



# MATHEMATICAL FRONTIERS

*The National  
Academies of* | SCIENCES  
ENGINEERING  
MEDICINE

[nas.edu/MathFrontiers](http://nas.edu/MathFrontiers)



Board on  
Mathematical Sciences & Analytics

# MATHEMATICAL FRONTIERS

## 2018 Monthly Webinar Series, 2-3pm ET

**February 13\*:**

*Mathematics of the Electric Grid*

**March 13\*:**

*Probability for People and Places*

**April 10\*:**

*Social and Biological Networks*

**May 8\*:**

*Mathematics of Redistricting*

**June 12\*:** *Number Theory: The Riemann Hypothesis*

**\* Recording posted**

**July 10\*:** *Topology*

**August 14\*:** *Algorithms for Threat Detection*

**September 11:** *Mathematical Analysis*

**October 9:** *Combinatorics*

**November 13:**

*Why Machine Learning Works*

**December 11:**

*Mathematics of Epidemics*

Made possible by support for BMSA from the  
National Science Foundation Division of Mathematical Sciences and the  
Department of Energy Advanced Scientific Computing Research

# MATHEMATICAL FRONTIERS

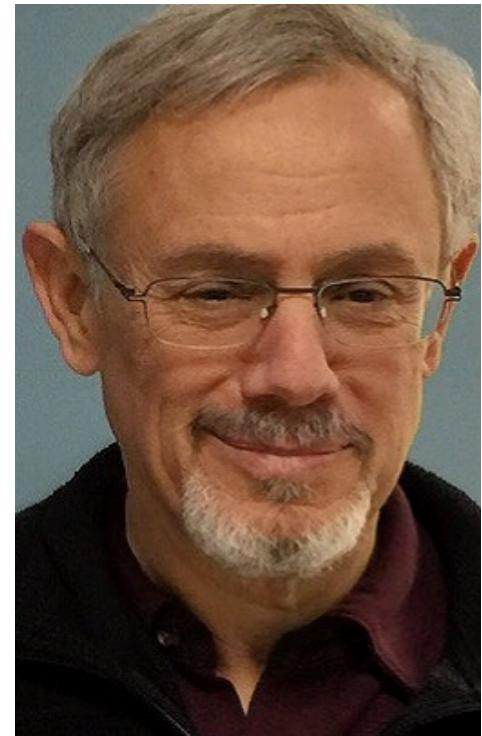
## Mathematical Analysis



**Dimitri Shlyakhtenko,**  
UCLA



**Svitlana Mayboroda,**  
University of Minnesota



**Mark Green,**  
UCLA (moderator)

# MATHEMATICAL FRONTIERS

## Mathematical Analysis



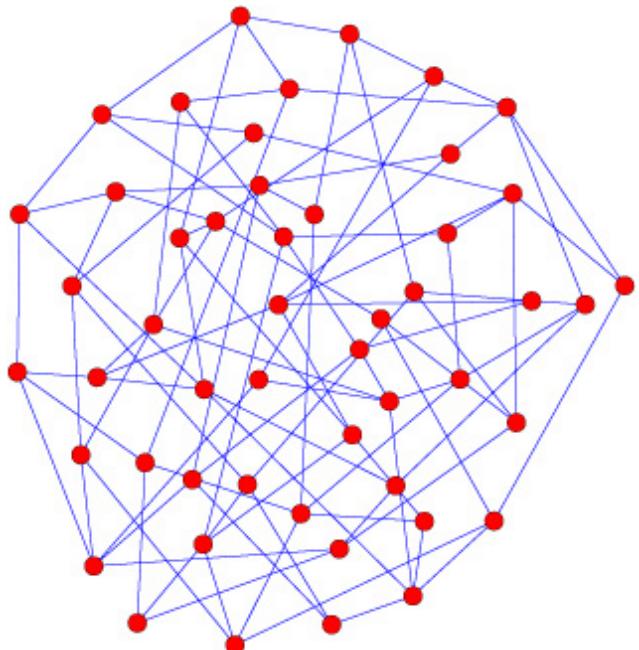
*Director of Institute for Pure and Applied Mathematics and Professor of Mathematics in the Department of Mathematics at the University of California, Los Angeles*

**Marcus, Spielman, Srivastava: Making Sparse Graphs**

**Dimitri Shlyakhtenko,**  
**UCLA**

# Graphs

- A *graph* consists of a set of vertices  $V$  and a set of edges  $E$  between them:



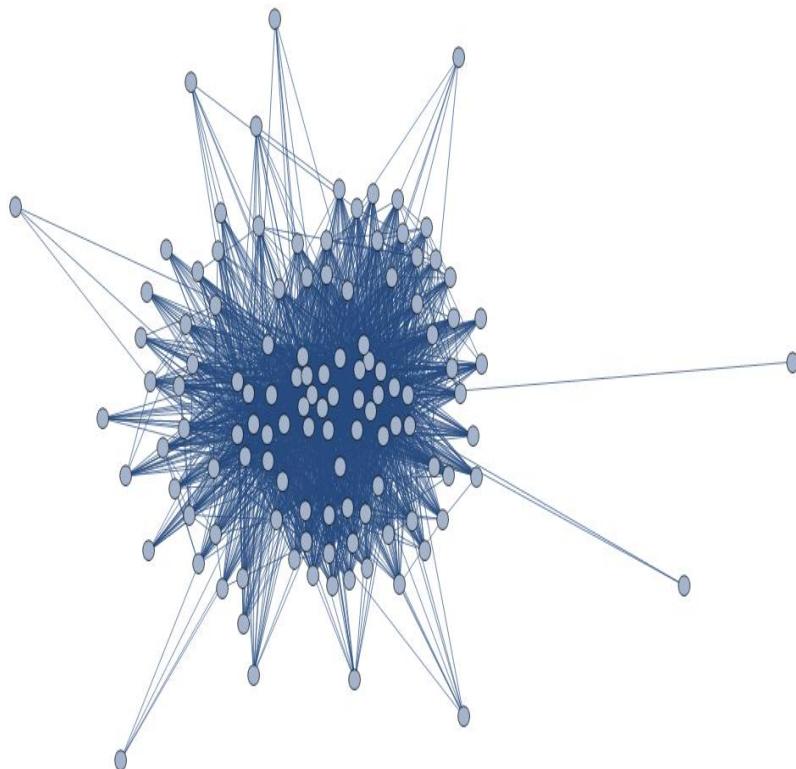
**Graphs** are useful to encode relationships:

- Vertices = people, edges = shared interest
- Vertices = Senators, edges = same vote on an issue
- Networks: vertices = computers, edges = connections

**Typical questions:**

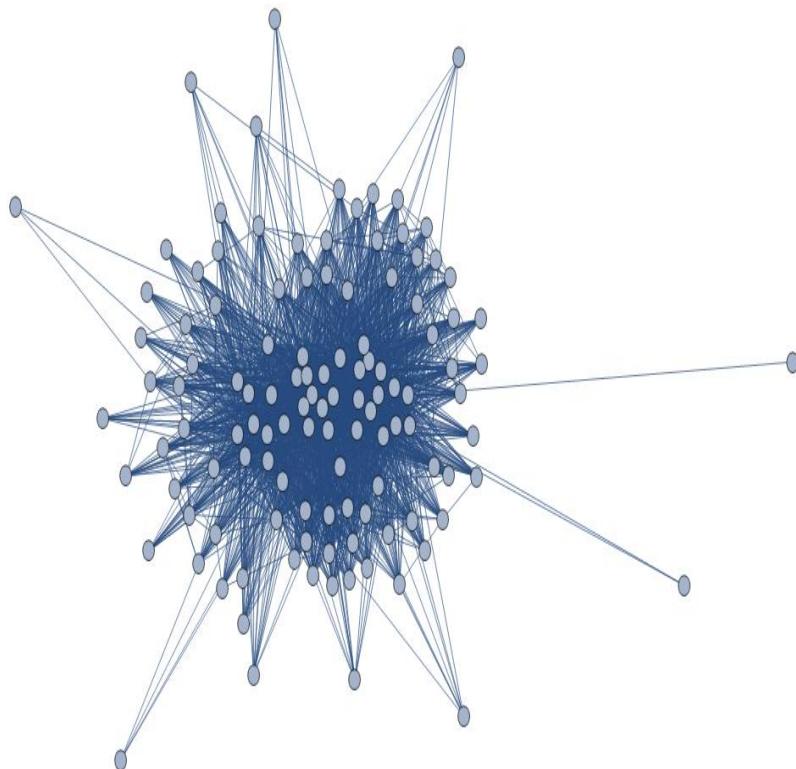
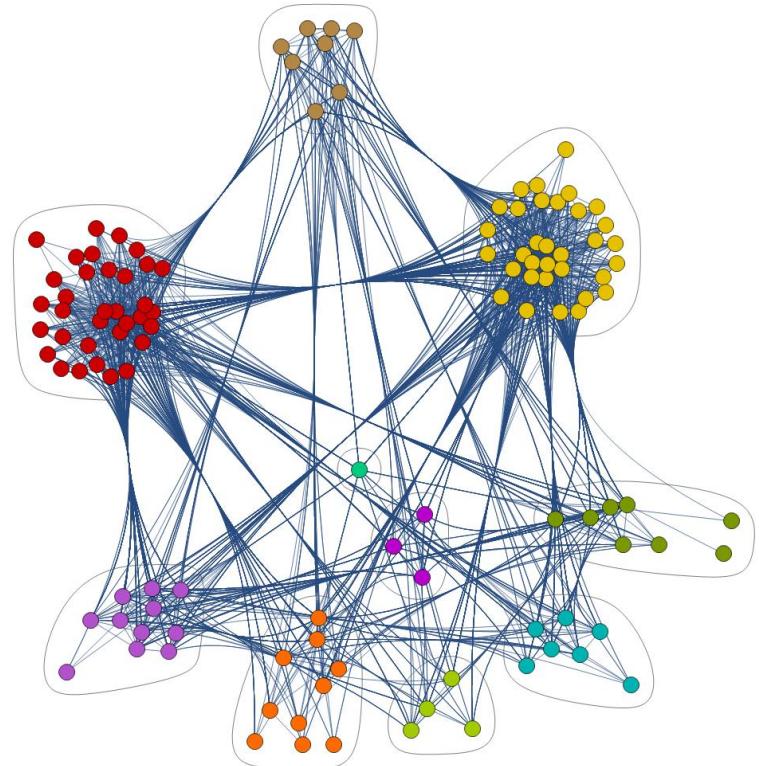
- Clustering / community detection
- Cuts / reliability / speed of info

