

MATHEMATICAL FRONTIERS

*The National
Academies of* | SCIENCES
ENGINEERING
MEDICINE

nas.edu/MathFrontiers

Board on
Mathematical Sciences & Analytics

MATHEMATICAL FRONTIERS

2018 Monthly Webinar Series, 2-3pm ET

February 13*:

Mathematics of the Electric Grid

March 13*:

Probability for People and Places

April 10*:

Social and Biological Networks

May 8*:

Mathematics of Redistricting

June 12*: *Number Theory: The Riemann Hypothesis*

*** Recording posted**

July 10*: *Topology*

August 14*: *Algorithms for Threat Detection*

September 11*: *Mathematical Analysis*

October 9*: *Combinatorics*

November 13:

Why Machine Learning Works

December 11:

Mathematics of Epidemics

Made possible by support for BMSA from the
National Science Foundation Division of Mathematical Sciences and the
Department of Energy Advanced Scientific Computing Research

MATHEMATICAL FRONTIERS

Why Machine Learning Works

Aarti Singh,
Carnegie Mellon University

David Donoho,
Stanford University

Mark Green,
UCLA (moderator)

MATHEMATICAL FRONTIERS

Why Machine Learning Works

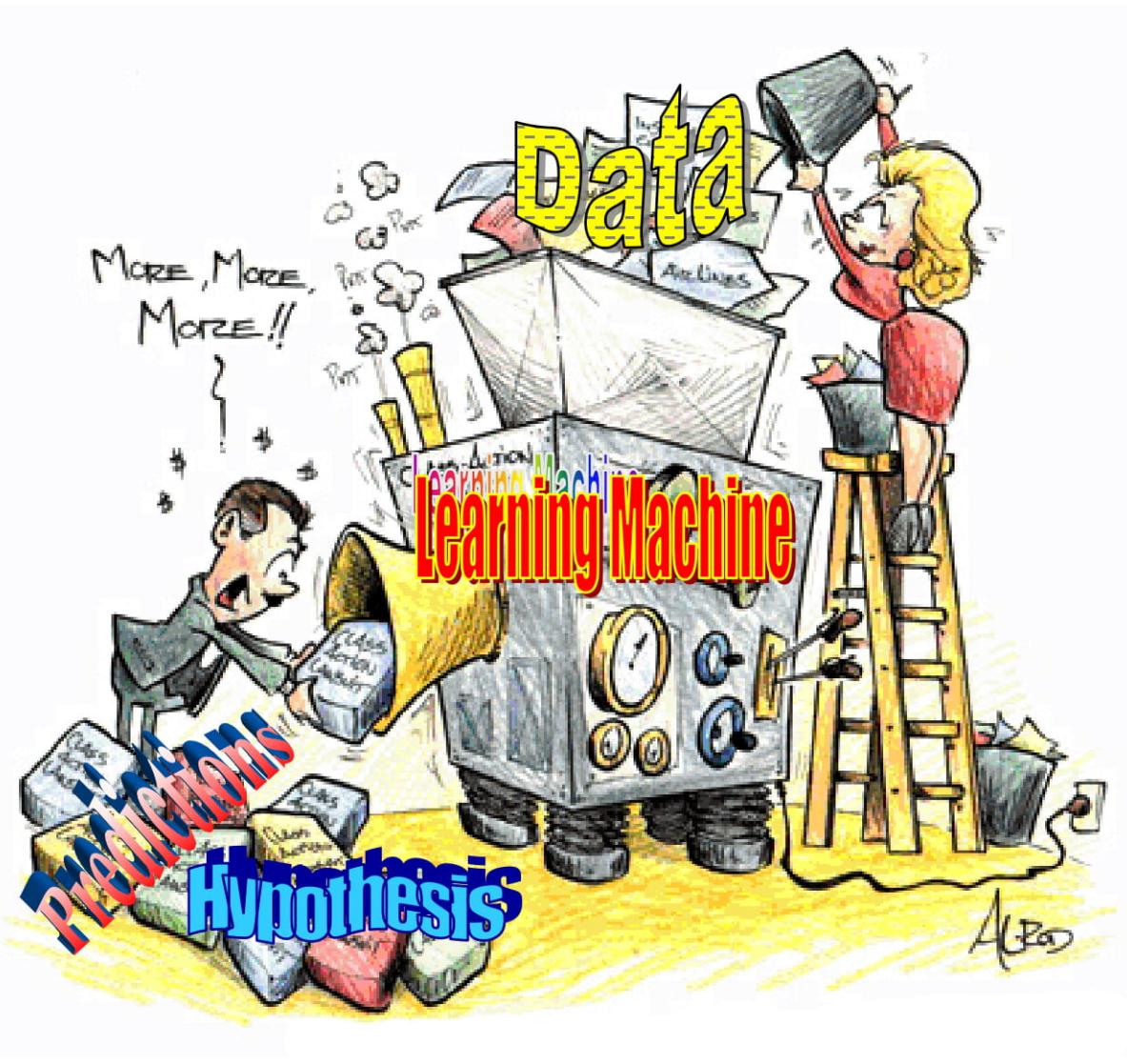
*Associate Professor,
Machine Learning Department*

