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MATHEMATICAL FRONTIERS

Number Theory: The Riemann Hypothesis

Ken Ono, Terence Tao, David Chu,

Emory University UCLA Institute for Defense Analyses
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MATHEMATICAL FRONTIERS

Number Theory: The Riemann Hypothesis

Asa Griggs Candler Professor of
Mathematics, Department of
Mathematics and Computer Science

History and
Motivation

Ken Ono,
Emory University
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HILBERT AND THE RIEMANN
HYPOTHESIS

.
L
. Iy

David Hilbert (1862 — 1943)
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HILBERT AND THE RIEMANN

HYPOTHESIS

“If | were to awaken after
having slept for a thousand
years, my first question
would be: Has the
Riemann Hypothesis been
proven?”

(]
'_ L]
. Iy
:

David Hilbert (1862 — 1943)
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RIEMANN HYPOTHESIS (1859)

Bernhard Riemann
(1826-1866)
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RIEMANN HYPOTHESIS (1859)

Conjecture (Riemann)
The nontrivial zeros of
((s) have real part equal to %

Bernhard Riemann
(1826-1866)
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RIEMANN HYPOTHESIS (1859)

Conjecture (Riemann)
The nontrivial zeros of
((s) have real part equal to %

Bernhard Riemann
(1826-1866)

Question. What does this mean? Why does it matter?

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




PRIMES

Definition. Aprime is a natural number > 1 with no
positive divisors other than 1 and itself.
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PRIMES

Definition. Aprime is a natural number > 1 with no
positive divisors other than 1 and itself.

Theorem. (Fundamental Theorem of Arithmetic)

Every positive integer >1 factors uniquely as a product of
primes.
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PRIMES

Definition. Aprime is a natural number > 1 with no
positive divisors other than 1 and itself.

Theorem. (Fundamental Theorem of Arithmetic)

Every positive integer >1 factors uniquely as a product of
primes.

2, 3,5, 7,11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59,

&1, 67, 71, 735, 79, 83, 89, 97

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




PRIMES ARE ORNERY

Don Zagier
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PRIMES ARE ORNERY

“Primes grow like weeds...
seeming to obey no other law
than that of chance... nobody
can predict where the next one
will sprout...

Don Zagier
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PRIMES ARE ORNERY

“Primes grow like weeds...
seeming to obey no other law
than that of chance... nobody
can predict where the next one
will sprout...

...Primes are even more
astounding, for they exhibit
stunning regularity. There are
laws governing their behavior,
and they obey these laws with
Don Zagier almost military precision.”

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




SIEVE OF ERASTOTHENES
(~200 BC)

Alg.brithm for listing
the primes up to a
given bound.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers
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SIEVE OF ERASTOTHENES
(~200 BC)
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SIEVE OF ERASTOTHENES

(~200 BC)

X ][] X L] X[ ] XXX
] (13 W (] 9] X
><>< K (2] X
><><><><>< >(>9<>< Alg"orih-forlisting
‘“>‘< ><><><‘“’><><>( the primes up to a

given bound.
Problem. This does not reveal much about the primes.
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FUCLID (323-283 BC)

Theorem (Euclid)
There are infinitely many primes.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




FUCLID (323-283 BC)

Theorem (Euclid)
There are infinitely many primes.

Proof: Suppose that p;=2 <p; =3 < ... <p; are all of the primes.
Let P = pyp;...pr+1 and let p be a prime dividing P.

