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What	is	Combinatorics?	

Combinatorics	is		
the	nanotechnology	of	mathema8cs	

	

This	technology	applies	to	problems	on		
•  Existence	
•  Enumera8on	
•  Op8miza8on	
of	discrete	structures	taking	into	account	constraints,	paCerns,	
preferences,	and	rules.	
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Applica8ons	

In	the	past	100	years,	combinatorics	has	revolu8onized	the	
way	we	think	about	problems	in		
•  Biology	
•  Chemistry	
•  Computer	Science	
•  Physics	
•  Industry	
•  Government	
•  Mathema8cs	
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Examples	

•  The	Stable	Matching	Algorithm	

•  Tanglegrams	
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		Example	1:	Stable	Matching	

•  In 1952, the National Resident Matching Program (NRMP) 
introduced an algorithm to match medical students to residency 
positions at hospitals in a way that respects the preferences of the 
students and hospitals without any there being any student-hospital 
pair who prefer each other over their assignment.  

 
•  In 1962, David Gale and Lloyd Shapley proved that the algorithm 

always produces an assignment which is simultaneously optimal for all 
students among all stable matchings.  

 
•  In 2012, Lloyd Shapley and Alvin Roth won the Nobel prize in 

Economics for their work realizing other non-monetary markets where 
the Stable Match Algorithm should be applied: kidney donation. 

•   How does it work? 
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•  Students and hospitals each input a ranked list showing their 
preferences for the match.  

Student	Prfs	 Boston	 Houston	 SeaVle	

Andrea	 2	 1	 3	

Lakshmi	 1	 3	 2	

Ming	 2	 1	 3	

Hospital	Prfs	 Andrea	 Lakshmi	 Ming	

Boston	 2	 3	 1	

Houston	 2	 3	 1	

SeaCle	 3	 2	 1	

Stable	Matching:	How	does	it	work?	
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•  Students and hospitals each input a ranked list showing their 
preferences for the match.  
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•  Students and hospitals each input a ranked list showing their 
preferences for the match.  

Student	Prfs	 Boston	 Houston	 SeaVle	

Andrea	 2	 1	 3	

Lakshmi	 1	 3	 2	

Ming	 2	 1	 3	

Hospital	Prfs	 Andrea	 Lakshmi	 Ming	

Boston	 2	 3	 1	

Houston	 2	 3	 1	

SeaCle	 3	 2	 1	

One	match:			
Andrea	–	Houston,		
Lakshmi	–	Boston,	
Ming	–SeaCle	
	
Unstable	pair:	
Ming	–	Houston	
prefer	each	other	
over	their		
assignment	

Stable	Matching:	How	does	it	work?	
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Key	Ques8ons	

•  Definition:   An assignment of students to hospitals is a stable 
matching if no student and hospital prefer each other over the one 
given by the assignment.   

 
•  Existence Question: Given any input preferences of n students 

and n hospitals, does a stable matching always exist?  

•  Enumeration Question:  If so, how many stable matchings are 
there at most for n students and n hospitals? 

•  Optimization Question: Given any input preferences of n 
students and n hospitals, what is the best possible assignment for 
students? For hospitals? 
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		Stable	Match	Algorithm	

•  Each student “proposes” to their first choice of hospital.  
•  Then, hospitals reject all but their highest ranked proposal.  
•  Rinse, lather, repeat! 

Student	Prfs	 Boston	 Houston	 SeaVle	

Andrea	 2	 1	 3	

Lakshmi	 1	 3	 2	

Ming	 2	 1	 3	

Hospital	Prfs	 Andrea	 Lakshmi	 Ming	

Boston	 2	 3	 1	

Houston	 2	 3	 1	

SeaCle	 3	 2	 1	
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		Stable	Match	Algorithm	
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		Stable	Match	Algorithm	

Student	Prfs	 Boston	 Houston	 SeaVle	

Andrea	 2	 1	 3	

Lakshmi	 1	 3	 2	

Ming	 2	 1	 3	

Hospital	Prfs	 Andrea	 Lakshmi	 Ming	

Boston	 2	 3	 1	

Houston	 2	 3	 1	

SeaCle	 3	 2	 1	

Another	match:			
Andrea	–	Boston,		
Lakshmi	–	SeaCle,	
Ming	–	Houston	
	
Stable!	
No	pair	wants	to	
disregard	this	
assignment.		

•  Each student “proposes” to their first choice of hospital.  
•  Then, hospitals reject all but their highest ranked proposal.  
•  Rinse, lather, repeat! 
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•  Theorem (Gale-Shapley):   For any input preferences by n 
students and n hospitals, the Stable Match Algorithm produces 
an assignment with no unstable pairs. 

•  Theorem (Gale-Shapley):  Among all stable matchings of n 
students with n hospitals, this algorithm always finds the unique 
one that is best possible for every student.   

•  Theorem (Gale-Shapley):  Among all stable matchings of n 
students with n hospitals, this algorithm always finds the unique 
one that is worst possible for every hospital.   