# Community detection: 119 IPAM Programs (last 20 years)



Vertices = programs, Edges = common participants

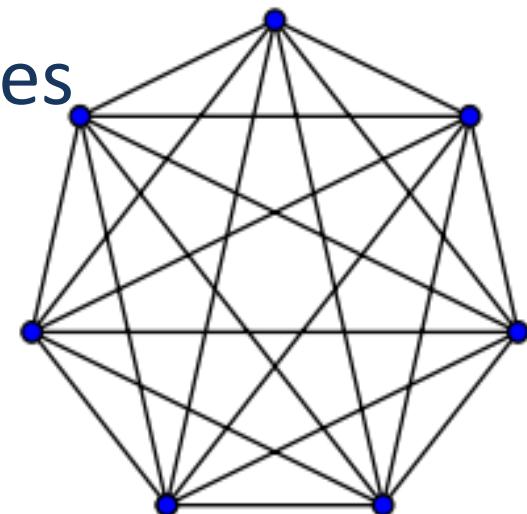
# Community detection: 119 IPAM Programs (last 20 years)



Vertices = programs, Edges = common participants

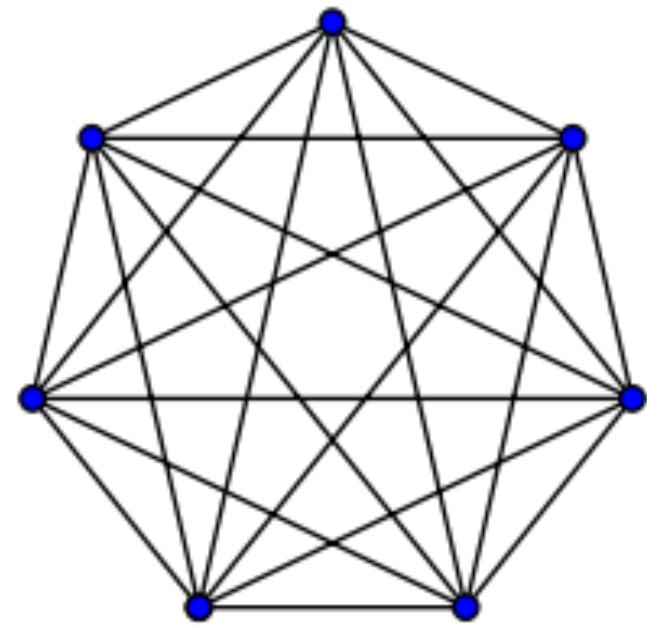
# Problem

- Too many edges!
- E.g. Complete Graph (all pair of vertices connected)  
 $N$  vertices gives  $N(N-1)/2$  edges
- Very well connected, but at great cost: connecting 1,000 computers pairwise requires ~500,000 wires!



# Sparsity

- Goal: replace a complicated graph by a graph with much fewer edges, while keeping the same “essential features”.
- Compute with the sparse graph (much easier!) to detect communities, find cuts, etc.
- Replace “all to all” complete graph by a graph with much fewer edges but similar properties.
- Amazing progress in this area: Benczur-Karger’96, Spielman-Teng’04, Spielman-Srivastava’08, Marcus-Spielman-Srivastava’14,...



Complete graph

# “Similar” explained

- One measure of similarity is the speed at which heat would spread across the graph if a single vertex is heated.

# “Similar” explained

- One measure of similarity is the speed at which heat would spread across the graph if a single vertex is heated.
- Graphs with high heat spread rates are called *expanders*.

# “Similar” explained

- One measure of similarity is the speed at which heat would spread across the graph if a single vertex is heated.
- Graphs with high heat spread rates are called *expanders*.
- A complete graph is an expander.

# “Similar” explained

- One measure of similarity is the speed at which heat would spread across the graph if a single vertex is heated.
- Graphs with high heat spread rates are called *expanders*.
- A complete graph is an expander.
- **Challenge:** find graphs with relatively few edges which are expanders (“sparsify complete graphs”).

# Expanders.

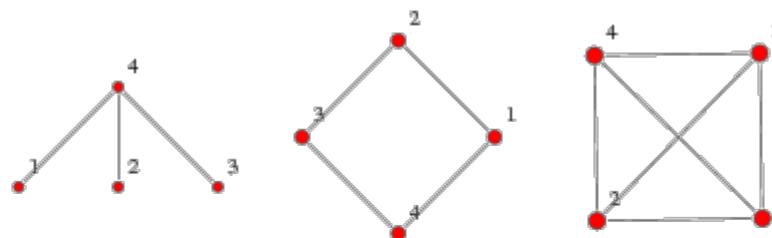
- Expanders are very useful in many areas of mathematics, computer science, etc.
  - “sparsification” of complete graph
  - Data correction (“expander codes”)
  - Cryptography (Hash functions)
  - .....

# Expanders.

- Expanders are very useful in many areas of mathematics, computer science, etc.
  - “sparsification” of complete graph
  - Data correction (“expander codes”)
  - Cryptography (Hash functions)
  - .....
- Challenge: construct good expanders

# From Graphs to Matrices

- Each graph can be encoded by its *adjacency matrix*  $A$ .
- The matrix has an entry for each pair of vertices, with 1 or 0 depending on whether they are connected.



$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

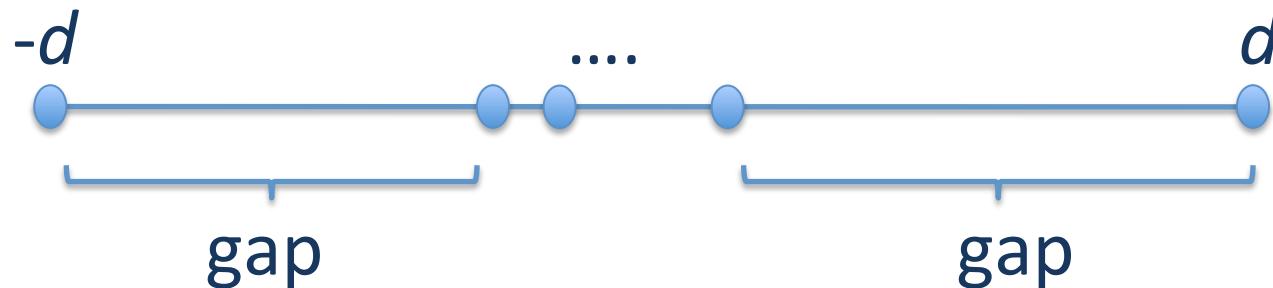
$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

*Credit: WolframAlpha*

# Expanders via matrix eigenvalues

- Assume each vertex has  $d$  edges (“degree  $d$ ”).  
Compute *eigenvalues* of the matrix  $L=d\mathbf{I}-A$ .
- The eigenvalues of  $L$  are numbers in the interval  $[-d,d]$ :



Size of the two gaps is related to heat dissipation rate (how good of an expander the graph is).

# How to build expanders

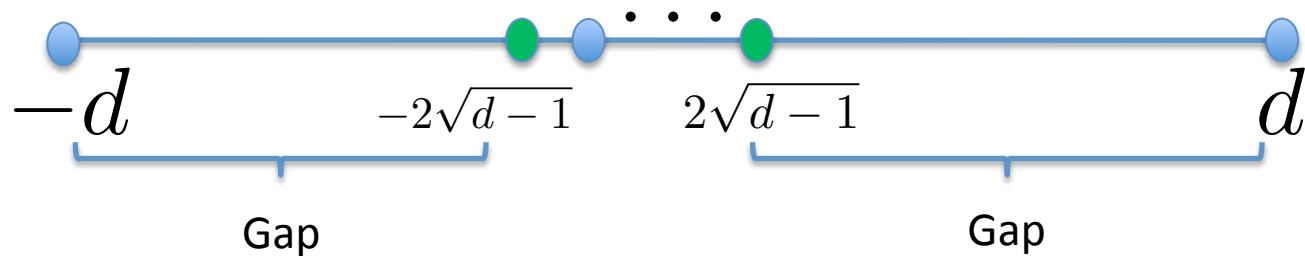
- Goal: construct graphs with fixed degree  $d$  (=number of edges at each vertex) but which are good expanders (big gap).

# How to build expanders

- Goal: construct graphs with fixed degree  $d$  (=number of edges at each vertex) but which are good expanders (big gap).
- **Fact.** [Alon-Boppana'86] The largest the gap can be for large graphs is  $d - 2\sqrt{d - 1}$ .

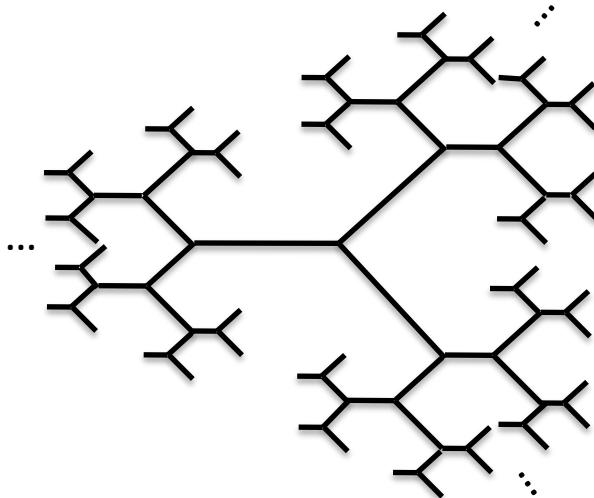
# How to build expanders

- Goal: construct graphs with fixed degree  $d$  (=number of edges at each vertex) but which are good expanders (big gap).
- **Fact.** [Alon-Boppana'86] The largest the gap can be for large graphs is  $d - 2\sqrt{d - 1}$ .



# Alon-Boppana bound

- The gap bound is actually realized by an *infinite tree*.

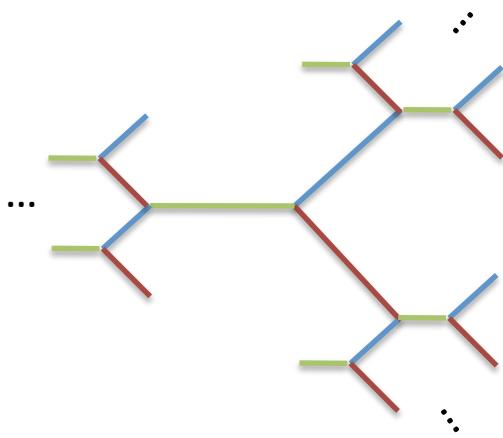


IPAM 2018 program  
“Quantitative Linear  
Algebra”:  
connections between  
finite and infinite  
matrices.

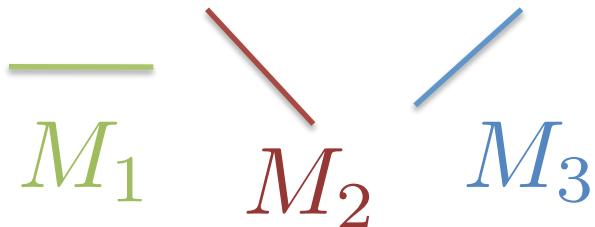
- But we want a *finite* graph with  $d$  edges at each vertex reaching the bound. These are called **Ramanujan graphs**. Finite is harder than infinite!

# Trees

- What are trees made of?

