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Graphs

* A graph consists of a set of vertices V and a
set of edges E between them:

Graphs are useful to encode relationships:
e Vertices = people, edges = shared interest
e Vertices = Senators, edges = same vote on
an issue
e Networks: vertices = computers, edges =
connections
Typical questions:

e Clustering / community detection

e Cuts / reliability / speed of info

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




Community detection:
119 IPAM Programs (last 20 years)

Vertices = programs, Edges = common participants
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Problem

* Too many edges!

* E.g. Complete Graph (all pair of vertices
connected)

N vertices gives N(N-1)/2 edges
* Very well connected, but at
great cost: connecting 1,000

computers pairwise requires
~500,000 wires!
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Sparsity

* Goal: replace a complicated graph by a
graph with much fewer edges, while
keeping the same “essential features”.

e Compute with the sparse graph (much
easier!) to detect communities, find
cuts, etc.

* Replace “all to all” complete graph by a
graph with much fewer edges but
similar properties.

 Amazing progress in this area: Benczur-
Karger'96, Spielman-Teng’'04,
Spielman-Srivastava’08, Marcus-
Spielman-Srivastava’14,...

I”

Complete graph
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“Similar” explained

* One measure of similarity is the speed at
which heat would spread across the graph if a
single vertex is heated.
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single vertex is heated.

* Graphs with high heat spread rates are called
expanders.
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“Similar” explained

* One measure of similarity is the speed at
which heat would spread across the graph if a
single vertex is heated.

* Graphs with high heat spread rates are called
expanders.

* A complete graph is an expander.

* Challenge: find graphs with relatively few
edges which are expanders (“sparsify
complete graphs”).
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DOEREE

* Expanders are very useful in many areas of
mathematics, computer science, etc.

— “sparsification” of complete graph
— Data correction (“expander codes”)
— Cryptography (Hash functions)
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DOEREE

* Expanders are very useful in many areas of
mathematics, computer science, etc.

— “sparsification” of complete graph
— Data correction (“expander codes”)
— Cryptography (Hash functions)

* Challenge: construct good expanders
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From Graphs to Matrices

Each graph can be encoded by its adjacency
matrix A.

The matrix has an entry for each pair of vertices,
with 1 or O depending on whether they are
connected. 4

—_— O =
—_ O -
O = =
—

Credit: WolframAlpha
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Expanders via matrix eigenvalues

 Assume each vertex has d edges (“degree d”).
Compute eigenvalues of the matrix L=dI-A.

* The eigenvalues of L are numbers in the interval
[-d,d]:

-d d
o -9 O

~ ®

gap gap
Size of the two gaps is related to heat dissipation
rate (how good of an expander the graph is).
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How to build expanders

e Goal: construct graphs with fixed degree d
(=number of edges at each vertex) but which
are good expanders (big gap).
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How to build expanders

e Goal: construct graphs with fixed degree d
(=number of edges at each vertex) but which
are good expanders (big gap).

e Fact. [Alon-Boppana’86] The largest the gap
can be for large graphs is d — 2\/d — 1.
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How to build expanders

e Goal: construct graphs with fixed degree d
(=number of edges at each vertex) but which
are good expanders (big gap).

e Fact. [Alon-Boppana’86] The largest the gap
can be for large graphs is d — 2\/d — 1.

O * - o0— ®
—d Va1 VA1 d
Gap Gap

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 20




Alon-Boppana bound

 The gap bound is actually realized by an infinite
tree.

IPAM 2018 program
“Quantitative Linear
Algebra”:
connections between
finite and infinite
matrices.

* But we want a finite graph with d edges at each

vertex reaching the bound. These are called
Ramanujan graphs. Finite is harder than infinite!
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Trees

e What are trees made of?

 Atreeis a free product of matchings.
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Trees

e What are trees made of?

tree_M +M +M
Where M, M,, M are
freely /ndependent matchings.

e Atreeisa free product of matchings.
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From infinite to finite

* So one should try to build a Ramanujan graph as a free
product ... but free products always give infinite
graphs.

* |dea: free independence (Voiculescu) occurs for
random matrices when their sizes grow.

