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What is Machine Learning?

Data

Learning algorithm

U

Knowledge
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What is Machine Learning?

Design and Analysis of algorithms that
e improve their performance

e at some task

'\.

* with experience Tom Mitchell
Carnegie Mellon Univ.
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What is Machine Learning?

Design and Analysis of algorithms that
e improve their performance

e at some task

i 4

* with experience Tom Mitchell
Carnegie Mellon Univ.

Data ) |Learning algorithm > Knowledge
(experience) (performance on task)
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Understanding ML ingredients

http://phillips-lab.biochem.wisc.edu/

Task: Learning stage of protein crystallization
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Understanding ML ingredients

http://phillips-lab.biochem.wisc.edu/

Task: Learning stage of protein crystallization (s
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Why learn from data (experience)?
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Social
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Bio-chemical
molecules

rules and governing equations
are hard to discover
involve too many variables
are computationally too expensive
are typically stochastic

Starcraft
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How ML works

Crystal, Needle, Tree, ...

* Modelf: mapping between input and output
linear, nonlinear, deep model

e Algorithm: fits model to data

Optir?ize Performance(Model f, Data)
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Why ML works

» Lots of data due to improved high-throughput technologies

» Improved machine learning algorithms

» Enhanced computing power
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Why ML works

» Lots of data due to improved high-throughput technologies
e.g. Social media and web data (Petabytes/min), Large Synoptic
Survey Telescope (20 TB/night)

» Improved machine learning algorithms
e Rich models (high approximation power)
* Generalize well to unseen data

(J‘)

» Enhanced computing power (advanced GPUs, cloud platforms)
e.g. accelerated training from 6 days to 18 mins in 5 years
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Data Challenges

Prior. Experimental
Heterogeneous types of data domain e
!<|ed 5 e ITO-coated glass substrate TiO, film after
 Multi-modal — wmﬁwmm

e Direct vs indirect

= et \ Expert
i Imulations suidance

* Missing, incorrect
* Biased
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Data Challenges

Prior
domain
e _knoWled e

data

ITO-coated glass substrate TiO, film after
before reaction reaction
—_—

substrate holder 245 GHz

Experimental
Heterogeneous types of data

e Multi-modal

|||||||||

* Direct vs indirect
* Missing, incorrect

 Biased

Handle unseen data from related domain

N8
N

Self-driving car
tra?ined in N :
Chicago vs e R

. (= et (N 2 - D e ”7}9
Pittsburgh (Craanc gl 4t ] A, o el
- )7 *.-A“'—"'*""‘!“‘*"—:r;ﬁ?l‘a.'?«‘? Chl(aLgo \:\\\f"f\\ ',( = 1.5..
§ 1 a t 1 \ ) . \7¥,.‘ ﬁf“—"r\\_fz..» {1 4
\_ Chicago I} iR \& ' Pittsburgh )
_— WREY S Wi gy - - SN\



ML tasks: ubiquitous across domains
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ML Task Challenges

+ Input-Output mapping tasks with given representations,
lots of data and clearly defined performance metric
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ML Task Challenges

+ Input-Output mapping tasks with given representations,
lots of data and clearly defined performance metric

- Higher level tasks beyond input-output mapping (e.g. learn
representations; guide data collection; design, test and refine
hypothesis; interact with humans and environment)

- Multiple heterogeneous tasks

- High-stake decision making with very little tolerance for
errors (e.g. criminal justice, medical decisions, etc.)

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 27




ML Performance Challenges

Current focus: ,
ImageNet error: 30% to 3% (since 2010)

Accuracy/error Google speech recognition: 8.4% to 4.9% (since 2016)
Y

runtime, memory, ...
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ML Performance Challenges

Current focus: ,
ImageNet error: 30% to 3% (since 2010)

Accu racy/error Google speech recognition: 8.4% to 4.9% (since 2016)

runtime, memory, ... - i - w

Robustness [Szegedy et al’14]

dog ostrich
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ML Performance Challenges

Current focus: _
ImageNet error: 30% to 3% (since 2010)
Accu racy/error Google speech recognition: 8.4% to 4.9% (since 2016)

runtime, memory, ... :

Robustness [Szegedy et al’14]

Interpretability and Transparency dog ostrich

Trust and Accountability
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ML Performance Challenges

Current focus: _
ImageNet error: 30% to 3% (since 2010)
Accu racy/error Google speech recognition: 8.4% to 4.9% (since 2016)

runtime, memory, ...

Robustness [Szegedy et al’14]

Interpretability and Transparency dog ostrich

Trust and Accountability

Fairness and Ethics

[Buolamwini-Gebru’18]
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MATHEMATICAL FRONTIERS

Why Machine Learning Works

Anne T. and Robert M. Bass Professor of
Humanities and Sciences
Professor of Statistics

What Makes
Machine Learning
Work?

David Donoho,
Stanford University
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Outline

Overview
Empirical Revolution

Deepnet Emergence

A Role for Math
Speed up Training
Improve Learning
Improve Embeddings
Improve Understanding
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Overview

Themes

In a longer talk, | would situate the current moment as follows:

a) Smartphone Revolution

b) Computing Disocntinuity

d) Deepnet emergence

Role for Math

(

(b)

(c) Empirical Science Revolution
(d)

(c)
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Overview

Themes

For reasons of time, | emphasize only

(a) Smartphone Revolution

b) Computing Discontinuity

d

Deepnet emergence

Role for Math

(b)
(c) Empirical Science Revolution
(d)
(c)
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Empirical Revolution

Common Task Framework (1980’s)

Under CTF we have the following ingredients

(a) A publicly available training dataset involving, for each
observation, a list of (possibly many) feature
measurements, and a class label for that observation.