Why Machine Learning Works

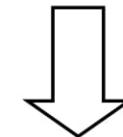
Aarti Singh,
Carnegie Mellon University

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers

What is Machine Learning?



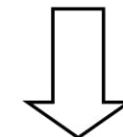
Data



584146951941511609455057270
6115021911161401111909
618801194190377a887406
190702179860945702770859217

Learning algorithm

Knowledge



What is Machine Learning?

Design and Analysis of algorithms that

- improve their performance
- at some task
- with experience

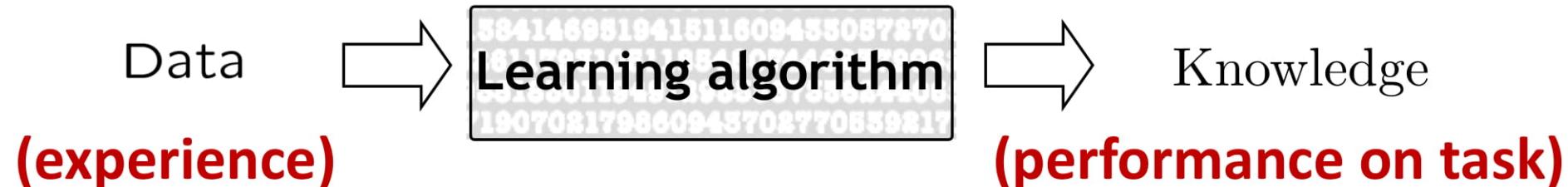
Tom Mitchell
Carnegie Mellon Univ.

What is Machine Learning?

Design and Analysis of algorithms that

- improve their performance
- at some task
- with experience

Tom Mitchell
Carnegie Mellon Univ.