Then p can not be any of p,, py, ..., Pr, Decause otherwise p would divide

the difference P-p;p,...pr=1, which is impossible.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




EULER (1707-1783)

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




EULER (1707-1783)

Geometric Series. If |r] < 1, then

14+r+7r+7 + -0 =

1—7r
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EULER (1707-1783)

Geometric Series. If |r] < 1, then

2 3 1
l+r+7r" 4+7 +--- = .
1—17r
Examples. Strange infinite series expressions
1 1
1
3 = 1 — — l Z
2 3
15 1 1 1
I =1_%‘1 % % 220.13&25&3
35 1 1 1 1 1
]  1_1'1_1'7_-1'71_1 =Zga13az5a37a4
2 3 5 7
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FULER (1707-1783)

The Fund. Thm of Arithmetic and geometric
series give
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FULER (1707-1783)

The Fund. Thm of Arithmetic and geometric
series give

s |

Letting s=2 (or any positive even) Euler obtained formulas
such as

T S oo
49 16 25 6
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INFINITUDE OF PRIMES APRES

EULER

Theorem. If 1(n) is the number of primes < n,
then

m(n) > -1+ In(n).

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




INFINITUDE OF PRIMES APRES

EULER

Theorem. If 1(n) is the number of primes < n,
then

Proof. m(n) > -1+ In(n).
o Let py = 2,py =3,p3 =35,... be the primes, and so p; > j + 1.
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INFINITUDE OF PRIMES APRES

EULER

Theorem. If 1(n) is the number of primes < n,
then

Proof. m(n) > -1+ In(n).
o Let py = 2,py =3,p3 =35,... be the primes, and so p; > j + 1.

e Calculus tells us that In(n) = [|" 1 dz.
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INFINITUDE OF PRIMES APRES

EULER

Theorem. If 1(n) is the number of primes < n,
then

Proof. m(n) > -1+ In(n).
o Let py = 2,py =3,p3 =35,... be the primes, and so p; > j + 1.

U A

e Calculus tells us that In(n) = [|" 1 dz. y=-

X

1/2
13 1/ 1/5
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INFINITUDE OF PRIMES APRES

EULER

Theorem. If 1(n) is the number of primes < n,
then

Proof. m(n) > -1+ In(n).
o Let py = 2,py =3,p3 =35,... be the primes, and so p; > j + 1.

U A

e Calculus tells us that In(n) = J(T' % dr. y="
e If 7(n) = k, then Euler’s product gives 1 1
ke 1 1
In(n) < [[;-, = b
13 1/ 1/5
B
0 1 2 3 4 5 6
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INFINITUDE OF PRIMES APRES

EULER

Theorem. If 1(n) is the number of primes < n,
then

Proof. m(n) > -1+ In(n).
o Let py = 2,py =3,p3 =35,... be the primes, and so p; > j + 1.

U A

e Calculus tells us that In(n) = [ " i dz. y="
e If m(n) = k, then Euler’s prndu{:t gives 1 1
]Il(ﬂ-) < I—IJ =1 T]_ 1/9
1/3

e By telescapmg we get Y4 15

k+1 _ ] —
111()({1 ''''''' —_®+1 .—I_l 0 1 2 3 4 5 6
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GAUSS (1777-1855)

Carl Friedrich Gauss

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




GAUSS (1777-1855)

T w(x) m‘fﬂ

10° 25 22

10° 168 145

10 1229 1086

10° 0592 ROS0

Carl Friedrich Gauss 108 78408 79382

107 664579 620421
107 2761455 5428681
10Y 50847534 48254942
1019 455052511 434294482
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GAUSS (1777-1855)

T w(x) m‘fﬂ

10? 25 22

10* 168 145

10 1229 1086

10° 0592 RO®0

Carl Friedrich Gauss 108 78408 79382

107 664579 620421

Conjecture (Gauss). 108 5761455 5428681
If we let Li(X) := [; 1%, then we have 109 50847534 48254942
X 1019 455052511 434294482

7(X) ~ Li(X)

T log X

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




ENTER RIEMANN

An 8 page paper in 1859

Bernhard Riemann
(1826-1866)

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




ENTER RIEMANN

An 8 page paper in 1859

 Defined Zeta Function

Bernhard Riemann
(1826-1866)
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ENTER RIEMANN

An 8 page paper in 1859

 Defined Zeta Function

* Determined many of its
properties

Bernhard Riemann
(1826-1866)
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ENTER RIEMANN

