L m— X
MATHEMATICAL FRONTIERS

; SCIENCES

menationl | eeneenne  1@S.edu/MathFrontiers

MEDICINE

Board on
Mathematical Sciences & Analytics



MATHEMATICAL FRONTIERS

2018 Monthly Webinar Series, 2-3pm ET

February 13*: July 10*: Topology

Mathematics of the Electric Grid
/ August 14*: Algorithms for Threat

March 13%: Detection

Probability for People and Places
ity 1 P September 11*: Mathematical Analysis

April 10%*:

Social and Biological Networks October 9: Combinatorics

November 13:

May 8*:
y Why Machine Learning Works

Mathematics of Redistricting
December 11:

June 12*: Number Theory: The , , ,
Mathematics of Epidemics

Riemann Hypothesis

Made possible by support for BMSA from the
. National Science Foundation Division of Mathematical Sciences and the
* Recording posted Department of Energy Advanced Scientific Computing Research

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers )




MATHEMATICAL FRONTIERS

Combinatorics

ey Jacques Verstraete, Mark Green,
University of Washington University of California, San Diego UCLA (moderator)

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




MATHEMATICAL FRONTIERS

Combinatorics

John Rainwater Faculty Fellow and
Professor of Mathematics in the
Department of Mathematics at the
University of Washington

What is
Combinatorics?

Sara Billey,
University of Washington

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 4




What is Combinatorics?

Combinatorics is
the nanotechnology of mathematics

This technology applies to problems on
* Existence

* Enumeration

* Optimization

of discrete structures taking into account constraints, patterns,
preferences, and rules.
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Applications

In the past 100 years, combinatorics has revolutionized the
way we think about problems in

* Biology
 Chemistry

* Computer Science
* Physics

* Industry

* Government
 Mathematics
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Examples

* The Stable Matching Algorithm

* Tanglegrams
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Example 1: Stable Matching

In 1952, the National Resident Matching Program (NRMP)
introduced an algorithm to match medical students to residency
positions at hospitals in a way that respects the preferences of the
students and hospitals without any there being any student-hospital
pair who prefer each other over their assignment.

* In 1962, David Gale and Lloyd Shapley proved that the algorithm
always produces an assignment which is simultaneously optimal for all
students among all stable matchings.

* In 2012, Lloyd Shapley and Alvin Roth won the Nobel prize in

Economics for their work realizing other non-monetary markets where
the Stable Match Algorithm should be applied: kidney donation.

How does it work?
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Stable Matching: How does it work?

« Students and hospitals each input a ranked list showing their
preferences for the match.

m Boston mm

Andrea
Lakshmi 1 3 2
Ming 2 1 3
e N
Boston
Houston 2 3 1
Seattle 3 2 1
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Stable Matching: How does it work?

« Students and hospitals each input a ranked list showing their
preferences for the match.

m Seattle
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Lakshmi 1 3 2
Ming 2 1 3
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Boston
Houston 2 3 1
Seattle 3 2 1
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Stable Matching: How does it work?

« Students and hospitals each input a ranked list showing their
preferences for the match.

Student Pris_| Boston Seattle

Andrea 3
Lakshmi @ 3 2
Ming 2 1 3
e N
Boston
Houston 2 3 1
Seattle 3 2 1
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Stable Matching: How does it work?

« Students and hospitals each input a ranked list showing their
preferences for the match.

Student Pris_| Boston Seattle

Andrea 3 One match:

_ Andrea - Houston,
Lakshmi @ 3 2 Lakshmi - Boston,
Ming 2 1 @ Ming —Seattle

Unstable pair:

Hospital Prfs m Ming - Houston

Boston prefer each other

over their
Houston 2 3 1

assignment
Seattle 3 2 1
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Key Questions

« Definition: An assignment of students to hospitals is a stable
matching if no student and hospital prefer each other over the one
given by the assignment.

- Existence Question: Given any input preferences of n students
and n hospitals, does a stable matching always exist?

« Enumeration Question: If so, how many stable matchings are
there at most for n students and n hospitals?

« Optimization Question: Given any input preferences of n
students and n hospitals, what is the best possible assignment for
students? For hospitals?
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Stable Match Algorithm

Each student “proposes” to their first choice of hospital.
* Then, hospitals reject all but their highest ranked proposal.

Rinse, lather, repeat!
Student Prfs | Boston Houston | Seattle

Andrea 0

3
Lakshmi @ 3 2
Ming 2 @ 3

Hospital Pris m

Boston
Houston 2 3 1
Seattle 3 2 1
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Stable Match Algorithm

Each student “proposes” to their first choice of hospital.
* Then, hospitals reject all but their highest ranked proposal.
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Stable Match Algorithm

Each student “proposes” to their first choice of hospital.
* Then, hospitals reject all but their highest ranked proposal.
Rinse, lather, repeat!
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Stable Match Algorithm

« Each student “proposes” to their first choice of hospital.
« Then, hospitals reject all but their highest ranked proposal.
* Rinse, lather, repeat!

