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Why	Machine	Learning	Works	
	

December	11:		
Mathema:cs	of	Epidemics	
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Director	of	Ins:tute	for	Pure	and	Applied	

Mathema:cs	and	
Professor	of	Mathema:cs	in	the	

Department	of	Mathema:cs	at	the	
University	of	California,	Los	Angeles		

Marcus,	Spielman,	Srivastava:	Making	
Sparse	Graphs	

Dimitri	Shlyakhtenko,		
UCLA	
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Graphs	

•  A	graph	consists	of	a	set	of	ver4ces	V	and	a	
set	of	edges	E	between	them:	

5	

Graphs	are	useful	to	encode	rela4onships:	
• 	Ver4ces	=	people,	edges	=	shared	interest	
• 	Ver4ces	=	Senators,	edges	=	same	vote	on	
an	issue	
• 	Networks:	ver4ces	=	computers,	edges	=	
connec4ons	
Typical	quesQons:		

• 	Clustering	/	community	detec4on	
• 	Cuts	/	reliability	/	speed	of	info	
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Community	detec4on:		
119	IPAM	Programs	(last	20	years)	

6	

Ver4ces	=	programs,	Edges	=	common	par4cipants	
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Problem	

•  Too	many	edges!	
•  E.g.	Complete	Graph	(all	pair	of	ver4ces	
connected)	
	N	ver4ces	gives	N(N-1)/2	edges	

•  Very	well	connected,	but	at		
great	cost:	connec4ng	1,000	
computers	pairwise	requires	
~500,000	wires!	
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Sparsity	

•  Goal:	replace	a	complicated	graph	by	a	
graph	with	much	fewer	edges,	while	
keeping	the	same	“essen4al	features”.	

•  Compute	with	the	sparse	graph	(much	
easier!)	to	detect	communi4es,	find	
cuts,	etc.	

•  Replace	“all	to	all”	complete	graph	by	a	
graph	with	much	fewer	edges	but	
similar	proper4es.	

•  Amazing	progress	in	this	area:	Benczur-
Karger’96,	Spielman-Teng’04,	
Spielman-Srivastava’08,	Marcus-
Spielman-Srivastava’14,…	

9	

Complete	graph	
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“Similar”	explained	

•  One	measure	of	similarity	is	the	speed	at	
which	heat	would	spread	across	the	graph	if	a	
single	vertex	is	heated.	

10	



View	webinar	videos	and	learn	more	about	BMSA	at	www.nas.edu/MathFron:ers		

“Similar”	explained	

•  One	measure	of	similarity	is	the	speed	at	
which	heat	would	spread	across	the	graph	if	a	
single	vertex	is	heated.	

•  Graphs	with	high	heat	spread	rates	are	called	
expanders.	
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•  One	measure	of	similarity	is	the	speed	at	
which	heat	would	spread	across	the	graph	if	a	
single	vertex	is	heated.	

•  Graphs	with	high	heat	spread	rates	are	called	
expanders.	

•  A	complete	graph	is	an	expander.	
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“Similar”	explained	

•  One	measure	of	similarity	is	the	speed	at	
which	heat	would	spread	across	the	graph	if	a	
single	vertex	is	heated.	

•  Graphs	with	high	heat	spread	rates	are	called	
expanders.	

•  A	complete	graph	is	an	expander.	
•  Challenge:	find	graphs	with	rela4vely	few	
edges	which	are	expanders	(“sparsify	
complete	graphs”).	
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Expanders.	

•  Expanders	are	very	useful	in	many	areas	of	
mathema4cs,	computer	science,	etc.	
– “sparsifica4on”	of	complete	graph	
– Data	correc4on	(“expander	codes”)	
– Cryptography	(Hash	func4ons)	
– …..	
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Expanders.	

•  Expanders	are	very	useful	in	many	areas	of	
mathema4cs,	computer	science,	etc.	
– “sparsifica4on”	of	complete	graph	
– Data	correc4on	(“expander	codes”)	
– Cryptography	(Hash	func4ons)	
– …..	

•  Challenge:	construct	good	expanders	
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From	Graphs	to	Matrices	

•  Each	graph	can	be	encoded	by	its	adjacency	
matrix	A.	

•  The	matrix	has	an	entry	for	each	pair	of	ver4ces,	
with	1	or	0	depending	on	whether	they	are	
connected.	

16	

Credit:	WolframAlpha	
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Expanders	via	matrix	eigenvalues	

•  Assume	each	vertex	has	d	edges	(“degree	d”).	
Compute	eigenvalues	of	the	matrix	L=dI-A.			