An 8 page paper in 1859

 Defined Zeta Function

* Determined many of its
properties

Bernhard Riemann * Posed the Riemann Hypothesis
(1826-1866)
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ENTER RIEMANN

An 8 page paper in 1859

 Defined Zeta Function

* Determined many of its
properties

Bernhard Riemann * Posed the Riemann Hypothesis
(1826-1866)
e Strategy to prove Gauss’
Conjecture

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




RIEMANN’S ZETA-FUNCTION

Theorem (Riemann, 1859)

(1) ¢(s) := D02, - is defined for Re(s) > 1.
(2) Analytic continuation to C (simple pole at s = 1).
(8) It satisfies ((s) = 2°nw* tsin () T'(1 — ) - ¢(1 — s).

(4) It has trivial zeros at s = -2, —4,—6,—8,....

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




1+2+3+4+5+ . . . =-1/12

“Under my theory
1+2+3+4+...= -1/12.

If | tell you this you will at once
point out to me the lunatic

Srinivasa Ramanujan asylum,,,”
(1887-1920)
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1+2+3+4+5+ . . . =-1/12

“Under my theory
1+2+3+4+...= -1/12.

If | tell you this you will at once
point out to me the lunatic

Srinivasa Ramanujan asylum,,,”
(1887-1920)
Proof.
2

(Euler) ¢(2) = %
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1+2+3+4+5+ . . . =-1/12

“Under my theory
1+2+3+4+...= -1/12.

If | tell you this you will at once
point out to me the lunatic

Srinivasa Ramanujan asylum,,,”
(1887-1920)
Proof.
(Euler) ((2) = ‘%&
(Riemann) ((—1) “="1424+3+4+...
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1+2+3+4+5+ . . . =-1/12

“Under my theory
1+2+3+4+...= -1/12.

If | tell you this you will at once
point out to me the lunatic

Srinivasa Ramanujan asylum,,,”
(1887-1920)
Proof.

(Euler) ¢(2) = %

(Riemann) ¢(—1) “="1424+3+4+...
(Riemann) ((—1) =3+ 5 -sin(—7/2)T'(2){(2) = —5. O

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




VALUES ON THE CRITICAL LINE

Re {(*2 +it)

Spiraling {(*2 + it) for 0 <t < 50
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VALUES ON THE CRITICAL LINE

Note.
e {(%2)=-1.460354....

Re {(*2 +it)

Spiraling {(*2 + it) for 0 <t < 50
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VALUES ON THE CRITICAL LINE

Note.
e {(%2)=-1.460354....

e The first few nontrivial
Re 204 +1) Zeros are encountered.

Spiraling {(*2 + it) for 0 <t < 50

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




RIEMANN'S HYPOTHESIS

Conjecture (Riemann)
The nontrivial zeros of

¢(s) have real part equal to 2

ok
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RIEMANN'S HYPOTHESIS

Conjecture (Riemann)
The nontrivial zeros of

1
¢(s) have real part equal to 3

z.o;;

‘It‘ﬂ. fﬂnnﬁl@im 2dep3)
1,!2 (37.58..)7

4..._...1& (3293 }r:
| 1
F- 4%

*'H'— /2 + (25.01...)f

-l—- /2 + (21.02...)7
.._,,,,

1/2 + (14.13..)1

.} ‘m'\ b

> .
e NN “ N % % 1-
- —-q.—-—-ln--lr—b_-—-.‘--
W A Y -
. % .
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RIEMANN'S HYPOTHESIS

Conjecture (Riemann)
The nontrivial zeros of
¢(s) have real part equal to 2

. It would be desirable to
have a rigorous proof of this
proposition...”