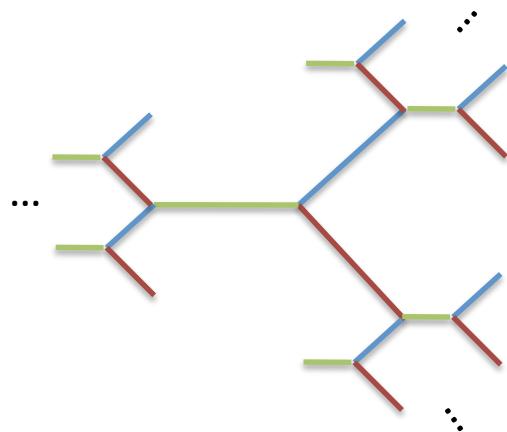


- A tree is a free product of matchings.



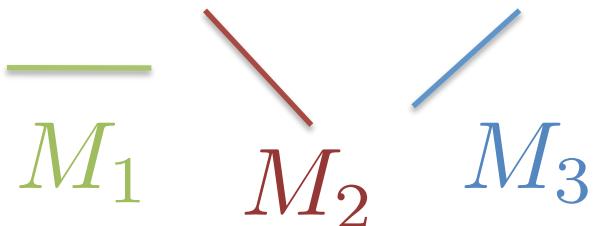
# Trees

- What are trees made of?


$$L_{\text{tree}} = M_1 + M_2 + M_3$$

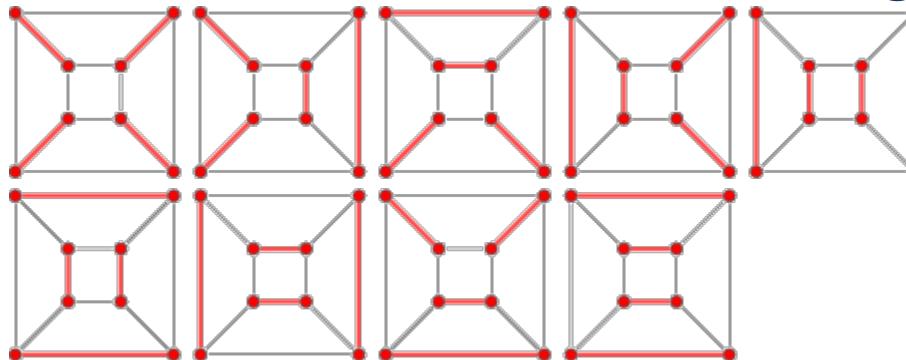
Where  $M_1, M_2, M_3$  are  
freely independent matchings.

- A tree is a free product of matchings.



# From infinite to finite

- So one should try to build a Ramanujan graph as a free product ... but free products always give *infinite* graphs.
- Idea: free independence (Voiculescu) occurs for random matrices when their sizes grow.
- Take  $2N$  points and randomly match  $N$  of them to the rest. Do this  $d$  times to create  $d$  matchings  $Q_1, \dots, Q_d$



Matchings,  $2N=8$  Credit: WolframAlpha

# Construction of Ramanujan Graphs

- **Theorem** [Marcus, Spielman, Srivastava'14] With non-zero probability the sum of the random matchings  $Q=Q_1 + \dots + Q_d$  is the matrix of a Ramanujan graph.

# Construction of Ramanujan Graphs

- **Theorem** [Marcus, Spielman, Srivastava'14] With non-zero probability the sum of the random matchings  $Q=Q_1 + \dots + Q_d$  is the matrix of a Ramanujan graph.

In fact, this can be done constructively giving examples of Ramanujan graphs with an arbitrary fixed number of edges per vertex. [Lubotsky-Phillips-Sarnak'86 only for  $d=p+1$ ]

# Further directions

- Finding Ramanujan graphs is related to the question of how to sparsify a complete graph.
- Further techniques of Marcus-Spielman-Srivastava can be used to sparsify other graphs.
- → Better algorithms for graph analysis!
- In math, better connections between finite and infinite dimensions.

# Further Reading

- Lecture series by Srivastava at the Simons Institute:

<https://simons.berkeley.edu/talks/nikhil-srivastava-2014-08-27>

- Tutorials at IPAM, including lectures by Srivastava and Tao:

<https://www.ipam.ucla.edu/programs/workshops/quantitative-linear-algebra-tutorials/?tab=schedule>

# MATHEMATICAL FRONTIERS

## Mathematical Analysis



**Svitlana Mayboroda,**  
University of Minnesota

*Director of Simons Collaboration on  
Localization of Waves and  
Northrop Professor of Mathematics in the  
School of Mathematics at the  
University of Minnesota*

## Localization of Waves

# Localization of Waves

*The results presented in this talk are a part of a newly established Simons collaboration “Localization of Waves” including the PIs*

- D. Arnold, UMN (applied math)
- A. Aspect, Institut d'Optique (cold atoms)
- G. David, Université Paris-Sud (harmonic analysis, geometric measure theory)
- M. Filoche, Ecole Polytechnique (condensed matter physics)
- R. Friend, Cambridge (organic semiconductors)
- D. Jerison, MIT (harmonic analysis, PDE)
- Y. Meyer, ENS-Cachan (harmonic analysis)
- J. Speck, UCSB (GaN semiconductors)
- C. Weisbuch, UCSB and Ecole Polytechnique (semiconductors)

and our many collaborators.

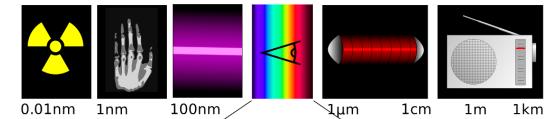
# A world full of waves



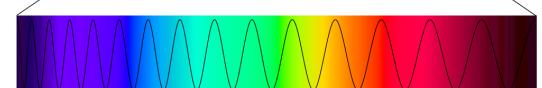
Mechanical



Fluid



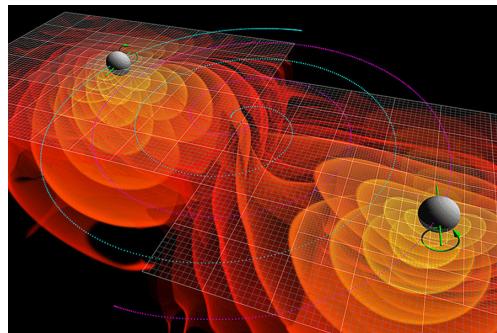
400nm 700nm



Electromagnetic



Acoustic



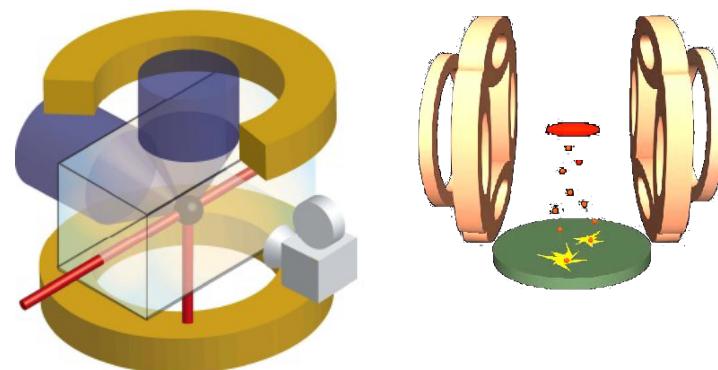
Gravitational



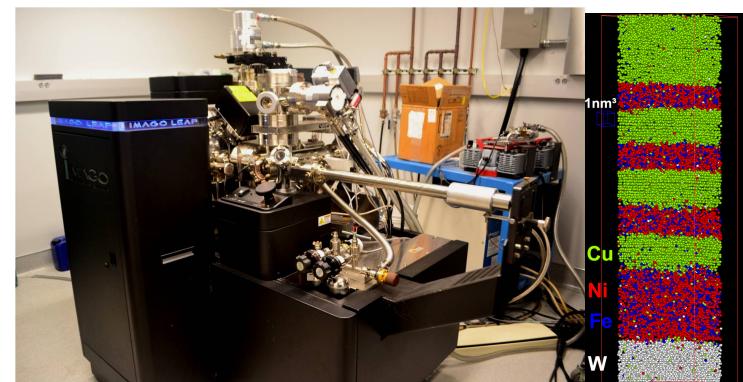
Matter

# Add technology which makes the invisible visible...

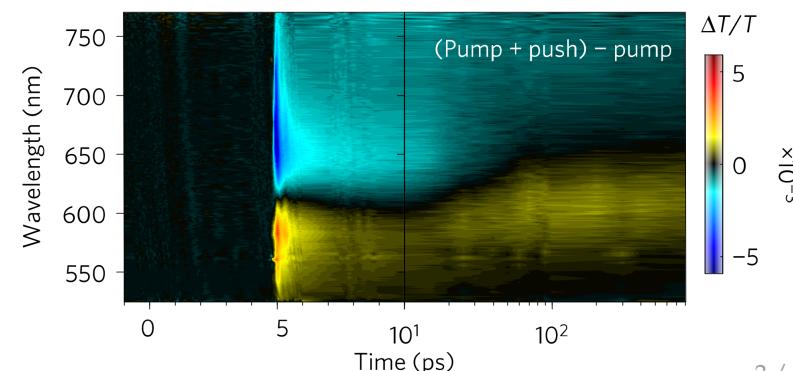
- Manipulate individual atoms with laser cooling: a few billionths of a degree above absolute zero  
[Aspect lab, Institut d'Optique]



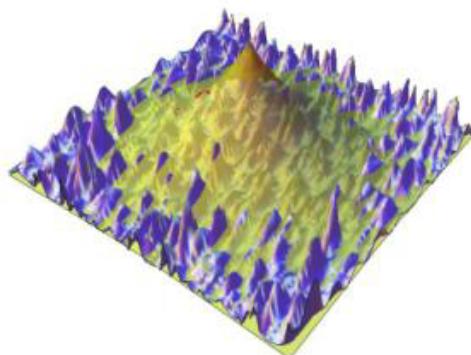
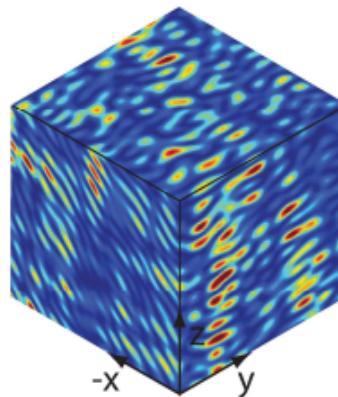
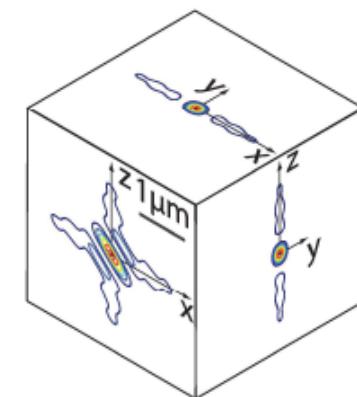
- Map out materials atom-by-atom: samples of 10,000-10,000,000 nm<sup>3</sup> with billions of atoms  
[Speck & Weisbuch lab, UCSB]