•  The	eigenvalues	of	L	are	numbers	in	the	interval	
[-d,d]:	
	 	-d																											….																																	d	

																gap																																			gap	
Size	of	the	two	gaps	is	related	to	heat	dissipa4on	
rate	(how	good	of	an	expander	the	graph	is).	

17	
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How	to	build	expanders	

•  Goal:	construct	graphs	with	fixed	degree	d	
(=number	of	edges	at	each	vertex)	but	which	
are	good	expanders	(big	gap).	
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How	to	build	expanders	

•  Goal:	construct	graphs	with	fixed	degree	d	
(=number	of	edges	at	each	vertex)	but	which	
are	good	expanders	(big	gap).	

•  Fact.	[Alon-Boppana’86]	The	largest	the	gap	
can	be	for	large	graphs	is																															.		
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Alon-Boppana	bound	

•  The	gap	bound	is	actually	realized	by	an	infinite	
tree.	

	
•  But	we	want	a	finite	graph	with	d	edges	at	each	
vertex	reaching	the	bound.	These	are	called	
Ramanujan	graphs.		Finite	is	harder	than	infinite!	

	
	

21	

IPAM	2018	program	
“Quan4ta4ve	Linear	
Algebra”:	
connec4ons	between	
finite	and	infinite	
matrices.	

…	
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Trees	

•  What	are	trees	made	of?	

•  A	tree	is	a	free	product	of	matchings.	

22	

M1 M2
M3

…	
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Trees	

•  What	are	trees	made	of?	

•  A	tree	is	a	free	product	of	matchings.	
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M1 M2
M3

Ltree=M1+M2+M3		
Where	M1,	M2,	M3	are		
freely	independent	matchings.	

…	
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From	infinite	to	finite	

•  So	one	should	try	to	build	a	Ramanujan	graph	as	a	free	
product	…	but	free	products	always	give	infinite	
graphs.	

•  Idea:	free	independence	(Voiculescu)	occurs	for	
random	matrices	when	their	sizes	grow.	

•  Take	2N	points	and	randomly	match	N	of	them	to	the	
rest.		Do	this	d	4mes	to	create	d	matchings	Q1,…,Qd	

24	

Matchings,	2N=8		Credit:	WolframAlpha	
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Construc4on	of	Ramanujan	Graphs	

•  Theorem	[Marcus,	Spielman,	Srivastava’14]	With	
non-zero	probability	the	sum	of	the	random	
matchings	Q=Q1	+	…	+	Qd	is	the	matrix	of	a	
Ramanujan	graph.	

25	



View	webinar	videos	and	learn	more	about	BMSA	at	www.nas.edu/MathFron:ers		

Construc4on	of	Ramanujan	Graphs	

•  Theorem	[Marcus,	Spielman,	Srivastava’14]	With	
non-zero	probability	the	sum	of	the	random	
matchings	Q=Q1	+	…	+	Qd	is	the	matrix	of	a	
Ramanujan	graph.	
	

In	fact,	this	can	be	done	construc4vely	giving	examples	
of	Ramanujan	graphs	with	an	arbitrary	fixed	number	of	
edges	per	vertex.	[Lubotsky-Phillips-Sarnak’86	only	for	
d=p+1]		

26	
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Further	direc4ons	

•  Finding	Ramanujan	graphs	is	related	to	the	
ques4on	of	how	to	sparsify	a	complete	graph.	

•  Further	techniques	of	Marcus-Spielman-
Srivastava	can	be	used	to	sparsify	other	
graphs.	

•  è	Beper	algorithms	for	graph	analysis!	
•  In	math,	beper	connec4ons	between	finite	
and	infinite	dimensions.	

27	
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Further	Reading	

•  Lecture	series	by	Srivastava	at	the	Simons	
Ins4tute:
hpps://simons.berkeley.edu/talks/nikhil-
srivastava-2014-08-27	

•  Tutorials	at	IPAM,	including	lectures	by	
Srivastava	and	Tao:	
hpps://www.ipam.ucla.edu/programs/
workshops/quan4ta4ve-linear-algebra-
tutorials/?tab=schedule		

28	
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Director	of	Simons	Collabora:on	on	

Localiza:on	of	Waves	and	
Northrop	Professor	of	Mathema:cs	in	the	

School	of	Mathema:cs	at	the	
University	of	Minnesota	

LocalizaQon	of	
Waves	Svitlana	Mayboroda,	

University	of	Minnesota	
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Localization of Waves

The results presented in this talk are a part of a newly established Simons
collaboration “Localization of Waves” including the PIs

D. Arnold, UMN (applied math)
A. Aspect, Institut d’Optique (cold atoms)
G. David, Université Paris-Sud (harmonic analysis, geometric
measure theory)
M. Filoche, Ecole Polytechnique (condensed matter physics)
R. Friend, Cambridge (organic semiconductors)
D. Jerison, MIT (harmonic analysis, PDE)
Y. Meyer, ENS-Cachan (harmonic analysis)
J. Speck, UCSB (GaN semiconductors)
C. Weisbuch, UCSB and Ecole Polytechnique (semiconductors)

and our many collaborators.