Understanding ML ingredients

<http://phillips-lab.biochem.wisc.edu/>

Task: Learning stage of protein crystallization

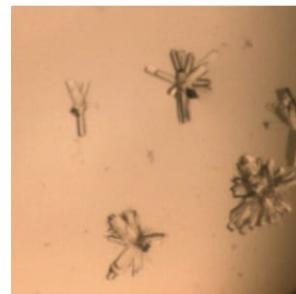
Understanding ML ingredients

<http://phillips-lab.biochem.wisc.edu/>

Task: Learning stage of protein crystallization

Crystal

Needle

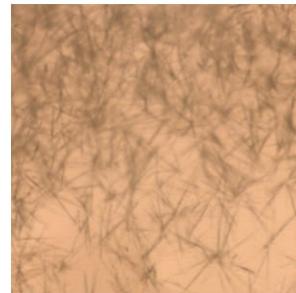


Tree

Tree

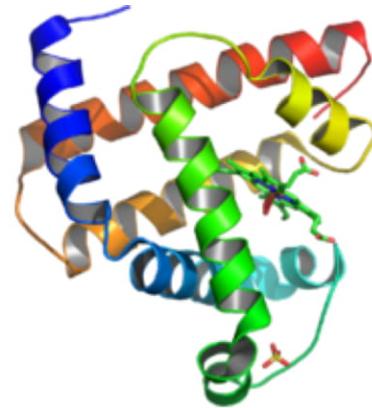


Empty



Needle

Experience



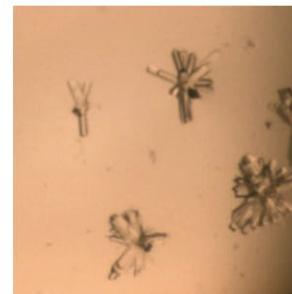
Understanding ML ingredients

<http://phillips-lab.biochem.wisc.edu/>

Task: Learning stage of protein crystallization

Crystal

Needle



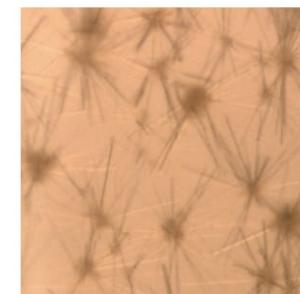
Tree

Tree

Empty

Needle

Experience

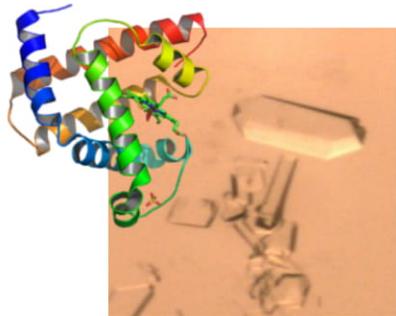


?

Performance

Why learn from data (experience)?

Understanding large-scale complex systems

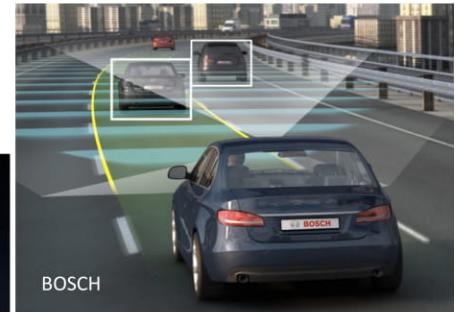


Bio-chemical
molecules

Social
networks



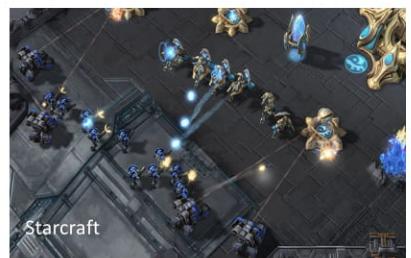
Brain



Self-driving vehicles

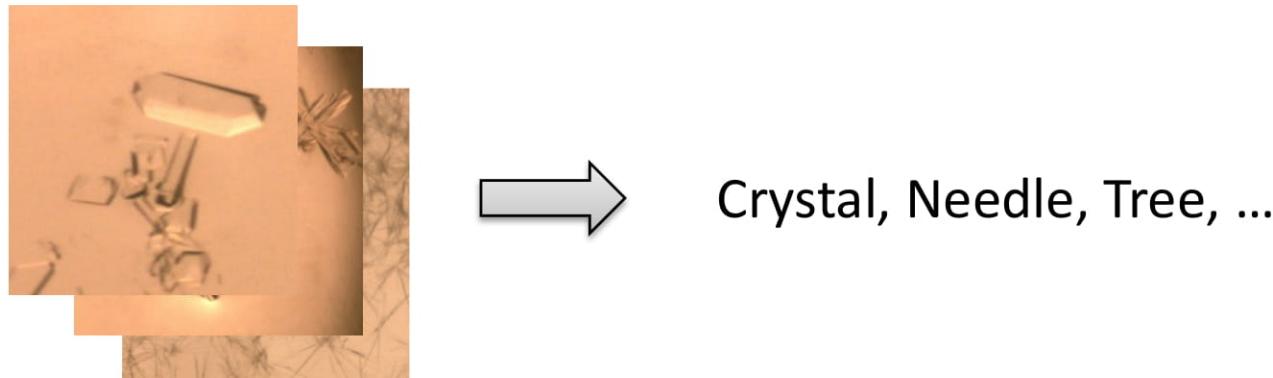
Cosmos

rules and governing equations
are hard to discover
involve too many variables
are computationally too expensive
are typically stochastic

