

Lateral Movement
- Network and OS deviations
- Credential anomalies
- Insider/pattern of life anomalies

Staging
- Visible in anomalous volumes and ports focused on one destination host

Exfiltration
- Visible in anomalous volumes leaving the network

* Red indicates deviations the attacker has introduced in the normal behavior of the endpoints and communications
We can detect this object comprehensively!

Overall Score = \(f(\alpha_i) \) e.g. \(-\sum_{i=0}^{n} w_i \log(\alpha_i)\)
Anomaly detection steps

- Modeling
 - Establish stochastic models
 - At high resolution
 - Across many data streams
- Streaming Updating
 - Update each model as it sees data
- Scoring
 - Assign scores to current data with respect to model

- Calibration
 - Correct for poor model fit
 - Under the null, scores should be $U(0,1)$
- Combination
 - Combine scores across the kill chain to maximize power
Anomaly detection flow chart

- **Score data**: $P_0(d_0) = s_0$
 - Calibrate(s_0)
 - Combine scores $P(\text{attack}) = P_a$
 - Update Model P_k
 - Use P_a's for Hunting
 - Threshold P_a's for Alerting

- **Score data**: $P_k(d_k) = s_k$
 - Calibrate(s_k)
 - Update Model P_k

- Time sliced Data d_0
- Time sliced Data d_k
IoT devices

Third party vendor network

Network Perimeter

IoT devices
Smooth data with zeros

Bursty data with human behavior
User Risk Scoring (URS)

• Based on following Insider Threat attack:
 • For two weeks, act anomalously but not maliciously
 • Strange times of day
 • Connecting to strange servers
 • anomalous social media behavior
 • Attack Phase
 • Late at night
 • Login to multiple unusual servers
 • Copy data to user machine
 • USB event or other Exfil channel

• Method
 • Model Credential behavior per user
 • Use self-updating, lightweight models
 • Score deviations on host and deviations across network
 • Combine atomic scores
 • Accumulate risk scores over longer time periods, eg CUSUM
 • Decay risk scores
 • Deviation from population and self (Bayesian population priors)
Concluding remarks

• The data is enormous, high velocity, and challenging
• The problems are difficult with high noise and low signal
• There is a significant need for more statistical approaches
 • Interpretability
 • Understanding the data
• We need your help!
 • I am seeking collaborations with Gov and Academia
 • We are hiring statisticians!!
 • We love interns!!!
Joshua.Neil@Microsoft.com

selected publications