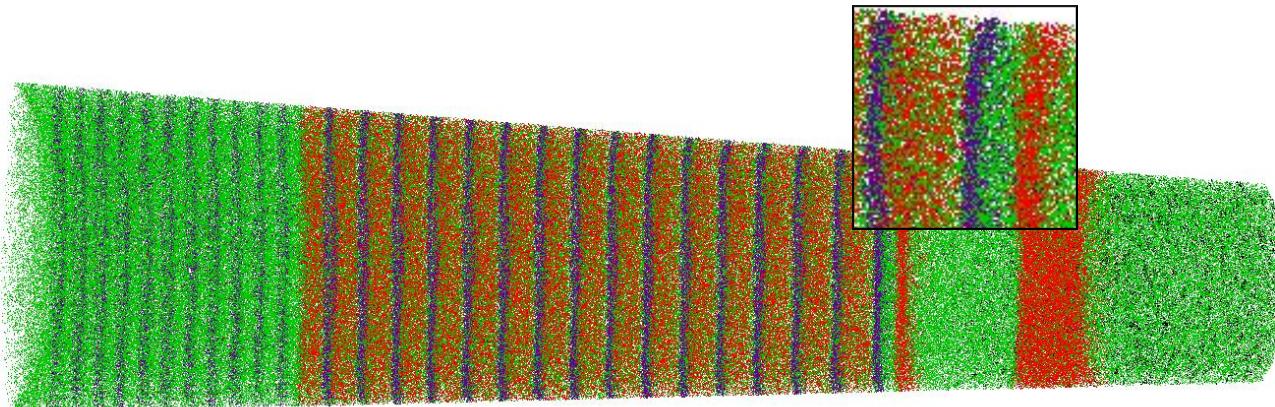
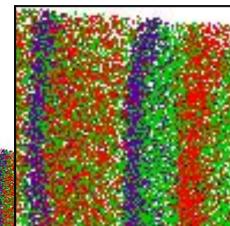
- Pump-push-probe electroabsorption: 100 fs = 10<sup>-13</sup> s migration of holes from higher to lower energy sites  
[Friend lab, Cambridge]



# And we find disorder everywhere

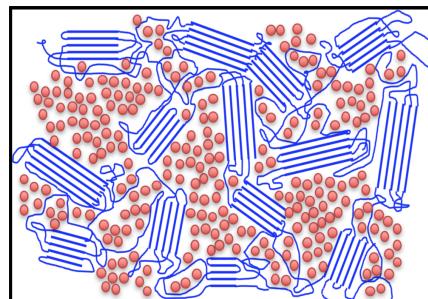


Anderson localization in Bose-Einstein condensate [Aspect lab]



Atomic map of  
InGaN  
semiconductor  
[Speck lab]

Mixed donor-acceptor  
morphology in an organic  
solar cell [Friend lab]



# String vibration

Any string vibration is a linear combination of “harmonics” – eigenfunctions which solve

$$\begin{cases} -\frac{d^2}{dx^2} \varphi = \lambda \varphi, \\ \varphi(0) = \varphi(1) = 0 \end{cases}$$

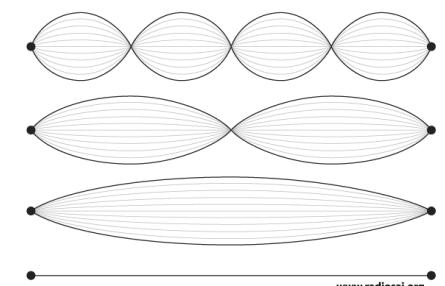
$\lambda$  are the corresponding eigenvalues (AKA energies)

Here we assume that the string is fixed at the ends and has length 1:  $u(0) = u(1) = 0$

$$\varphi(x) = C_1 \cos \sqrt{\lambda}x + C_2 \sin \sqrt{\lambda}x$$

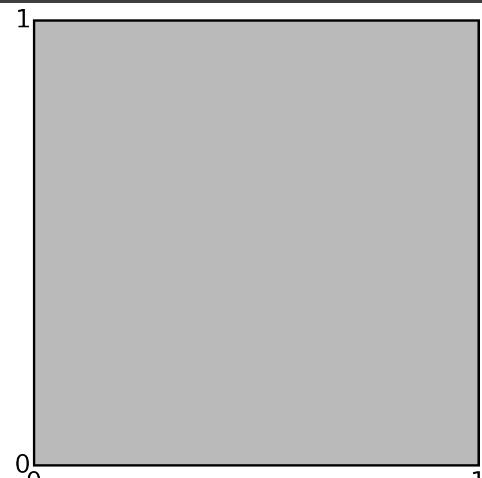
Given  $\varphi(0) = \varphi(1) = 0$ , we have

$$\lambda_n = (n\pi)^2, \quad \varphi_n = \sin(n\pi x)$$



www.radiosai.org

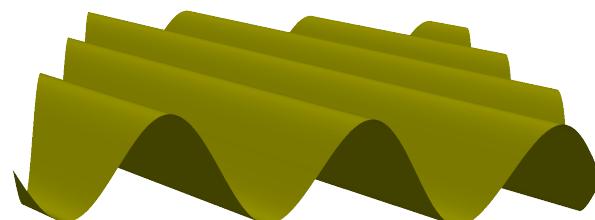
# Smooth versus disordered potential in Schrödinger equation



no potential

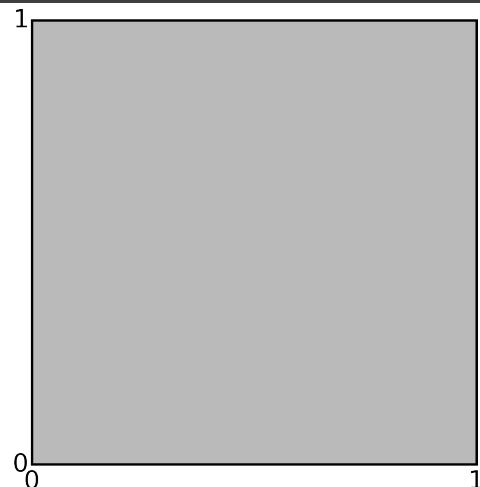


fundamental mode

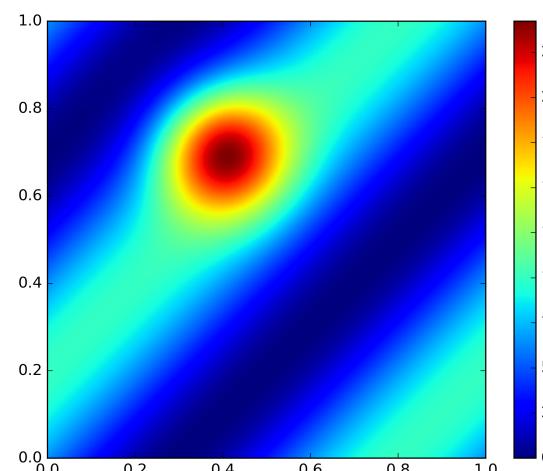


57th mode

# Smooth versus disordered potential in Schrödinger equation



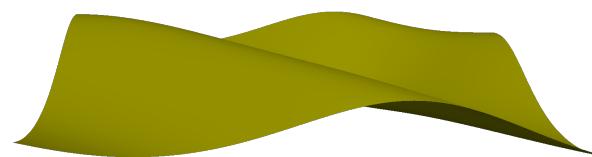
no potential



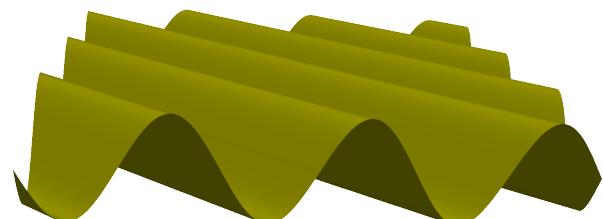
smooth potential



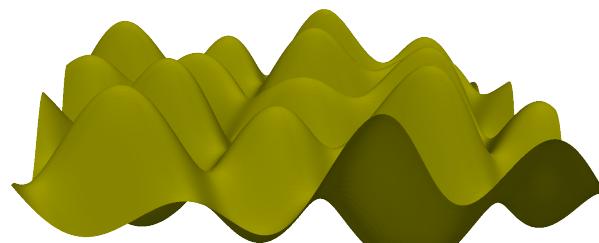
fundamental mode



fundamental mode

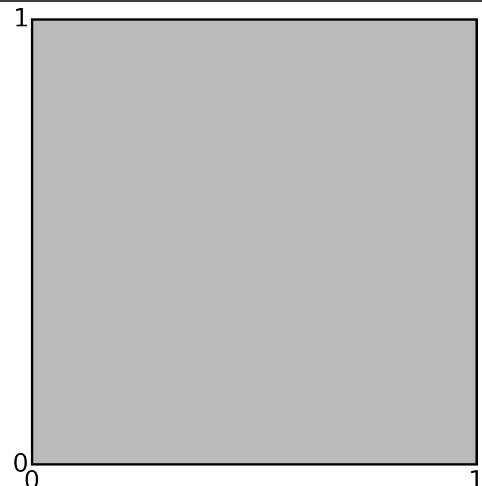


57th mode

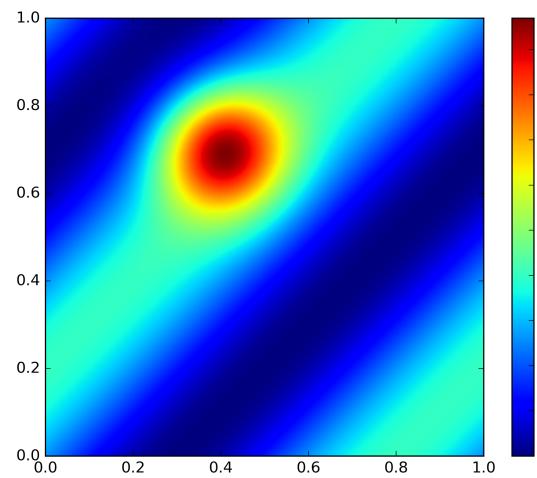


57th mode

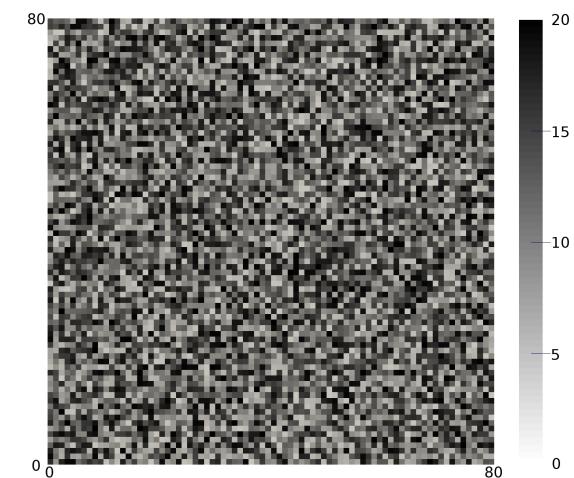
# Smooth versus disordered potential in Schrödinger equation