Bernhard Riemann (1859)

ok

{}m » fﬂnnﬁ&me 2dep3)
A1/ 4 (37.58..) 7
_-'_'*ffa..._#..m (32.93..)7
307 :5':"‘:5:*-"—1-1/2 +(30.42..1
Z '.i;:j?-l-— 1/2 + (25.01..)f
w7 412+ (21.02..)7
Ay
A 1
A
5*;#-—;—1/2 +(14.13..)1
ALY
107 :....'_.._ "enitical
/ l 7% steip
Y
NS A PO‘I'-{, $=1
AV e,
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COUNTING PRIMES

Theorem. (Chebyshev, von Mangoldt)

The Prime Number Theorem is equivalent to

- V(X)
XETDUT B 1!

where we define
U(X):= Z log p.
prs
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COUNTING PRIMES

Theorem. (Chebyshev, von Mangoldt)

50 ¢

The Prime Number Theorem is equivalent to

10}
. U(X)
XETDU T B 1! g
where we define 0!
U(X):= Z log p. 10}
prsX
1I0 EIO 3I0 4I0 SIU

Graph of Y=Y (X)
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WHY DO THE NONTRIVIAL ZEROS
MATTER?
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WHY DO THE NONTRIVIAL ZEROS

MATTER?

Theorem. (von Mangoldt)
As a sum over the nontrivial zeros p of ((s), we have

XP
U(X)=X —log(2r) — %]Dg(l —z7%) - Z P

&
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WHY DO THE NONTRIVIAL ZEROS

MATTER?

Theorem. (von Mangoldt)
As a sum over the nontrivial zeros p of ((s), we have

X7
U(X)=X —log(2r) — %]Dg(l —z7%) - Z P

&

Theorem. (Hadamard, de la Vallée-Poussin (1896)
Gauss’ Conjecture is true. We have that

, X
m(X) ~ Li(X) ~ og X'
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WHY DO THE NONTRIVIAL ZEROS

MATTER?

Theorem. (von Mangoldt)
As a sum over the nontrivial zeros p of ((s), we have

X7
U(X)=X —log(2r) — %]Dg(l —z7%) - Z P

&

Theorem. (Hadamard, de la Vallée-Poussin (1896)
Gauss’ Conjecture is true. We have that

, X
m(X) ~ Li(X) ~ og X'

Proof. We always have Re(p) <1. O

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




MATHEMATICAL FRONTIERS

Number Theory: The Riemann Hypothesis

Professor of Mathematics,
Department of Mathematics

Applications and
partial progress

Terence Tao,

UCLA

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 57 '




APPLICATIONS OF THE
RIEMANN HYPOTHESIS
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APPLICATIONS OF THE
RIEMANN HYPOTHESIS

If true, the Riemann hypothesis
would resolve, or at least make
great progress on, many problems
INn number theory and beyond.
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APPLICATIONS OF THE
RIEMANN HYPOTHESIS

If true, the Riemann hypothesis
would resolve, or at least make
great progress on, many problems
INn number theory and beyond.

For iInstance:

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




APPLICATIONS OF THE

RIEMANN HYPOTHESIS

In 1742, Christian Goldbach posed the
following conjecture to Euler:

Odd Goldbach conjecture: every odd number
greater than 5 is the sum of three primes.

In response, Euler made a stronger
conjecture:

Even Goldbach conjecture: every even
number greater than 2 is the sum of two

primes.

Christian Goldbach (1690-1764)

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




APPLICATIONS OF THE
RIEMANN HYPOTHESIS

It was not until 1997 that the odd Goldbach
conjecture was conditionally resolved by

Deshouillers, Effinger, Te Riele, and Zinoviey,
assuming (a generalization of) the Riemann

.:
hypothesis.

Jean-Marc

Gove Effinger

Deshouillers

The proof is six pages long and requires a
certain amount of computer assistance.

Herman Te Riele Dmitrii Zinoviev
View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




APPLICATIONS OF THE

RIEMANN HYPOTHESIS

What if one does not assume the Riemann hypothesis?

An unconditional proof of the odd Goldbach conjecture was
eventually obtained by Helfgott in 2012.

The proof is 317 pages long and requires a substantial amount of
-- computer assistance (including extensive numerical verification of
Harold Helfgott the Riemann Hypothesis, carried out by Platt).