 Take 2N points and randomly match N of them to the
rest. Do this d times to create d matchmgs Q,,...,.Q,

L | L]

Matchings, 2N=8 Credit: WolframAlpha .
View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 24




Construction of Ramanujan Graphs

Theorem [Marcus, Spielman, Srivastava’14] With
non-zero probability the sum of the random

matchings Q=Q, + ... + Q, is the matrix of a
Ramanujan graph.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 75




Construction of Ramanujan Graphs

* Theorem [Marcus, Spielman, Srivastava’14] With
non-zero probability the sum of the random

matchings Q=Q, + ... + Q, is the matrix of a
Ramanujan graph.

In fact, this can be done constructively giving examples
of Ramanujan graphs with an arbitrary fixed number of
edges per vertex. [Lubotsky-Phillips-Sarnak’86 only for

d=p+1]
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Further directions

* Finding Ramanujan graphs is related to the
guestion of how to sparsify a complete graph.

* Further techniques of Marcus-Spielman-
Srivastava can be used to sparsify other
graphs.

» =» Better algorithms for graph analysis!

* In math, better connections between finite
and infinite dimensions.
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Further Reading

* Lecture series by Srivastava at the Simons
nstitute:
nttps://simons.berkeley.edu/talks/nikhil-
srivastava-2014-08-27

e Tutorials at IPAM, including lectures by
Srivastava and Tao:
https://www.ipam.ucla.edu/programs/
workshops/quantitative-linear-algebra-
tutorials/?tab=schedule

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers )8




MATHEMATICAL FRONTIERS

Mathematical Analysis

Director of Simons Collaboration on
Localization of Waves and
Northrop Professor of Mathematics in the
School of Mathematics at the
University of Minnesota

4 _ Localization of
Svitlana Mayboroda, Wa ve S

University of Minnesota

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 29




Localization of Waves

The results presented in this talk are a part of a newly established Simons
collaboration “Localization of Waves” including the Pls

= D. Arnold, UMN (applied math)
m A. Aspect, Institut d’Optique (cold atoms)

m G. David, Université Paris-Sud (harmonic analysis, geometric
measure theory)

= M. Filoche, Ecole Polytechnique (condensed matter physics)

m R. Friend, Cambridge (organic semiconductors)

m D. Jerison, MIT (harmonic analysis, PDE)

= Y. Meyer, ENS-Cachan (harmonic analysis)

m ]. Speck, UCSB (GaN semiconductors)

m C. Weisbuch, UCSB and Ecole Polytechnique (semiconductors)

and our many collaborators.
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A world full of waves

0.01Inm 1nm 100nm

= P

Mechanical

Acoustic Gravitational
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Add technology which makes the invisible visible...

= Manipulate individual atoms
with laser cooling: a few
billionths of a degree above
absolute zero
[Aspect lab, Institut d’Optique]

= Map out materials atom-by-atom:
samples of 10,000-10,000,000 nm?
with billions of atoms
[Speck & Weisbuch lab, UCSB]

m Pump-push-probe electroabsorption:
100 fs = 10~ 1% s migration of
holes from higher to lower
energy sites
[Friend lab, Cambridge]

Wavelength (nm)

750

700

650

600

550

107
Time (ps)

102



And we find disorder everywhere

oS

+7
z]“'h
h oy
\i%

Anderson localization in Bose-Einstein condensate [ Aspect lab]

Atomic map of
InGaN
semiconductor

[Speck lab]

Mixed donor-acceptor
morphology in an organic
solar cell [Friend lab]
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String vibration

Any string vibration is a linear combination of
“harmonics” — eigenfunctions which solve

{ ~L o=y,
¢(0) = ¢(1) =0

A are the corresponding eigenvalues (AKA
energies)

Here we assume that the string is fixed at the ends <><><><>
and has length 1: u(0) = u(1) =0 ==
¢(x) = C; cos VAx 4 Cy sin vV Ax —

Given ¢(0) = ¢@(1) = 0, we have

Ap = (n)*, @, = sin (n7x)

5/19



Smooth versus disordered potential in Schrodinger equation
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Smooth versus disordered potential in Schrodinger equation
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Smooth versus disordered potential in Schrodinger equation
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The main goal: basic questions

We seek a quantitive, deterministic understanding of the mechanisms
of wave localization so we can answer such questions as:

» When and where do eigenfunctions localize?
s How many localize?
m What are the size and shapes of their supports?
m What are the associated eigenvalues?
More generally, for Schrodinger and far more complex systems, we

want to:

m Determine wave behavior in a given disordered environment.
m Infer the disordered environment by observing wave behavior.

m Design the environment to obtain desired or optimal wave behavior.

