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Algorithms for Threat Detection

Associate Director of the Center for Data,
Discovery, and Decisions and
Professor of Statistics at the

University of California, Santa Cruz

Harnessing the Data
Revolution in Defense
it and National Security
Abel Rodrguer Applications

University of California, Santa Cruz
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Harnessing the data revolution

e Pervasive data
collection facilitated by
cheap electronics

— Location data
— Relational data

 Properly used, these
data are a boon for
defense and national
security applications

Images courtesy of the AAUW and Penn State University
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Outline

NSF’s ATD program
Some motivating challenges

How mathematics and statistics can help
Mind the Dark Side!

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




ATD@NSF: Mathematics and Statistics

in Defense and National Security

e The Algorithms for Threat
Detection (ATD) program was
launched in 2008.

e |tis run out of the Division of
Mathematical Science (DMS)
in the Directorate for
Mathematical & Physical
Sciences (MPS)

e Itistheresultofa
partnership with various
other government agencies.

e Has had tremendous impact.
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Social Media
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Crime and terrorism

* Intervention design
e Policy assessment

......

Images courtesy of the trulia.com and the the US Army.
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Environmental Hazards

e Detection

e Analysis

* Tracking, both active
and passive

Images courtesy of the NASA, the US Navy and the ICDO
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Analysis of hyperspectral data for
plume detection and identification

Mendoza, N. and Rodriguez A. (2017) Bayesian spatial
model selection for detection and identification in chemical

plumes based on hyperspectral imagery data. Technical
report, University of California, Santa Cruz

e Plumes are "continuous”

* You need to carefully control for
false positive rates

* Include prior information about the
likelihood of different chemicals

Images courtesy of the Dimitris Manolakis
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Control of mobile sensor networks in

unknown environments
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Using network data for record linkage

and entity resolution

Facebook

Sosa, J. and Rodriguez A. (2018) Bayesian models for record linkage in
the presence of relational information. Technical report, University of
California, Santa Cruz

e Project nodes from all networks onto a
common “social space”
e Use information from known “bridges” to
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The Dark Side ...

e Balancing security and civil liberties.
 We still do not have good answers!

MINORITY REPORT
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Images courtesy of the John Darkow and IMDB.com
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Algorithms for Threat Detection

Director of Applied Mathematics and
Professor of Mathematics at the
University of California, Los Angeles

Crime modeling and
data analysis

Andrea Bertozzi,
UCLA
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00000

06000 SIS neN=ss.  Multidisciplinary
9:888 Collaboration

e Social Sciences:
Jeff Brantingham (Anthropology) and
George Tita (Criminology - UCI)

e Mathematics and Statistics: Bertozzi, Chayes, Osher
Schoenberg (many PhD students and postdocs)

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




Predictive Policing with LAPD and

Mohler et al. JASA 2011 — show earthquake
models can predict crime.

In June 2011 SCPD reduced crime by 27%
using this method

Nov 2011 pilot study by LAPD in Foothill
Division

Now used in multiple jurisdictions in LAPD
and many other cities (including Seattle, | : . : : Il

Atlanta, Kent UK) :
s Conpny e PredPol
Mohler et al. JASA 2015 — field trials Pred ICt Crl me | n Real Tlme

published (software vs. crime analyst)

PredPol provides targeted real tiI'I'IE crime predlctlun
designed for and successfully tested by officers in the field.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




Territorial Animals

versus Street Gangs

e PhD thesis work of Laura Smith at UCLA

e P. Moorcroft, M. Lewis, and R. Crabtree. Mechanistic Home Range Models
Capture Spatial Patterns and Dynamics of Coyote Territories in
Yellowstone. 2006.

e L. M. Smith, A. L. Bertozzi, P. J. Brantingham, G. E. Tita, and M. Valasik,
Adaptation of an Ecological Territorial Model to Street Gang Spatial
Patterns in Los Angeles, Discrete and Continuous Dynamical Systems A,
32(9), pp. 3223 - 3244, 2012.

home ranges = territories
coyotes, wolves = gang members
pack = gang
scent marks = graffiti

o A ' den site = set space LA A
il U
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Paul R. Moorcroft, Mark A. Lewis and Robert L.

Crabtree, Proc. Roy. Soc. B, 2006

Mechanistic home range models capture spatial patterns and dynamics of coyote
territories in Yellowstone
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Resulting Gang and Marking Densities

(left) Prediction of street gang activity in Hollenbeck; (right) predicted gang tag densities
Note: we can not have “radio collar” data for street gangs. Graffiti data could be generated.
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Flagging the Top Marking Densities (y=0.2,0.1,0.05)

Without graffiti data we compare to gang violence data. Thresholding predicted graffiti
Density recovers areas with a proportionately large percentage of violence.

~ Percent of City Flagged | Percent of Violence Data Predicted
0.2 5.02% 20.61%
0.1 13.94% 50.91%
0.05 22.46% 71.21%
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Field Interview Cards Hollenbeck LAPD

home to about 30 adversarial street gangs
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LAPD Northeast
Policing Area

34000 events over several years
Geographic area is 15 sqg. miles
Groups of people observed
together in time and space
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ldentifying communities in street gangs from

field interview card data

Project started as summer REU. Uses graph theory and
social/spatial network structure

van Gennip et al. SIAM J. Appl. Math 2013
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Ego-motion classification for body-worn videos

Zhaoyi Meng, Javier Sanchez, Jean-Michel Morel, Andrea L. Bertozzi, and P. Jeffrey Branting-
ham. Ego-Motion Classification for Body-Worn Videos. manuscript.

Table 2 Accuracy Summary of the QUAD data set

x: horizontal Accuracy Overall Average 1.Stand still 2. Turn left 3.Turn right 4.Look up
. K-means 64.84% 61.79% 95.82%  7226%  77.28%  713.24%

translation Unsupervised MBO  66.62% 67.59% 79.99%  76.82%  8337% = 69.41%
y: vertical Semi-supervised MBO 89.14% 88.74% 87.90%  89.43%  92.80%  80.36%
translation Accuracy 5.Look down 6.Jump 7.Step 8.Walk 9.Run

. : K-means 0 83.29% 4929%  36.66%  68.25%

. rotajuon . Unsupervised MBO  77.82% 39.38% 43.54%  8327% = 54.68%

Z: z-axis translation Semi-supervised MBO 84.59% 92.71% 93.98%  84.52%  92.38%

ground truth

fx,fyfrfz

) unsupervised MB -

I
N e N
ML T w—

Fig.7 Ego-motion classification results of the QUAD video. The 9 colors represent 9 different ego-
motion classes: standing still (dark blue), turning left (moderate blue), turning right (light blue),
looking up (dark green) and looking down (light green), jumping (bud green), stepping (aztec
gold), walking (orange), runing (yellow).

K-means




Temporal Distribution Forecasting

B. Wang, D. Zhang, D. Zhang, P. J. Brantingham, and A. L. Bertozzi, Deep Learning for Real Time Crime Forecasting, NOLTA 2017
B. Wang, X. Luo, F. Zhang, B. Yuan, A. L. Bertozzi, and P. J. Brantingham, Graph-based deep modeling and real time forecasting of
sparse spatio-temporal data, to appear MileTS at KDD London, 2018
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Predicted vs. exact crime for two sample grid cells in LA (Dec 2015). (a) shows crime
intensity (number of events) and (b) shows cumulated intensity per day. Time unit is hours.
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