The even Goldbach conjecture remains unproven, even under the
assumption of the Riemann Hypothesis and its generalisations.

David Platt

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




APPLICATIONS OF THE

RIEMANN HYPOTHESIS

Ramanujan considered the question of what odd
numbers cannot be expressed in the form
a2+b2+10c? for some natural numbers a, b, c.

Conjecture: there are only eighteen odd
numbers that cannot be expressed in the
above form, namely

3,7,21,31, 33,43,67,79,87, 133, 217, 219,
223, 253, 307, 391, 679, 2719.

(There are infinitely many even numbers that are
not expressible in the above form, for instance any
number of the form 16n+6.)

Srinivasa Ramanujan
(1887-1920)

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




APPLICATIONS OF THE
RIEMANN HYPOTHESIS

In 1997, Ono and Soundararajan established this conjecture
assuming (a generalisation of) the Riemann Hypothesis.

At the present time, no unconditional proof of this conjecture is
known.

W s Ml I 2
Kannan Soundararajan

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers
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PROGRESS ON THE RIEMANN
HYPOTHESIS

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




PROGRESS ON THE RIEMANN

HYPOTHESIS

Despite strenuous efforts, we do not
appear to be anywhere close to a proof of
the Riemann hypothesis.
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PROGRESS ON THE RIEMANN

HYPOTHESIS

Despite strenuous efforts, we do not
appear to be anywhere close to a proof of
the Riemann hypothesis.

Nevertheless there are partial results and
substitutes for the Riemann hypothesis
that are useful.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




PROGRESS ON THE RIEMANN
HYPOTHESIS
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PROGRESS ON THE RIEMANN

HYPOTHESIS

There are algorithms that can

be used to verify the Riemann

hypothesis for any finite
number of zeroes.
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PROGRESS ON THE RIEMANN

HYPOTHESIS

There are algorithms that can
be used to verify the Riemann
hypothesis for any finite
number of zeroes.

' For instance, it is known that

the first ten trillion zeroes of
e the Riemann hypothesis lie
on the critical line (Gourdon-
Demichel 2004; Platt 2013).

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




PROGRESS ON THE RIEMANN

HYPOTHESIS

— _— — — E== —
== == f— e
— — — ] [—
= = —_— == <
p— —_— fr—— p—
— — — — _ —/— ==
— = - = -
— p— — _ = { ==
periodic random jiggled erbium eigenvalues zeta zeros  primes bridges railroad  treerings quakes  bicycling

One-dimensional distributions each consist of 100 levels. From left to right the spectra are: a periodic array of evenly spaced lines; a ran-
dom sequence; a periodic array perturbed by a slight random “jiggling” of each level; energy states of the erbium-166 nucleus, all having the same
spin and parity quantum numbers; the central 100 eigenvalues of a 300-by-300 random symmetric matrix; positions of zeros of the Riemann zeta
function lying just above the 102nd zero; 100 consecutive prime numbers beginning with 103,613; locations of the 100 northernmost overpasses and
underpasses along Interstate 85; positions of crossties on a railroad siding; locations of growth rings from 1884 through 1983 in a fir tree on Mount
Saint Helens, Washington; dates of California earthquakes with a magnitude of 5.0 or greater, 1969 to 2001; lengths of 100 consecutive bike rides.

From: “The spectrum of Riemannium”, Brian Hayes, American Scientist, 2003
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PROGRESS ON THE

RIEMANN

HYPOTHESIS
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One-dimensional distributions each consist of 100 levels. From left to right the spectra are: a periodic array of evenly spaced lines; a ran-
om sequence; a periodic array perturbed by a slight random “jiggling” of each level; energy states of the erbium-166 nucleus, all having the same
spin and parity quantum numbers; the central 100 eigenvalues of a 300-by-300 random symmetric matrix; positions of zeros of the Riemann zeta
function lying just above the 102nd zero; 100 consecutive prime numbers beginning with 103,613; locations of the 100 northernmost overpasses and
underpasses along Interstate 85; positions of crossties on a railroad siding; locations of growth rings from 1884 through 1983 in a fir tree on Mount
Saint Helens, Washington; dates of California earthquakes with a magnitude of 5.0 or greater, 1969 to 2001; lengths of 100 consecutive bike rides.