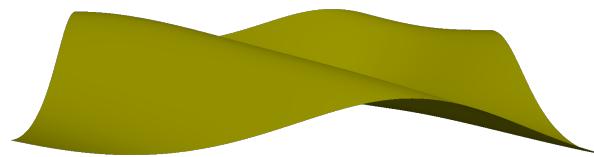
no potential



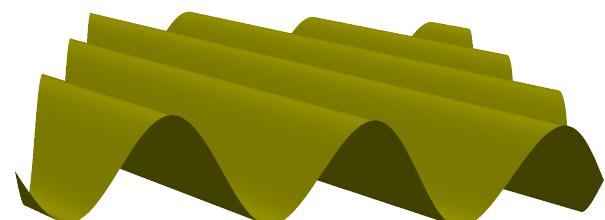
smooth potential



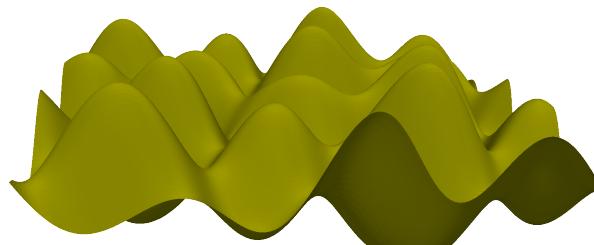
fundamental mode



fundamental mode

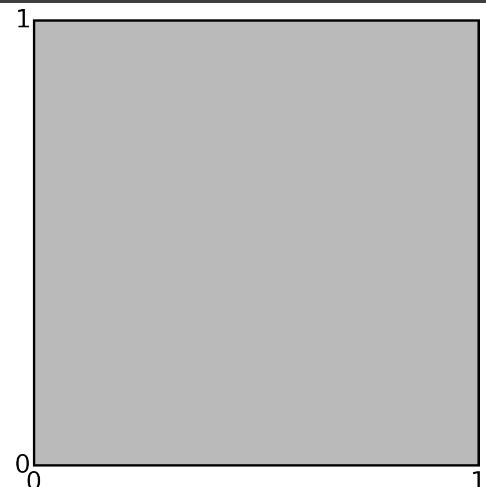


57th mode

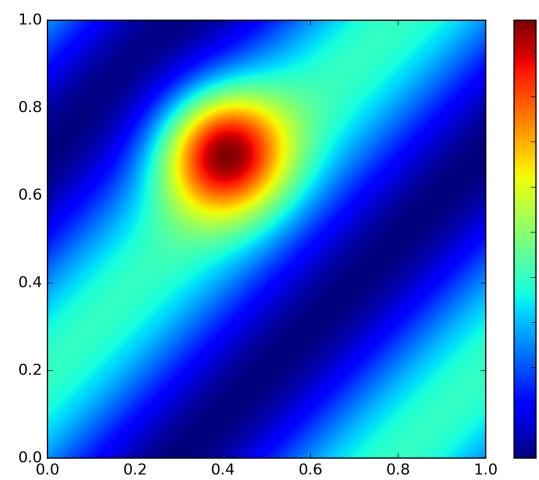


57th mode

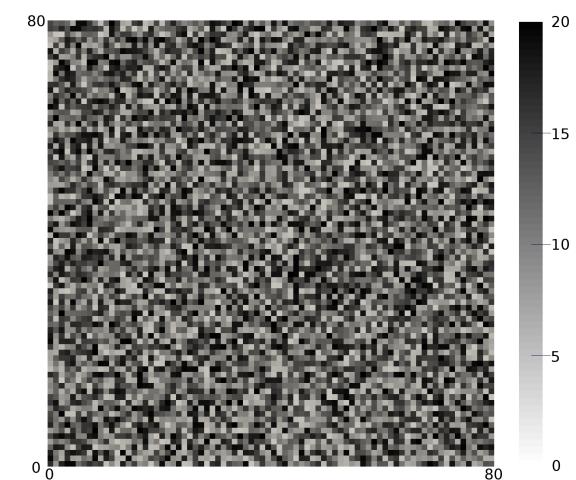
# Smooth versus disordered potential in Schrödinger equation



no potential



smooth potential



random potential

Disorder changes everything!



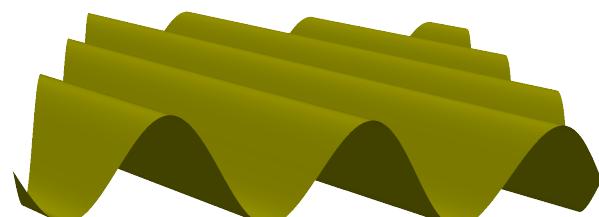
fundamental mode



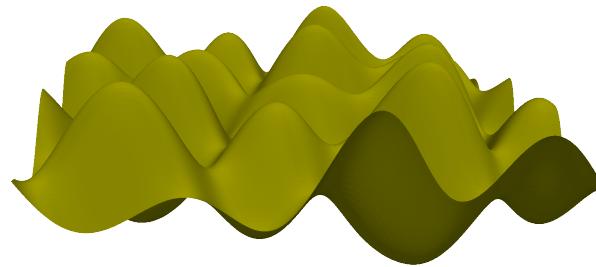
fundamental mode



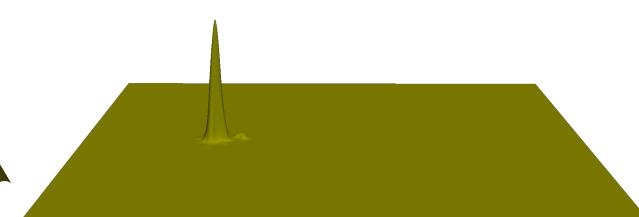
fundamental mode



57th mode



57th mode



57th mode

# The main goal: basic questions

We seek a quantitative, deterministic understanding of the mechanisms of wave localization so we can answer such questions as:

- When and where do eigenfunctions localize?
- How many localize?
- What are the size and shapes of their supports?
- What are the associated eigenvalues?

More generally, for Schrödinger and far more complex systems, we want to:

- Determine wave behavior in a given disordered environment.
- Infer the disordered environment by observing wave behavior.
- Design the environment to obtain desired or optimal wave behavior.

# Take on the perspective of a wave

A hidden landscape that waves recognize and obey

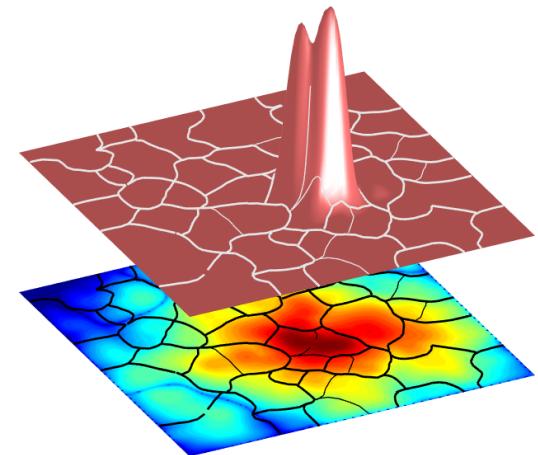
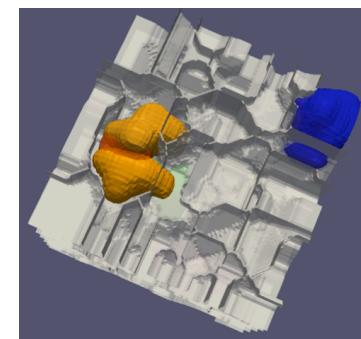
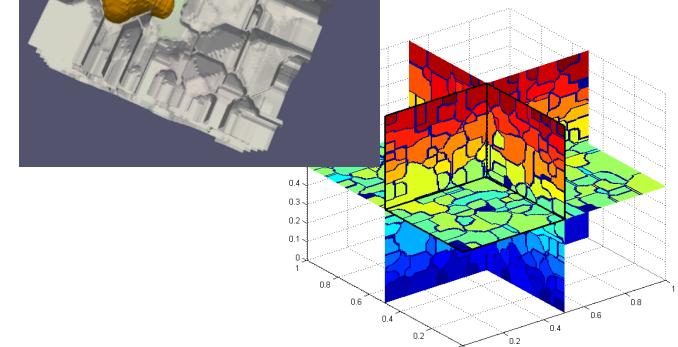
- born of the equation but invisible to the naked eye
- contains both spatial and spectral information

The goal is to

Discover and master this landscape in order to

- understand
- predict
- manipulate
- govern
- and, ultimately, design matter waves

The main hero:  
**THE LANDSCAPE**



Curves/surfaces of the landscape vs. eigenfunctions

# Anderson localization

The localization of Schrödinger eigenfunctions with random potential was discovered by Philip Anderson in his **Nobel-prize-winning work** of 1958.



*Unfortunately, electron localization was devilishly hard to confirm... experimental observations are sparse and covered with disputes and controversies.*

– Lagendijk, van Tiggelen, Wiersma, *50 Years of Anderson Localization*, 2009

*Most theoretical work [7-9] predicts [the critical exponent]  $\mu = 1$ , but there is also a prediction of  $\mu = 1/2$  [10]. Numerical simulation [11] gives  $\mu = 2/3$ ...*

– I. Shlimak, *Is Hopping a Science?*, 2015

# Anderson localization

The localization of Schrödinger eigenfunctions with random potential was discovered by Philip Anderson in his **Nobel-prize-winning work** of 1958.



*Very few believed [localization] at the time, and even fewer saw its importance; among those who failed to fully understand it at first was certainly its author. It has yet to receive adequate mathematical treatment, and one has to resort to the indignity of numerical simulations to settle even the simplest questions about it.*

– Philip W. Anderson, *Nobel Lecture, 1977*

# Localization beyond Anderson

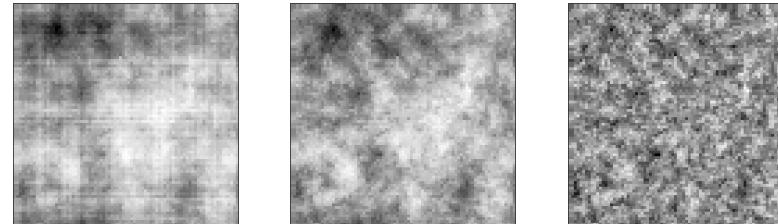
Localization occurs in many, many situations of interest.