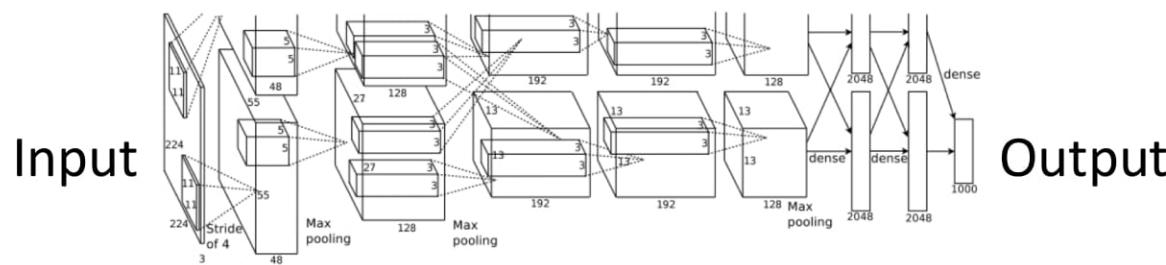


Games

How ML works



- Model f : mapping between input and output
linear, nonlinear, deep model



- Algorithm: fits model to data
Optimize Performance(Model f , Data)
 f

Why ML works

- Lots of data due to improved high-throughput technologies
- Improved machine learning algorithms
- Enhanced computing power

Why ML works

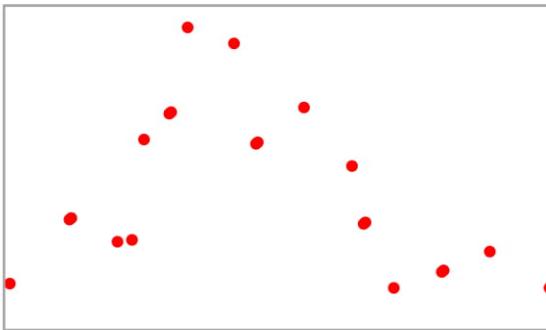
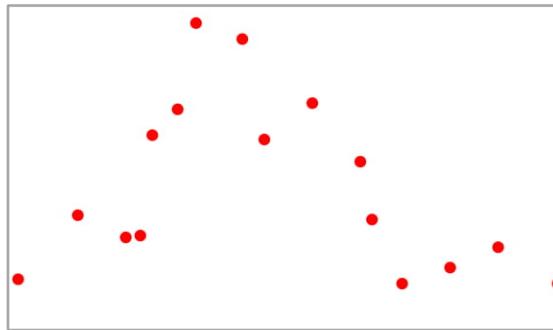
- Lots of data due to improved high-throughput technologies
e.g. Social media and web data (Petabytes/min), Large Synoptic Survey Telescope (20 TB/night)
- Improved machine learning algorithms
- Enhanced computing power

Why ML works

- Lots of data due to improved high-throughput technologies
 - e.g. Social media and web data (Petabytes/min), Large Synoptic Survey Telescope (20 TB/night)
- Improved machine learning algorithms
 - Rich models (high approximation power)
 - Generalize well to unseen data
- Enhanced computing power

Why ML works

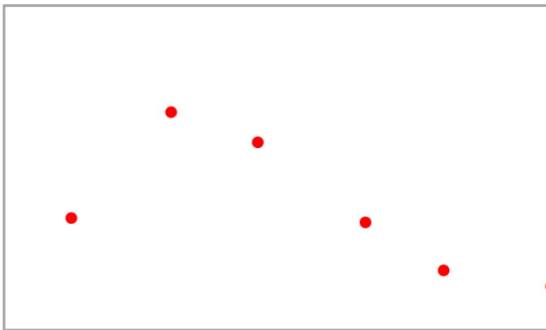
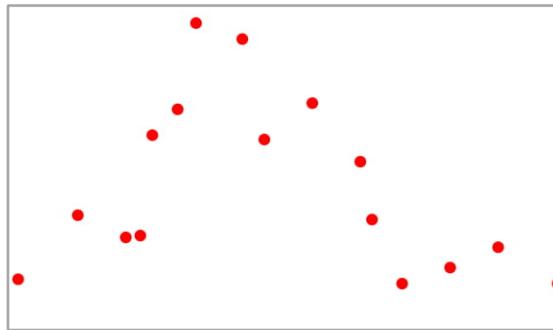
- Lots of data due to improved high-throughput technologies
e.g. Social media and web data (Petabytes/min), Large Synoptic Survey Telescope (20 TB/night)
- Improved machine learning algorithms
 - Rich models (high approximation power)
 - Generalize well to unseen data