(b) A set of enrolled competitors whose common task is to
infer a class prediction rule from the training data.

(c) A scoring referee, to which competitors can submit their
prediction rule. The referee runs the prediction rule
against a testing dataset which is sequestered behind a
Chinese wall. The referee objectively and automatically
reports the score achieved by the submitted rule.

See Mark Liberman's description (Liberman, 2009).

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 36




Empirical Revolution
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Deepnet Emergence

Emergence of Deep Learning Research

(a) The success of deep nets is an entirely empirical success.
All basic ideas were around for 30 years
Nothing beyond high school required

(b) Deep learning is a new laboratory science

Lab Science Term Deep Learning Term
compute cluster

Laboratary “ Software Stack
. Elasticluster/ClusterJob
Lab Equipment “ TensorFlow/Pytorch
Testube/Culture <o train/test deepnet
modify architecture
Experiment > modify dataset

modify training algorithm
High Throughput — Run Hyperparameter Grid

(c) Today 1000's PhD researchers developing/studying deepnets fulltime
Factoid: Google has hired =~ 1500 PhD researchers over 5 years.
~ all CS faculty in USA!
Major commitment to deep learning
Major effects on scholarship, conferences, younger generation

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 33




Deepnet Emergence

ImageNet Classification Error (Top 5)

1.7
73
6.7
3.57
-
U

2012 (AlexNet) 2013 (ZF) 2014 (VGG) 2014 (GooglLeNet) 2015 (ResNet) Today
(GooglLeNet-v4)
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Deepnet Emergence

Training loss (CIFAR-10) Test accuracy (CIFAR-10)
e v | : 4 T
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Figure 3: Results of CNN and RNN experiments. GGT dominates in training loss across both tasks, and
generalizes better on the RNN task. Top: CIFAR-10 classification with a 3-branch ResNet. Bottom: PTB
character-level language modeling with a 3-layer LSTM.
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Deepnet Emergence

Sebastiao Salgado, Work
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Speed up Training
Improve Learning
Improve Embeddings

A Role for Math Improve Understanding

Speed up Training

» A 6-page conference paper may burn > $100K (retail) computer
time.

» State of the Art Deepnet training extremely slow.
Stochastic Gradient Descent

» State of the Art hyperparameter search extremely slow:
Exhaustive evaluation

» Traditional mathematical sciences attacked both problems

» Second-order methods (Newton's Method and successors)
much better than First-order
» Experimental design much better than exhaustive evaluation

» Adapt/Extend traditionally successful optimization ideas in
mathematical sciences to Deepnet setting
Save $100's M in research costs annually. Forever.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 42




Speed up Training
Improve Learning
Improve Embeddings

A Role for Math Improve Understanding

Improve Learning

» State of the Art results often use gigantic datasets (e.g. Laurens
van der Maaten, FB, 700M images).

Hopes for perfection: driving force for even larger data
Scaling relation of errors vs. dataset size very unfavorable

Training practices very doutbful (train to zero error).

v v vy

Traditional mathematical sciences attacked both problems

» Most accurate estimates possible for a given sample size (RA
Fisher etc.)

» Regularization to defeat curse of dimensionality (Tikhonov
Regularization, Stein Shrinkage, Lasso etc.)

» Adapt/Extend traditionally successful estimation ideas in
mathematical sciences to Deepnet setting
Deepnets achieve current performance specs at much smaller

dataset size N
View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 43




Speed up Training

Improve Learning

Improve Embeddings
A Role for Math Improve Understanding

Improve Embeddings

P> State of the Art results often use special embeddings to make Deepnets applicable.

»  Word2Vec (Glove, etc)
> TSNE

»  Successful but poorly understood.
Possibly can be much improved

P Traditional mathematical sciences attacked embeddings, but without invariances:

> PCA
> ISOMAP
> LLE

P> Recent mathematical sciences attacked embeddings, with invariances
S. Mallat, Scattering Networks

» Adapt/Extend traditionally successful embedding ideas in mathematical sciences to Deepnet setting
Deepnets applicable to many other problems.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 44




Speed up Training
Improve Learning
Improve Embeddings

A Role for Math Improve Understanding

Historic Challenge to the Mathematical Sciences

» Ingrid Daubechies’ dictum
When a mathematical object has interesting behavior,
there's a mathematical reason.

v

Great deal of historical success

v

But does it continue to work here?

» Deepnets involve mathematically-definable entities
» Superhuman performance is interesting

v

Daubechies’ dictum seems to apply.

v

Encounter with lan Goodfellow suggests difficulties with
mathematical mindset:

» Must there be a reason?
» Should we care about the reason?

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 45




Speed up Training
Improve Learning
Improve Embeddings

A Role for Math Improve Understanding

Historic Challenge to the Mathematical Sciences, 2

If we care about ‘understanding’ and ‘reasons’ here are some
challenges:

» Deepnets in practice are high-dimensional interpolation
scheme.
Almost nothing known about the classes of functions well
approximated by actual deepnets using actual training
algorithms typical in practice.
Learning more can lead to better training and better nets.

» High-dimensional training uses high-dimensional Hessian and
gradient.
We have limited window on such objects, learning more
enables speed ups optimization.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 16
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