7/19



Take on the perspective of a wave

The main hero:
THE LANDSCAPE

A hidden landscape that waves recognize and obey

= born of the equation but invisible to the
naked eye

m contains both spatial and spectral
information

The goal is to

Discover and master this landscape in order to
= understand
m predict
= manipulate
= govern

m and, ultimately, design matter waves

Curves/surfaces of the
landscape vs. eigenfunctions
8/19



Anderson localization

The localization of Schrodinger
eigenfunctions with random potential was
discovered by Philip Anderson in his
Nobel-prize-winning work of 1958.

Unfortunately, electron localization was devilishly hard to
confirm... experimental observations are sparse and covered with
disputes and controversies.

— Lagendijk, van Tiggelen, Wiersma, 50 Years of Anderson Localization, 2009

Most theoretical work [7-9] predicts [the critical exponent] y =1,
but there is also a prediction of y = 1/2 [10]. Numerical
simulation [11] gives y = 2/3...

— I. Shlimak, Is Hopping a Science?, 2015



Anderson localization

The localization of Schrodinger
eigenfunctions with random potential was
discovered by Philip Anderson in his
Nobel-prize-winning work of 1958.

Very few believed [localization] at the time, and even fewer saw its
importance; among those who failed to fully understand it at first
was certainly its author. It has yet to receive adequate
mathematical treatment, and one has to resort to the indignity of
numerical simulations to settle even the simplest questions about
it.

— Philip W. Anderson, Nobel Lecture, 1977



Localization beyond Anderson

Localization occurs in many, many situations of interest.

m localization in 2D, diffusion in 3D, higher dimensions

m correlations

» singular distributions (e.g., Bernoulli)

m deterministic disorder (almost Mathieu, quantum Hall effect)

m localization by geometry (e.g., Bernoulli with values 0 and +o0)

Bernoulli
potential

Correlated
Gaussian

field
potential
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Disorder through geometry

o o

High-order localized Dirichlet modes of a 2D domain with fractal-like boundary

Fractl@ Wall Acoustic Brrier, Filoche

et al.
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Localization in mathematics

A collection of rather different phenomena:
m semiclassical analysis
= mathematical physics
m probability
= PDEs
= geometric measure theory
= harmonic analysis

.. to mention only a few

13 /19



A new tool for ordering the disorder

The landscape function

Theorem (Filoche & Mayboroda 2012)

For H be any elliptic operator (possibly with
rough coefficients, complex boundary, ...),
define the landscape function u by the equation

Hu =1

plus boundary conditions. Then, any
normalized eigenpair (E, ),

Hp = Eyp, |[¢lli= =1,

satisfies the pointwise bound

[9(x)| < Eu(x).

landscape function potential

VIE




A different perspective: the effective potential

Arnold, David, Filoche, Jerison, Mayboroda, 2015-2018:
linear equation = nonlinear control

W = 1/u is an effective potential which is often confining. The new eq.
1 ’ 1

has exactly the same eigenvalues as the Schrodinger equation.

2D and 3D effective potential + for Bernoulli V

15/ 19



Localization by disorder: L = —A 4V

The localization scheme

Quantum states in a random potential
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Anderson Localization: valleys and quantum states
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Anderson Localization: valleys and quantum states
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What does the localization landscape reveal?

1/u is an effective potential
(joint with Arnold, David, Filoche, Jerison)

m The watershed basins associated to its minima
predict the localization regions.

PO ey

max

m Jts crests induce exponential decay.

p) ~exp{—po_p, ()}

m Jts well depths predict the energy levels.

1
min — ~ (1—|—E)E
u 4

watershed lines of 1/u and an
eigenfunction

minl/uvs E
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Reading the localization landscape

» Modifying Weyl’s law by replacing the true
potential with the effective one predicts the
density of states with astonishing accuracy.

Blue: reality; green: old Weyl;
red: new Weyl

N(E)zVol{@sza gE} .

m [t gives access to transport properties (hopping).

(rle M) o [ o720 gy

Transport
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