- localization in 2D, diffusion in 3D, higher dimensions
- correlations
- singular distributions (e.g., Bernoulli)
- deterministic disorder (almost Mathieu, quantum Hall effect)
- localization by geometry (e.g., Bernoulli with values 0 and  $+\infty$ )

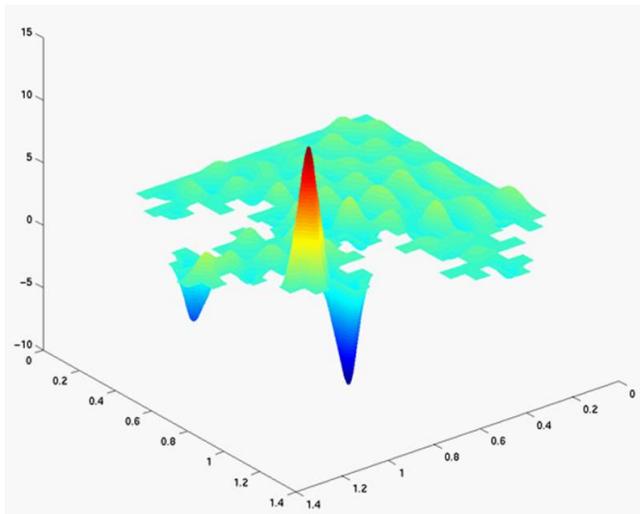
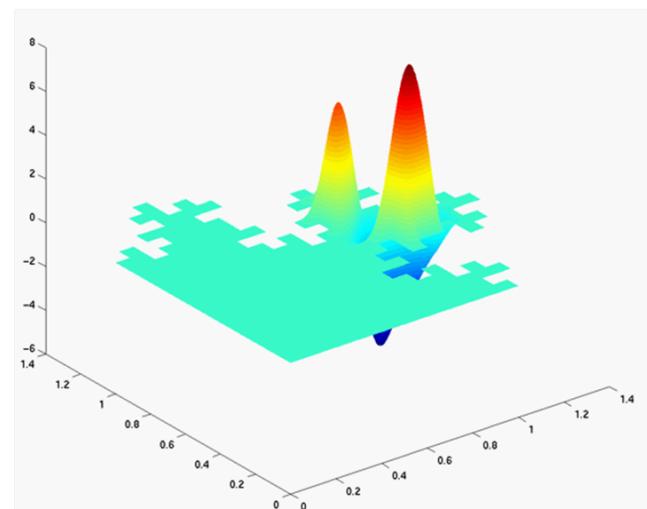
Bernoulli potential



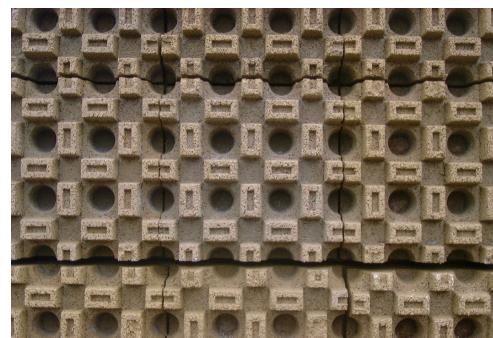
Correlated Gaussian field potential



# Disorder through geometry



High-order localized Dirichlet modes of a 2D domain with fractal-like boundary



Fractal® Wall Acoustic Barrier, Filoche et al.

# Localization in mathematics

*A collection of rather different phenomena:*

- semiclassical analysis
- mathematical physics
- probability
- PDEs
- geometric measure theory
- harmonic analysis

*... to mention only a few*

# A new tool for ordering the disorder

## The landscape function

Theorem (Filoche & Mayboroda 2012)

For  $H$  be any elliptic operator (possibly with rough coefficients, complex boundary, . . . ), define the **landscape function**  $u$  by the equation

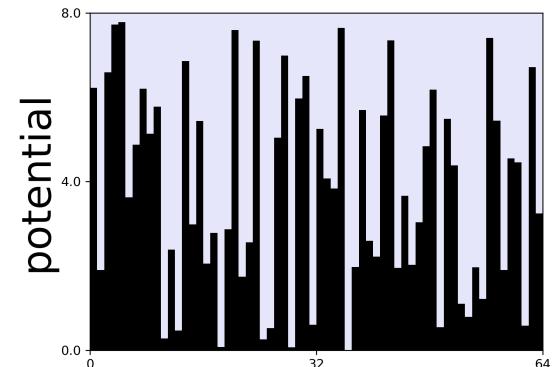
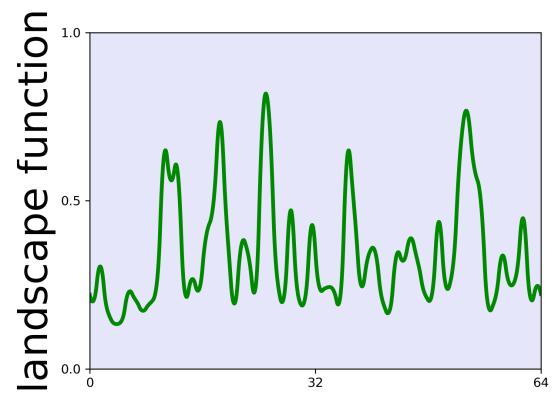
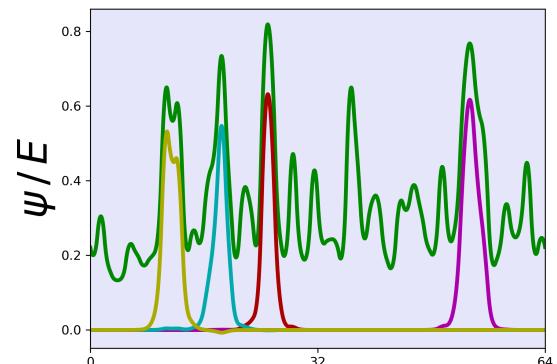
$$Hu = 1$$

plus boundary conditions. Then, any normalized eigenpair  $(E, \psi)$ ,

$$H\psi = E\psi, \quad \|\psi\|_{L^\infty} = 1,$$

satisfies the pointwise bound

$$|\psi(x)| \leq E u(x).$$



# A different perspective: the effective potential

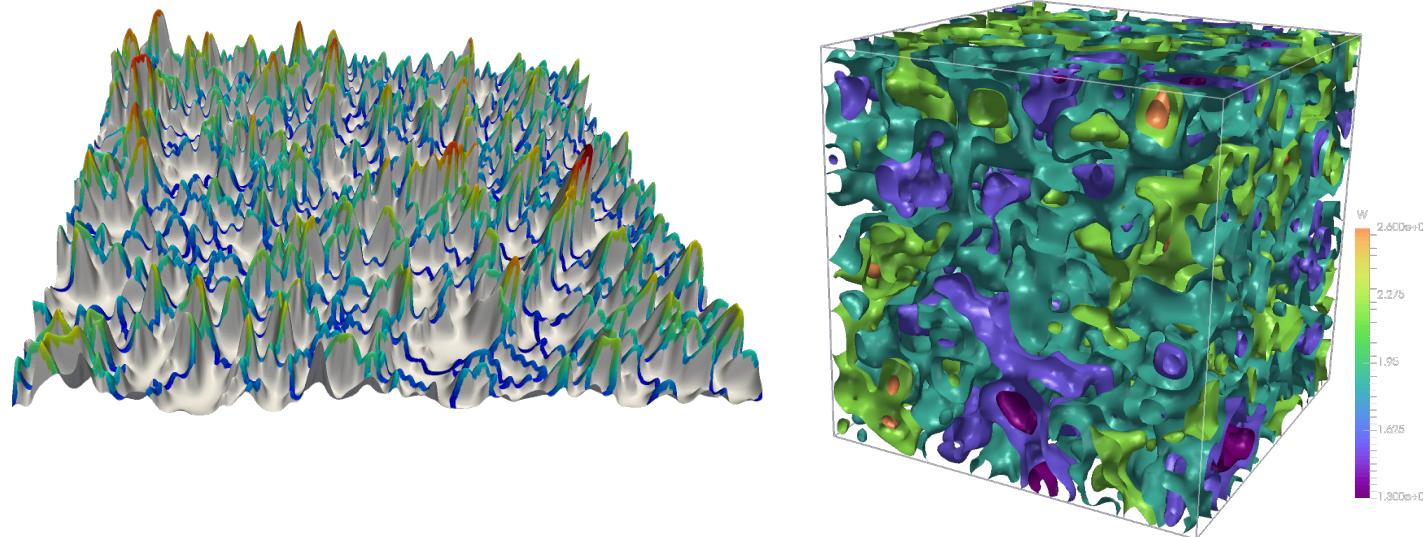
Arnold, David, Filoche, Jerison, Mayboroda, 2015–2018:  
linear equation  $\implies$  nonlinear control

$W = 1/u$  is an *effective potential* which is often confining. The new eq.

$$-\frac{1}{u^2} \nabla \cdot (u^2 \nabla \phi) + \frac{1}{u} \phi = E\phi$$

has exactly the same eigenvalues as the Schrödinger equation.

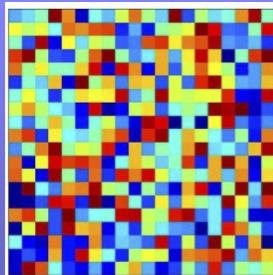
$Hu = 1 \implies$  enhanced *Agmon-type distance*  $\rho_{1/u} \implies$  exp decay



2D and 3D effective potential  $\frac{1}{u}$  for Bernoulli  $V$

# Localization by disorder: $L = -\Delta + V$

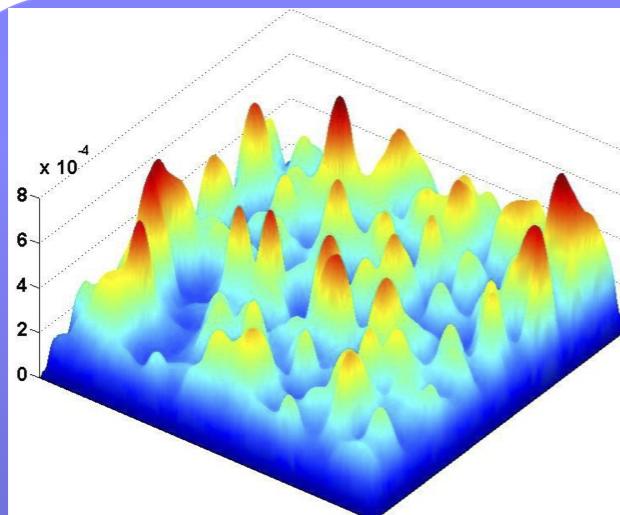
Operator  $L$



The localization scheme

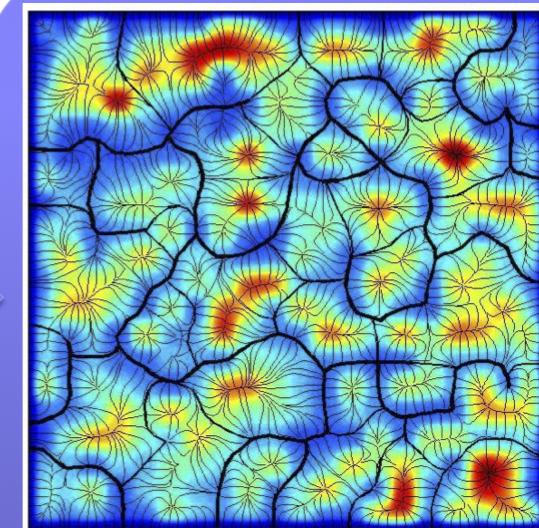
Quantum states in a random potential

$$L\psi(x, y) = E\psi(x, y)$$



Main new idea: the landscape  $u$

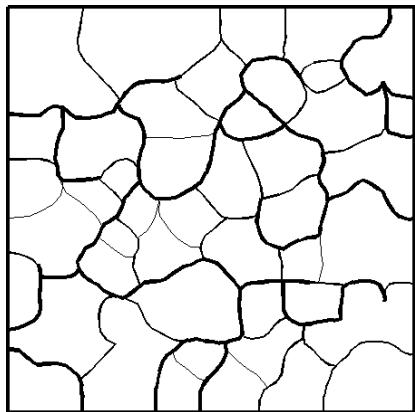
$$Lu(x, y) = 1$$



Valley network of  $u$   
(black curves)