- Enhanced computing power

Why ML works

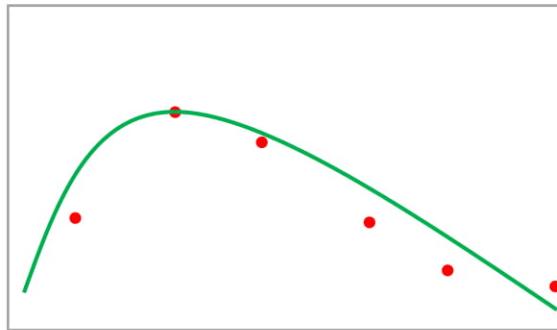
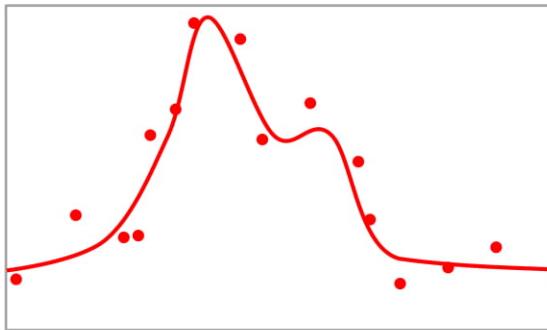
- Lots of data due to improved high-throughput technologies
e.g. Social media and web data (Petabytes/min), Large Synoptic Survey Telescope (20 TB/night)
- Improved machine learning algorithms
 - Rich models (high approximation power)
 - Generalize well to unseen data



- Enhanced computing power

Why ML works

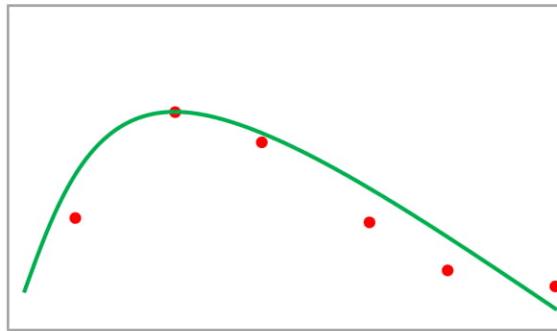
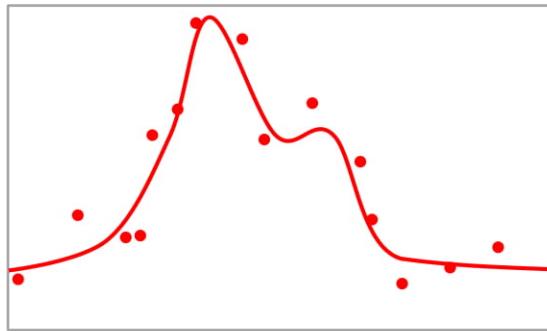
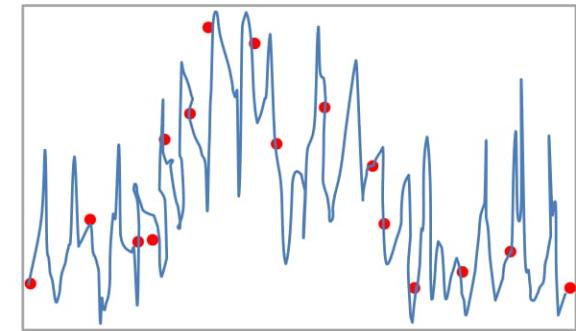
- Lots of data due to improved high-throughput technologies
e.g. Social media and web data (Petabytes/min), Large Synoptic Survey Telescope (20 TB/night)
- Improved machine learning algorithms
 - Rich models (high approximation power)
 - Generalize well to unseen data