•  Theorem (Knuth): The Stable Match Algorithm runs in O(n2) 
time on input from n students and n hospitals.    

		Stable	Match	Algorithm	
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		Success	of	the	Match	Program	

 
NRMP Press Release from March 16, 2018  

 
Largest Match on Record 
The 2018 Main Residency Match is the largest in NRMP history. 
A record-high 37,103 applicants submitted program choices for 
33,167 positions, the most ever offered in the Match.  

 
Open Question:  What other problems can be solved by the Stable 
Match Algorithm?   
 
Enumeration Question:  How many stable matchings exist for n 
students and n hospitals? (https://oeis.org/A005154) 
 
 
See Also:  The Stable Roommate Problem on Wikipedia 
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		Example	2:	Tanglegrams	

https://evolutionnews.org/2012/01/parallel_host_a/ 

Defini8on:		A	tanglegram	is	a	pair	of	binary	trees	with	a	matching	between	their	
leaves.		They	represent	two	phylogene8c	trees	of	symbio8c	organisms.			
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		Coun8ng	Tanglegrams	

Erick	Matsen,	Arnold	Kas	and	their	team	at	the	Fred	Hutchinson	Cancer	Research	Center	
study	mathema8cal	biology.	
	
EnumeraXve	QuesXon	(Matsen	2015):	
Is	there	a	nice	formula	to	count	the	number	of	dis8nct	tanglegrams	with	n	leaves	up	to	
symmetries	of	the	le_	tree	and	the	right	tree?	
	
Example:		for	n=4		there	are	13	tanglegrams	
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		Coun8ng	Tanglegrams	

EnumeraXve	QuesXon	(Matsen	2015):	
Is	there	a	nice	formula	to	count	the	number	of	dis8nct	tanglegrams	with	n	
leaves	up	to	symmetries	of	the	le_	tree	and	the	right	tree?	

Yes!	
	
Theorem	(Billey-Konvalinka-Matsen	2017):		The	number	of	tanglegrams	of	
size	n	is		
	
	
	
	
	
summed	over	all	binary	par88ons	of	n.	The	z-numbers	are	well	known	
constants.		
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Corollaries	of	the	(Billey-Konvalinka-Matsen)	Formula:	
	
•  		The	number	of	tanglegrams	grows	quickly:	

	

•  We	can	compute	the	exact	number	of	tanglegrams	for	n	as	large	as	
4000	using	a	recurrence	rela8on	derived	from	the	formula.	

•  There	is	an	algorithm	to	find	a	tanglegram	of	size	n	uniformly	at	
random	so	we	can	study	the	average	behavior	of	these	objects.	

		Coun8ng	Tanglegrams	
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		Typical	Tanglegrams		
	
	
	
	

n=10	 n=20	

n=30	
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Reprise 

•  Ques8ons	about	existence,	enumera8on,	and	op8miza8on	of	
discrete	structures	appear	in	many	science	and	industrial	
applica8ons.		

•  Combinatorial	algorithms	for	answering	these	ques8ons	have	
led	to	faster,	cheaper,	and	more	accurate	solu8ons	to	many	
problems	in	our	lives.	

•  S8ll	many	ques8ons	unanswered.			

•  Come,	join,	contribute	to	the	Combinatorics	Revolu8on!	
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Resources and Acknowledgements 
 

Many	thanks	to	my	colleagues	on	bboard@math.uw	for	help	on	
preparing	this	talk!		

	
Thanks	to	all	of	you	for	listening	and	par8cipa8ng!	
	

Resources:	
“	College	Admissions	and	the	Stability	of	Marriage”.		David	Gale	and	Lloyd	Shapley.		MAA	Math	

Montly	69,	9-14,	1962.	
“On	the	enumera8on	of	tanglegrams	and	tangled	chains”		Sara	Billey,	Matjaz	Konvalinka,	

Frederick	A	Matsen	IV,	J.	Combin.	Theory	Ser.	A,	146,	pp	239--263,	2017.		
“	Fingerprint	Databases	for	Theorems”	Sara	Billey	and	Bridget	Tenner.	No8ces	of	the	AMS	60:8	

(2013).	
“How	to	apply	de	Bruijn	graphs	to	genome	assembly”	Phillip	E	C	Compeau,	Pavel	A	Pevzner,	and		

Glenn	Tesler.		Nature	Biotechnology	29,	987–991	(2011)	hCp://www.nature.com/nbt/journal/
v29/n11/full/nbt.2023.html	
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Introduc8on	

•  Combinatorics is the study of finite structures.  

•  The central objects in combinatorics are often motivated by 
concerns in other areas of science, especially theoretical 
computer science, bioinformatics and statistical physics. 

•  In turn, combinatorics has applications to other areas of 
mathematics, such as number theory, geometry, probability, 
and algebra. 
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•  One of the most attractive topics in mathematics is the 
study of prime numbers.  