i

From: “The spectrum of Riemannium”, Brian Hayes, American Scientist, 2003

Incidentally, the
statistics of these
zeroes bears a striking
resemblance to
statistics of other sets
of points, such as
spectral lines of nuclei,
eigenvalues of random
matrices, or even the
arrival times of buses
iIn Cuernavaca,
Mexico... but this is a
topic for another (much
longer) talk!
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No image available

Enrico Bombieri (1940-) Askold Ivanovich
Vinogradov (1929-2005)
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The Bombieri-Vinogradov
theorem, established in
1965, gives information on
the distribution of prime
numbers in “most”
arithmetic progressions,
which is of comparable
strength to what the
(generalized) Riemann
hypothesis gives. It has
been called “the generalized

Enrico Bombieri (1940-) Askold Ivanovich Riemann hypothesis on the
Vinogradov (1929-2005) average”.

No image available
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In 2013, Yitang Zhang obtained a deep
Improvement of the Bombieri-
Vinogradov theorem, which he then
used to resolve a long-standing
problem in analytic number theory:

Yitang Zhang
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In 2013, Yitang Zhang obtained a deep
Improvement of the Bombieri-
Vinogradov theorem, which he then
used to resolve a long-standing
problem in analytic number theory:

Zhang’s theorem: the gap between consecutive
primes remains bounded infinitely often.

Yitang Zhang

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




PROGRESS ON THE RIEMANN

HYPOTHESIS

In 2013, Yitang Zhang obtained a deep
Improvement of the Bombieri-
Vinogradov theorem, which he then
used to resolve a long-standing
problem in analytic number theory:

Zhang’s theorem: the gap between consecutive
primes remains bounded infinitely often.

Zhang'’s initial bound was 70,000,000.
The massively collaborative online
Polymath project eventually reduced
this bound to 246. The twin prime
Yitang Zhang conjecture asserts that one can obtain
the bound of 2!

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers
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The Riemann hypothesis can be used to study a class
of functions known as multiplicative functions relating
to the prime numbers. An example is the Liouville
function A(n), defined to equal +1 when n is the
product of an even number of primes, and -1 when n
IS the product of an odd number of primes.

Maksym Radziwill
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The Riemann hypothesis can be used to study a class
of functions known as multiplicative functions relating
to the prime numbers. An example is the Liouville
function A(n), defined to equal +1 when n is the
product of an even number of primes, and -1 when n
IS the product of an odd number of primes.

In 2015, Matomaki and Radziwill obtained a
breakthrough theorem on multiplicative functions that
gives even more information on their distribution
than what the Riemann hypothesis was known to
give! The Matomaki-Radziwill theorem has already
had a major impact on the field, and its full
consequences are still being explored.

Maksym Radziwill
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“Right now, when we
tackle problems without
knowing the truth of the
Riemann hypothesis, it's
as if we have a
screwdriver. But when
we have it, it'll be more
like a bulldozer.”

Peter Sarnak

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




MATHEMATICAL FRONTIERS

Number Theory: The Riemann Hypothesis

Ken Ono, Terence Tao, David Chu,

Emory University UCLA Institute for Defense Analyses
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MATHEMATICAL FRONTIERS

2018 Monthly Webinar Series, 2-3pm ET

February 13: Recording posted
Mathematics of the Electric Grid

March 13: Recording posted
Probability for People and Places

April 10: Recording posted
Social and Biological Networks

May 8: Recording posted
Mathematics of Redistricting

June 12:
Number Theory: The Riemann
Hypothesis

July 10: Topology

August 14:
Algorithms for Threat Detection

September 11:
Mathematical Analysis

October 9: Combinatorics

November 13:
Why Machine Learning Works

December 11:
Mathematics of Epidemics
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