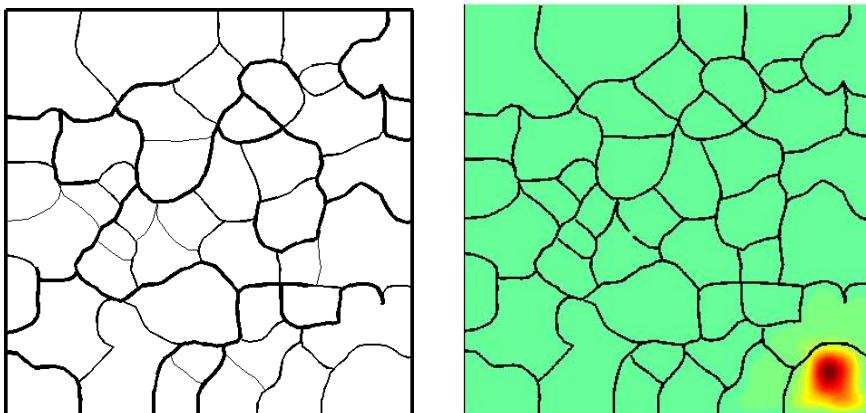
Filoche & Mayboroda, PNAS, 2012

# Anderson Localization: valleys and quantum states

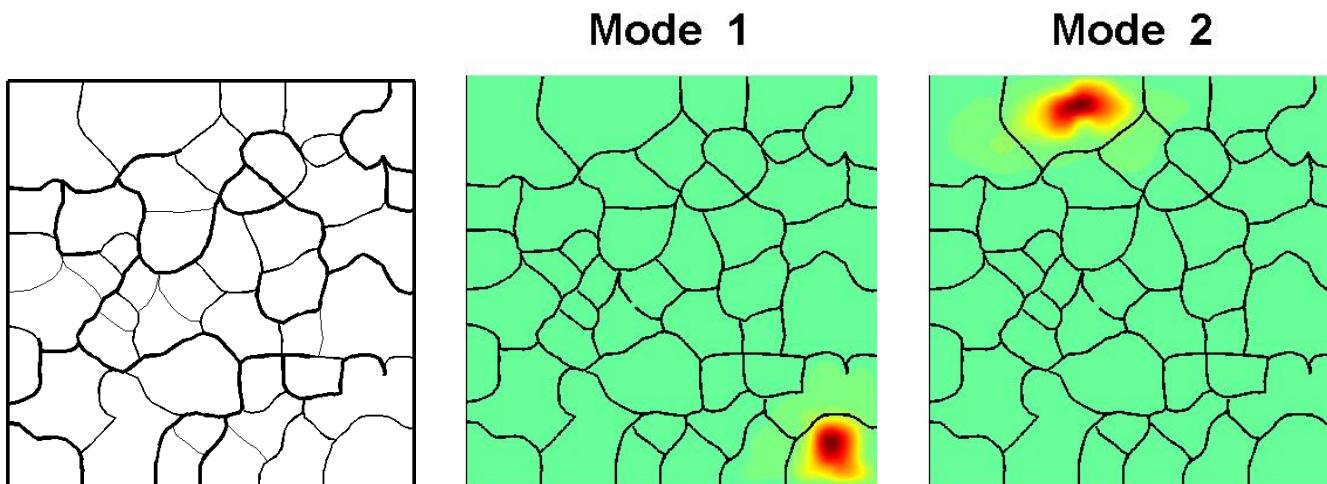


# Anderson Localization: valleys and quantum states

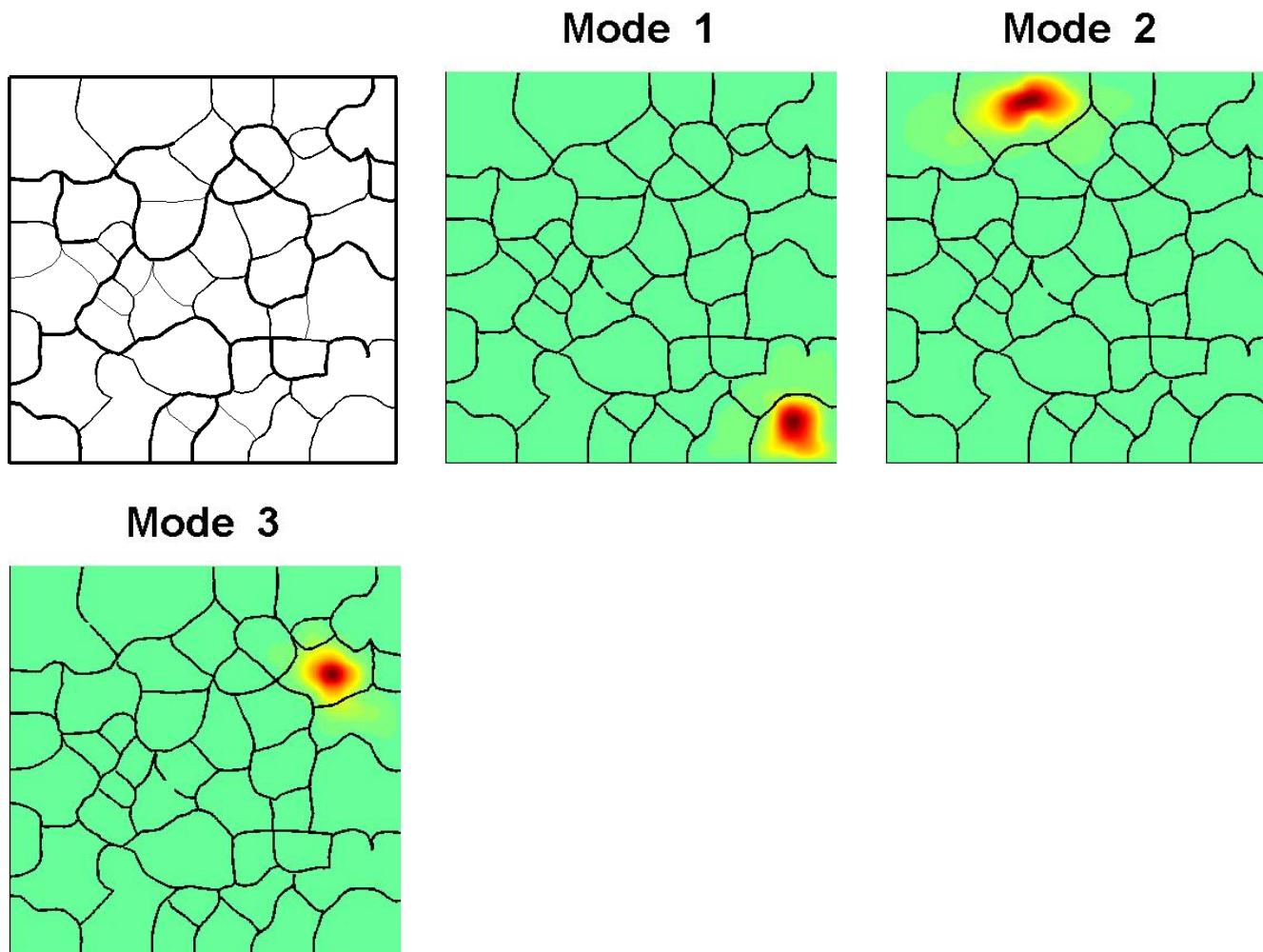
Mode 1



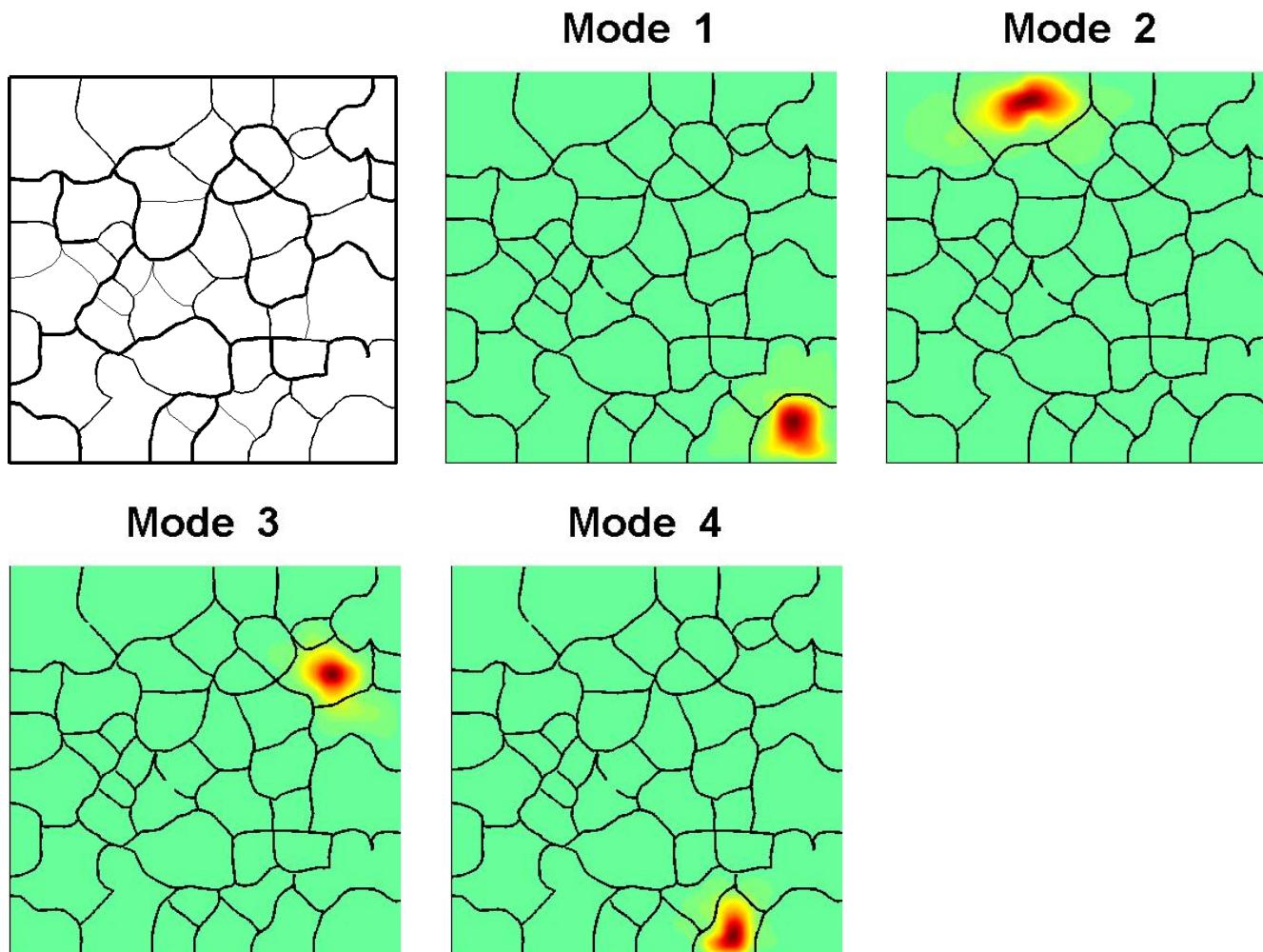
# Anderson Localization: valleys and quantum states