Student Prfs Boston Houston

Andrea a Q> 3

Lakshmi b 3 @
Ming 2 @ 3

Hospital Pris m

Boston
Houston 2 3 1
Seattle 3 2 1
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Stable Match Algorithm

Each student “proposes” to their first choice of hospital.
* Then, hospitals reject all but their highest ranked proposal.
Rinse, lather, repeat!

Student Prfs Boston Houston

Andrea \ L\> % Another match:

Andrea - Boston,

Lakshmi ( 1 3

, Lakshmi - Seattle,
Ming 2 3 Ming - Houston
Hospital Prfs m- Stable!

No pair wants to
Bosten disregard this
Houston 2 3 1 assignment.
Seattle 3 2 1
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Stable Match Algorithm

 Theorem (Gale-Shapley): For any input preferences by n
students and n hospitals, the Stable Match Algorithm produces
an assignment with no unstable pairs.

* Theorem (Gale-Shapley): Among all stable matchings of n
students with n hospitals, this algorithm always finds the unique
one that is best possible for every student.

 Theorem (Gale-Shapley): Among all stable matchings of n
students with n hospitals, this algorithm always finds the unique
one that is worst possible for every hospital.

« Theorem (Knuth): The Stable Match Algorithm runs in O(n?)
time on input from n students and n hospitals.
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Success of the Match Program

NRMP Press Release from March 16, 2018

Largest Match on Record

The 2018 Main Residency Match is the largest in NRMP history.
A record-high 37,103 applicants submitted program choices for
33,167 positions, the most ever offered in the Match.

Open Question: What other problems can be solved by the Stable
Match Algorithm?

Enumeration Question: How many stable matchings exist for n
students and n hospitals? (nttps:/ioeis.org/A005154)

See Also: The Stable Roommate Problem on Wikipedia
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Example 2: Tanglegrams

Pocket T. ralpoides \ T. barbarae Chcwi.ng
gophers T. bottae > T. minor lice
\ _ . ,
Z m'chopu:\ o —_—— G. trichopi
Pbulleri = \—=\—— """ G. nadleri
M G. chapini
O. hispidus

G. panamensis

0. cavator / G. cherriei

0. cherriei \ > G. costaricensis
/ \

O. heterodus \ G. thomomyus

\ G. perotensis

L T G. setzeri
0. underm’oji/"'_’:;r;/

C. merriami — — — — — —

\ G. actuosi
C. castanops

—_—
e —
-
—

G. expansus
G. bursarius majus ——————_C peomydis
G. bursarius halli —o____ O chbid amannli

G. breviceps G. ewingi

G. personatus — — — =— — — - G. texanus

https://evolutionnews.org/2012/01/parallel_host_a/

Definition: A tanglegram is a pair of binary trees with a matching between their
leaves. They represent two phylogenetic trees of symbiotic organisms.
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Counting Tanglegrams

Erick Matsen, Arnold Kas and their team at the Fred Hutchinson Cancer Research Center
study mathematical biology.

Enumerative Question (Matsen 2015):
Is there a nice formula to count the number of distinct tanglegrams with n leaves up to

symmetries of the left tree and the right tree?
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S
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Counting Tanglegrams

Enumerative Question (Matsen 2015):
Is there a nice formula to count the number of distinct tanglegrams with n
leaves up to symmetries of the left tree and the right tree?

Yes!

Theorem (Billey-Konvalinka-Matsen 2017): The number of tanglegrams of
sizenis

2
[T (200 + -+ + Agyy) — 1)

tn: Z Y
\ A

summed over all binary partitions of n. The z-numbers are well known
constants.
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Counting Tanglegrams

Corollaries of the (Billey-Konvalinka-Matsen) Formula:

* The number of tanglegrams grows quickly:

 We can compute the exact number of tanglegrams for n as large as
4000 using a recurrence relation derived from the formula.

 Thereis an algorithm to find a tanglegram of size n uniformly at
random so we can study the average behavior of these objects.
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Reprise

* Questions about existence, enumeration, and optimization of
discrete structures appear in many science and industrial

applications.

 Combinatorial algorithms for answering these questions have
led to faster, cheaper, and more accurate solutions to many
problems in our lives.

e Still many questions unanswered.

 Come, join, contribute to the Combinatorics Revolution!
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Resources and Acknowledgements

Many thanks to my colleagues on bboard@math.uw for help on
preparing this talk!

Thanks to all of you for listening and participating!

Resources:

“College Admissions and the Stability of Marriage”. David Gale and Lloyd Shapley. MAA Math
Montly 69, 9-14, 1962.

“On the enumeration of tanglegrams and tangled chains” Sara Billey, Matjaz Konvalinka,
Frederick A Matsen IV, J. Combin. Theory Ser. A, 146, pp 239--263, 2017.

“Fingerprint Databases for Theorems” Sara Billey and Bridget Tenner. Notices of the AMS 60:8
(2013).

“How to apply de Bruijn graphs to genome assembly” Phillip E C Compeau, Pavel A Pevzner, and
Glenn Tesler. Nature Biotechnology 29, 987-991 (2011) http://www.nature.com/nbt/journal/
v29/n11/full/nbt.2023.html
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Introduction

* Combinatorics is the study of finite structures.