1 / 19
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A world full of waves

Mechanical

Acoustic

Fluid

Gravitational

Electromagnetic

Matter

2 / 19
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Add technology which makes the invisible visible. . .

Manipulate individual atoms
with laser cooling: a few
billionths of a degree above
absolute zero
[Aspect lab, Institut d’Optique]

Map out materials atom-by-atom:
samples of 10,000-10,000,000 nm3

with billions of atoms
[Speck & Weisbuch lab, UCSB]

Pump-push-probe electroabsorption:
100 fs = 10�13 s migration of
holes from higher to lower
energy sites
[Friend lab, Cambridge]

3 / 19
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And we find disorder everywhere

Anderson localization in Bose-Einstein condensate [Aspect lab]

Atomic map of
InGaN

semiconductor
[Speck lab]

Mixed donor-acceptor
morphology in an organic

solar cell [Friend lab]

4 / 19
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String vibration

Any string vibration is a linear combination of
“harmonics” – eigenfunctions which solve

(

� d2

dx2 j = lj,
j(0) = j(1) = 0

l are the corresponding eigenvalues (AKA
energies)
Here we assume that the string is fixed at the ends
and has length 1: u(0) = u(1) = 0

j(x) = C1 cos
p

lx + C2 sin
p

lx

Given j(0) = j(1) = 0, we have

ln = (np)2 , jn = sin (npx)

5 / 19



View	webinar	videos	and	learn	more	about	BMSA	at	www.nas.edu/MathFron:ers		 35	

Smooth versus disordered potential in Schrödinger equation

Disorder changes everything!

no potential

fundamental mode

57th mode

smooth potential

fundamental mode

57th mode

random potential

fundamental mode

57th mode

6 / 19
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Smooth versus disordered potential in Schrödinger equation

Disorder changes everything!
no potential

fundamental mode

57th mode

smooth potential

fundamental mode

57th mode

random potential

fundamental mode

57th mode 6 / 19
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The main goal: basic questions

We seek a quantitive, deterministic understanding of the mechanisms
of wave localization so we can answer such questions as:

When and where do eigenfunctions localize?
How many localize?
What are the size and shapes of their supports?
What are the associated eigenvalues?

More generally, for Schrödinger and far more complex systems, we
want to:

Determine wave behavior in a given disordered environment.
Infer the disordered environment by observing wave behavior.
Design the environment to obtain desired or optimal wave behavior.

7 / 19



View	webinar	videos	and	learn	more	about	BMSA	at	www.nas.edu/MathFron:ers		 40	

Take on the perspective of a wave

A hidden landscape that waves recognize and obey

born of the equation but invisible to the
naked eye
contains both spatial and spectral
information

The goal is to

Discover and master this landscape in order to
understand
predict
manipulate
govern
and, ultimately, design matter waves

The main hero:
THE LANDSCAPE

Curves/surfaces of the
landscape vs. eigenfunctions

8 / 19
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Anderson localization

The localization of Schrödinger
eigenfunctions with random potential was
discovered by Philip Anderson in his
Nobel-prize-winning work of 1958.

Unfortunately, electron localization was devilishly hard to
confirm... experimental observations are sparse and covered with
disputes and controversies.

– Lagendijk, van Tiggelen, Wiersma, 50 Years of Anderson Localization, 2009

Most theoretical work [7-9] predicts [the critical exponent] µ = 1,
but there is also a prediction of µ = 1/2 [10]. Numerical
simulation [11] gives µ = 2/3. . .

– I. Shlimak, Is Hopping a Science?, 2015

9 / 19
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Anderson localization

The localization of Schrödinger
eigenfunctions with random potential was
discovered by Philip Anderson in his
Nobel-prize-winning work of 1958.

Very few believed [localization] at the time, and even fewer saw its
importance; among those who failed to fully understand it at first
was certainly its author. It has yet to receive adequate
mathematical treatment, and one has to resort to the indignity of
numerical simulations to settle even the simplest questions about
it.