•  Prime factorization: every integer n > 1 is a product of 
primes. 

Introduc8on	

11111 41 271    111111 3 7 11 37    1111111 239 4649= ⋅ = ⋅ ⋅ ⋅ = ⋅
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•  Cryptography: RSA based on hardness of finding prime 
factorization. Variants underlie much of modern electronic 
security. 

•  Primality testing: polynomial time. (Agrawal, Kayal, 
Saxena, 2002)  

Introduc8on	
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•  Goldbach’s Conjecture1742 : every even number larger than 2 
is the sum of two primes. 

 

 

	

Introduc8on	
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Quasirandomness	

•  The Extended Goldbach Conjecture states that the number 
R(n) of representations of n as a sum of two primes satisfies: 

 
 
    (Hardy-Littlewood, 1923)   

  

	

	

R(n) ~ 2∏2  ⋅  
p − 1
p − 2

 
p>2
 p|n

∏ ⋅   
1

(log x)22
n∫  dx 
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•  Goldbach’s Conjecture1742 : every even number larger than 2 
is the sum of two primes. 

 

 

	

Introduc8on	

(22) 3

22 3 19

5 17

11 11

R =

= +

= +

= +
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•  Lagrange1770 : for every positive integer k there exists a 
progression of k primes. 

 

 

	

Introduc8on	
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The	probabilis8c	method	

•  In many areas of mathematics, one is 
required to construct a structure under a 
prescribed list of constraints, or at least 
prove its existence.  

•  The probabilistic method was introduced 
by Paul Erdõs over fifty years ago. 

•  The next examples illustrate one of the 
organizing principles of the method:  

  
if it seems likely that the structure we want is roughly uniform,  

 then a random example is worth trying. 
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Randomness	versus	Structure	

•  Suppose we select a random set of numbers from 1 to n, where 
each number is selected independently with probability p. 

•  We would expect every interval of m consecutive numbers 
contains about pm selections.   
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•  The set of even numbers, on the other hand, should be 
considered to be “structured”.  

•  More generally, any union of few arithmetic progressions 
should be considered “structured” 

 

	

Randomness	versus	Structure	
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•  For instance, consider the set of prime numbers. 

•  According to the Prime Number Theorem, there are 

roughly          primes less than   .    
 

 

	

n
log n

Randomness	versus	Structure	

n
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Randomness	versus	Structure	

•  Cramér’s Conjecture : There is a prime between    and 
about                   for every   .    (Cramér, 1936) 
 

 

 

	

n + (log n)2 n
n
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• A graph is a set of vertices / nodes together with a set of 
pairs of vertices called edges.  

• These are fundamental objects in combinatorics.  

 

 

	

Randomness	versus	Structure	
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• When is a graph “random”?  

• Place edges randomly and 
independently with probability p. 

 

 

	

Randomness	versus	Structure	



View	webinar	videos	and	learn	more	about	BMSA	at	www.nas.edu/MathFron:ers		

Quasirandomness	

• Given any set X of vertices, we expect              edges of the 
graph to lie inside X.   

• We call an n-vertex graph of density p an "-quasirandom 

graph if for every set X 

 

 

 

 

 

 

	

p X
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

e(X)− p X
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ <  "pn2
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• When is a graph “quasirandom”?  

 

 

	

Randomness	versus	Structure	
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• How to tell if a graph is random? Using spectral theory 
of the graph matrices. 

• Expander Mixing Lemma (Alon, 1986) 

 

 

 

	

e(X)− p X
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟  ≤  ∏ X

Quasirandomness	
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• How to tell if a graph is random? Counting quadrilaterals. 

• Thomason (1987), Chung-Graham-Wilson (1991) 

 A graph with n vertices and density p is "-quasirandom if 
and only if the number  of quadrilaterals in the graph is at 
most 

• Quasirandom graphs appear frequently in applications, for 
example in coding and information theory (expander graphs). 

 

 

	

(1+ "4)(pn)4

Quasirandomness	
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Quasirandomness	

•  We can use graphs to find arithmetic progressions in sets 
of integers. 

•  Szemeredi’s Theorem (1975) 
 Every set of integers positive density  
 contains arbitrarily long progressions. 
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•  	The arithmetic progression {3,5,7} 
   

 

 

	

Quasirandomness	
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Breakthroughs	

• Theorem. (Green-Tao Theorem, 2006) 

 The primes contain arbitrarily long arithmetic 
 progressions. 
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Conclusion	

• Combinatorics has burgeoned into a fundamental part of 
modern mathematics, establishing many connections and 
applications to many other areas of science.  

• We discussed a general modern theme in combinatorics, 
which is to distinguish between randomness and structure in 
combinatorial objects.  

• The probabilistic method has led to a number of recent 
breakthroughs.  
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Na:onal	Science	Founda:on	Division	of	Mathema:cal	Sciences	and	the		

Department	of	Energy	Advanced	Scien:fic	Compu:ng	Research	