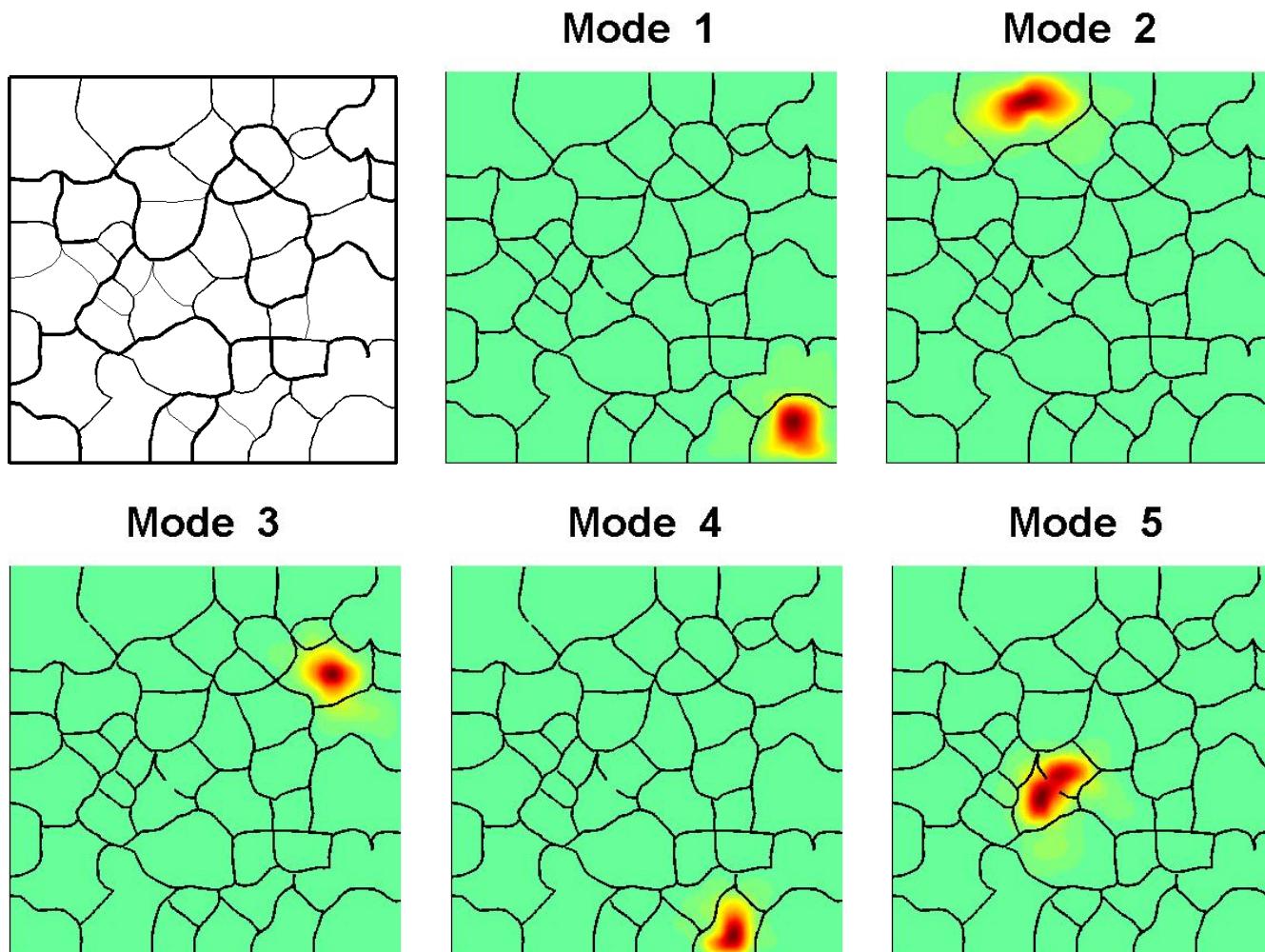
# Anderson Localization: valleys and quantum states



# Anderson Localization: valleys and quantum states



# Anderson Localization: valleys and quantum states



# What does the localization landscape reveal?

$1/u$  is an effective potential  
(joint with Arnold, David, Filoche, Jerison)

- The **watershed basins** associated to its minima predict the localization regions.

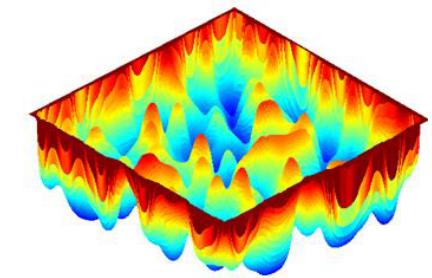
$$\frac{\psi(x)}{\max \psi} \leq Eu(x)$$

- Its **crests** induce exponential decay.

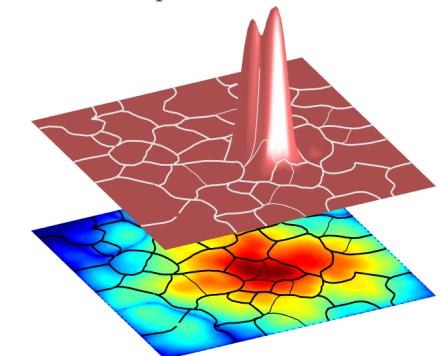
$$\psi(x) \sim \exp \left\{ -\rho_{(\frac{1}{u}-E)_+}(x) \right\}$$

- Its **well depths** predict the energy levels.

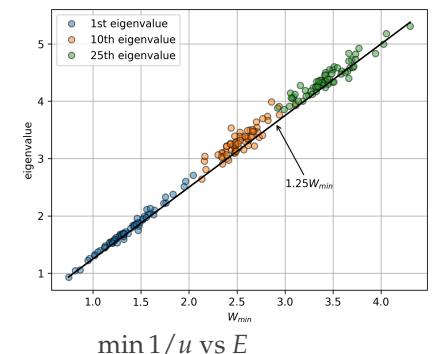
$$\min \frac{1}{u} \approx \left( 1 + \frac{n}{4} \right) E$$



effective potential  $1/u$



watershed lines of  $1/u$  and an eigenfunction



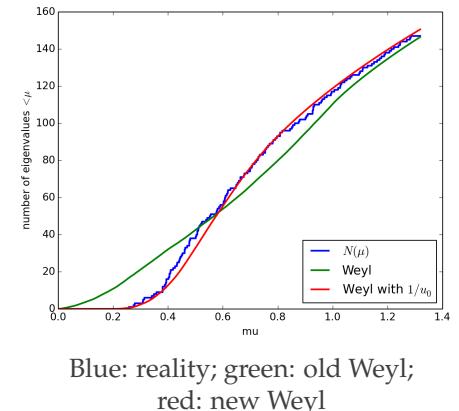
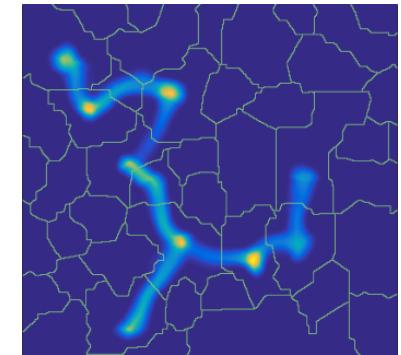
# Reading the localization landscape

- **Modifying Weyl's law** by replacing the true potential with the effective one predicts the density of states with astonishing accuracy.

$$N(E) \approx \text{Vol} \left\{ \xi^2 + \frac{1}{u} \leq E \right\}$$

- It gives access to **transport properties** (hopping).

$$\langle \psi_1 | e^{-i\vec{q} \cdot \vec{r}} | \psi_2 \rangle \approx \int e^{-i\vec{q} \cdot \vec{r}} e^{\rho_{1, \frac{1}{u}}(\vec{r}) + \rho_{2, \frac{1}{u}}(\vec{r})} d\vec{r}$$



Transport

# MATHEMATICAL FRONTIERS

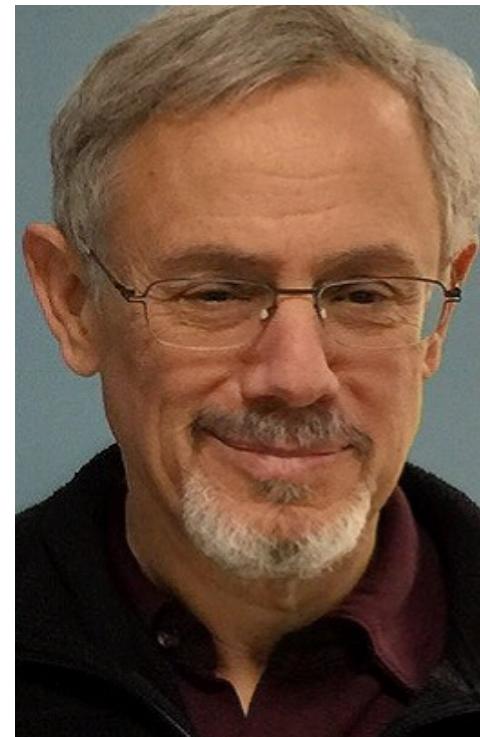
## Mathematical Analysis



**Dimitri Shlyakhtenko,**  
UCLA



**Svitlana Mayboroda,**  
University of Minnesota



**Mark Green,**  
UCLA (moderator)

# MATHEMATICAL FRONTIERS

## 2018 Monthly Webinar Series, 2-3pm ET

**February 13\*:**

*Mathematics of the Electric Grid*

**March 13\*:**

*Probability for People and Places*

**April 10\*:**

*Social and Biological Networks*

**May 8\*:**

*Mathematics of Redistricting*

**June 12\*:** *Number Theory: The Riemann Hypothesis*

**\* Recording posted**

**July 10\*:** *Topology*

**August 14\*:** *Algorithms for Threat Detection*

**September 11:** *Mathematical Analysis*

**October 9:** *Combinatorics*

**November 13:**

*Why Machine Learning Works*

**December 11:**

*Mathematics of Epidemics*

Made possible by support for BMSA from the  
National Science Foundation Division of Mathematical Sciences and the  
Department of Energy Advanced Scientific Computing Research