– Philip W. Anderson, Nobel Lecture, 1977

10 / 19
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Localization beyond Anderson

Localization occurs in many, many situations of interest.

localization in 2D, diffusion in 3D, higher dimensions
correlations
singular distributions (e.g., Bernoulli)
deterministic disorder (almost Mathieu, quantum Hall effect)
localization by geometry (e.g., Bernoulli with values 0 and +•)

Bernoulli
potential

Correlated
Gaussian

field
potential

11 / 19
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Disorder through geometry

High-order localized Dirichlet modes of a 2D domain with fractal-like boundary

Fractal R� Wall Acoustic Barrier, Filoche et al.

12 / 19
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Localization in mathematics

A collection of rather different phenomena:
semiclassical analysis
mathematical physics
probability
PDEs
geometric measure theory
harmonic analysis

... to mention only a few

13 / 19
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A new tool for ordering the disorder

The landscape function

Theorem (Filoche & Mayboroda 2012)

For H be any elliptic operator (possibly with
rough coefficients, complex boundary, . . . ),
define the landscape function u by the equation

Hu = 1

plus boundary conditions. Then, any
normalized eigenpair (E, y),

Hy = Ey, kykL• = 1,

satisfies the pointwise bound

|y(x)|  E u(x).

14 / 19
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A different perspective: the effective potential

Arnold, David, Filoche, Jerison, Mayboroda, 2015–2018:
linear equation =) nonlinear control

W = 1/u is an effective potential which is often confining. The new eq.

� 1
u2 r · (u2rf) +

1
u

f = Ef

has exactly the same eigenvalues as the Schrödinger equation.

Hu = 1 =) enhanced Agmon-type distance r1/u =) exp decay

2D and 3D effective potential 1
u for Bernoulli V

15 / 19
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Localization by disorder: L = �D + V

16 / 19
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Anderson Localization: valleys and quantum states

Movie
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Anderson Localization: valleys and quantum states

Movie
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Anderson Localization: valleys and quantum states

Movie
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What does the localization landscape reveal?

1/u is an effective potential
(joint with Arnold, David, Filoche, Jerison)

The watershed basins associated to its minima
predict the localization regions.

y(x)
max y

 Eu(x)

Its crests induce exponential decay.

y(x) ⇠ exp
n

�r( 1
u�E)+

(x)
o

Its well depths predict the energy levels.

min
1
u
⇡

⇣

1 +
n
4

⌘

E

effective potential 1/u

watershed lines of 1/u and an
eigenfunction

min 1/u vs E

18 / 19
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Reading the localization landscape

Modifying Weyl’s law by replacing the true
potential with the effective one predicts the
density of states with astonishing accuracy.

N(E) ⇡ Vol
⇢

x

2 +
1
u
 E

�

It gives access to transport properties (hopping).

hy1|e�i~q·~r|y2i ⇡
Z

e�i~q·~re
r

1, 1
u
(~r)+r

2, 1
u
(~r)

d~r

Blue: reality; green: old Weyl;
red: new Weyl

Transport
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View	webinar	videos	and	learn	more	about	BMSA	at	www.nas.edu/MathFron:ers		

Dimitri	Shlyakhtenko,		
UCLA	

Svitlana	Mayboroda,	
University	of	Minnesota	

Mark	Green,		
UCLA	(moderator)	

MATHEMATICAL FRONTIERS 
Mathematical Analysis 
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View	webinar	videos	and	learn	more	about	BMSA	at	www.nas.edu/MathFron:ers		

February	13*: 		
Mathema:cs	of	the	Electric	Grid	
	

March	13*:			
Probability	for	People	and	Places	
	

April	10*:			
Social	and	Biological	Networks	
	

May	8*:			
Mathema:cs	of	Redistric:ng	
	

June	12*:	Number	Theory:	The	
Riemann	Hypothesis	
	
	

	
	
	
	
	

July	10*:	Topology	
	

August	14*:		Algorithms	for	Threat	
Detec:on	
	

September	11:	Mathema:cal	Analysis	
	

October	9:	Combinatorics	
	

November	13:		
Why	Machine	Learning	Works	
	

December	11:		
Mathema:cs	of	Epidemics	

MATHEMATICAL FRONTIERS 
2018 Monthly Webinar Series, 2-3pm ET 
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*	Recording	posted	

Made	possible	by	support	for	BMSA	from	the		
Na:onal	Science	Founda:on	Division	of	Mathema:cal	Sciences	and	the		

Department	of	Energy	Advanced	Scien:fic	Compu:ng	Research	