* The central objects in combinatorics are often motivated by
concerns in other areas of science, especially theoretical
computer science, bioinformatics and statistical physics.

* In turn, combinatorics has applications to other areas of

mathematics, such as number theory, geometry, probability,
and algebra.
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Introduction

* One of the most attractive topics in mathematics is the
study of prime numbers.

* Prime factorization: every integer n > 1 is a product of
primes.

11111 =41-271 111111 =3-7-11-37 1111111 = 239-4649
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Introduction

* Cryptography: RSA based on hardness of finding prime
factorization. Variants underlie much of modern electronic
security.

* Primality testing: polynomial time. (Agrawal, Kayal,
Saxena, 2002)
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Introduction

* Goldbach's Conjecture!’* : every even number larger than 2
Is the sum of two primes.
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Quasirandomness

* The Extended Goldbach Conjecture states that the number
R(n) of representations of N as a sum of two primes satisfies:

~2[]p - H f2

p>2
pin

log x)?

(Hardy-Littlewood, 1923)
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Introduction

* Goldbach's Conjecture!’* : every even number larger than 2
Is the sum of two primes.

i n = 0 (mod 6)
v 7 2 (mod (i; R (22) = 3
7 4 (mod 6)

60 22 = 3 + ].9
z : =5+17

0

R - ~11+11
20 '_“',»_--"" ooy s &
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1500

2000
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* Lagrange!’’0 : for every positive integer k there exists a

Introduction

progression of K primes.

461 463

9 601
673
743
9 811
881 883
953
9 1021
1091 1093
1163
9 1231
1301 1303
1373
9
1511
1583

1721 1723
1861

1931 1933
2003

397
467

607

677

887

1097

1237

1307

1447

1657

1867

401

541
613
683
751
821 823

1031 1033
1103
1171

1381
1451 1453
1523

1663
1733
1801
1871 1873

2011
2081 2083

409
479
547
617 619
691
757 761
827 829

967 971
1039
1109
1181
1249
1319 1321

1459
1531
1597 1601
1667 1669
1741
1811
1877 1879
1949 1951
2017
2087 2089

487
557

907
977

1117
1187

1327

1607

1747

2027

419

769
839

1049

1259

1399

1609

1889

2029
209°
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The probabilistic method

* In many areas of mathematics, one is
required to construct a structure under a
prescribed list of constraints, or at least
prove Its existence.

* The probabilistic method was introduced
by Paul Erdds over fifty years ago.

* The next examples illustrate one of the
organizing principles of the method:

if it seems likely that the structure we want is roughly uniform,
then a random example is worth trying.
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Randomness versus Structure

* Suppose we select a random set of numbers from 1 to n, where
each number is selected independently with probability p.

* We would expect every interval of m consecutive numbers
contains about pm selections.
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Randomness versus Structure

* The set of even numbers, on the other hand, should be
considered to be “structured’.

* More generally, any union of few arithmetic progressions
should be considered “structured”
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Randomness versus Structure

* For instance, consider the set of prime numbers.

* According to the Prime Number Theorem, there are
n
roughly —— primes less than n.

logn
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Randomness versus Structure

* Cramér's Conjecture : There is a prime between n and
about n + (log n)2 for every n.  (Cramér, 1936)
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Randomness versus Structure

* A graph is a set of vertices / nodes together with a set of
pairs of vertices called edges.

* These are fundamental objects in combinatorics.
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Randomness versus Structure

* When is a graph “random”?

* Place edges randomly and
independently with probability p.
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Quasirandomness

X
* Given any set X of vertices, we expect P ‘ ‘ edges of the

graph to lie inside X. 2

* We call an n-vertex graph of density p an e-quasirandom
graph if for every set X

X|
2

e(X)-p < fspn2
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Quasirandomness

* How to tell if a graph is random? Using spectral theory
of the graph matrices.

* Expander Mixing Lemma (Alon, 1986)

e(X)-p |)2(| = [I)x]
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Quasirandomness

* How to tell if a graph is random? Counting quadrilaterals.
* Thomason (1987), Chung-Graham-Wilson (1991)

A graph with n vertices and density p is e-quasirandom if
and only if the number of quadrilaterals in the graph is at

most (1+¢")(pn)’

* Quasirandom graphs appear frequently in applications, for
example in coding and information theory (expander graphs).
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Quasirandomness

* We can use graphs to find arithmetic progressions in sets
of integers.

* Szemeredi's Theorem (1975)
Every set of integers positive density

contains arbitrarily long progressions.
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Quasirandomness

* The arithmetic progression {3,5,7}
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Breakthroughs

* Theorem. (Green-Tao Theorem, 2006)

The primes contain arbitrarily long arithmetic
progressions.
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Conclusion

» Combinatorics has burgeoned into a fundamental part of
modern mathematics, establishing many connections and
applications to many other areas of science.

* We discussed a general modern theme in combinatorics,
which is to distinguish between randomness and structure in
combinatorial objects.

* The probabilistic method has led to a number of recent
breakthroughs.
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