- Enhanced computing power

Why ML works

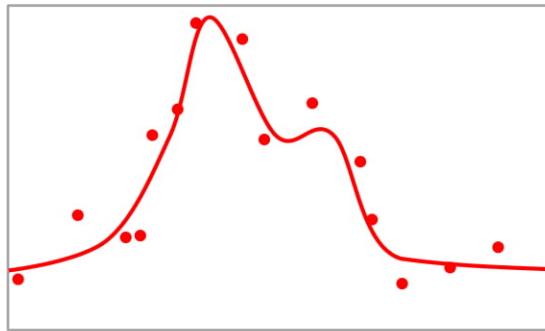
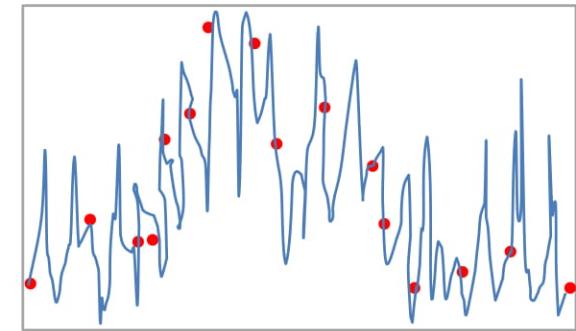
- Lots of data due to improved high-throughput technologies
e.g. Social media and web data (Petabytes/min), Large Synoptic Survey Telescope (20 TB/night)
- Improved machine learning algorithms
 - Rich models (high approximation power)
 - Generalize well to unseen data



- Enhanced computing power

Why ML works

- Lots of data due to improved high-throughput technologies
e.g. Social media and web data (Petabytes/min), Large Synoptic Survey Telescope (20 TB/night)
- Improved machine learning algorithms
 - Rich models (high approximation power)
 - Generalize well to unseen data

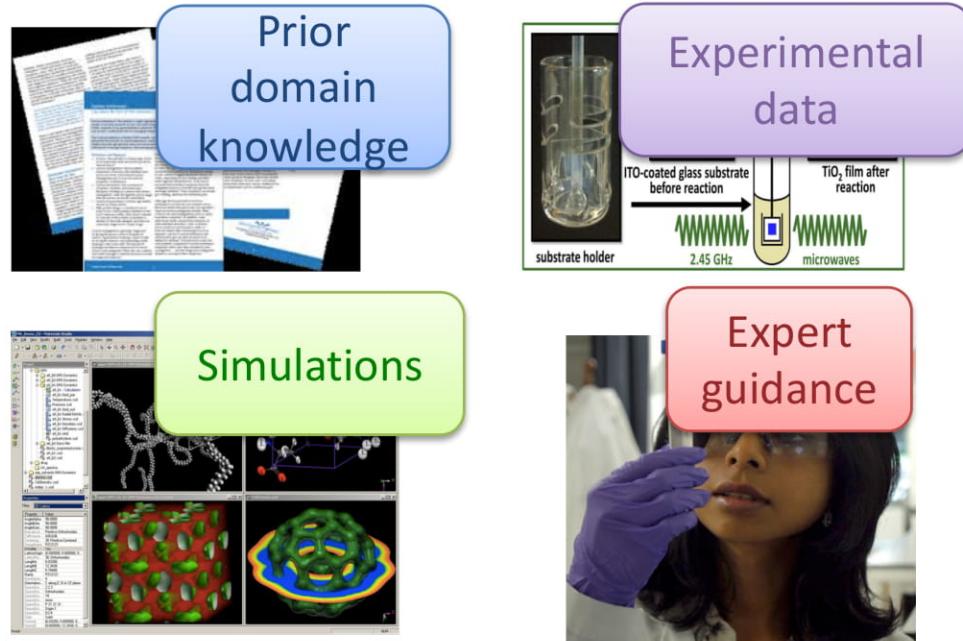


- Enhanced computing power (advanced GPUs, cloud platforms)
e.g. accelerated training from 6 days to 18 mins in 5 years

Data Challenges

Heterogeneous types of data

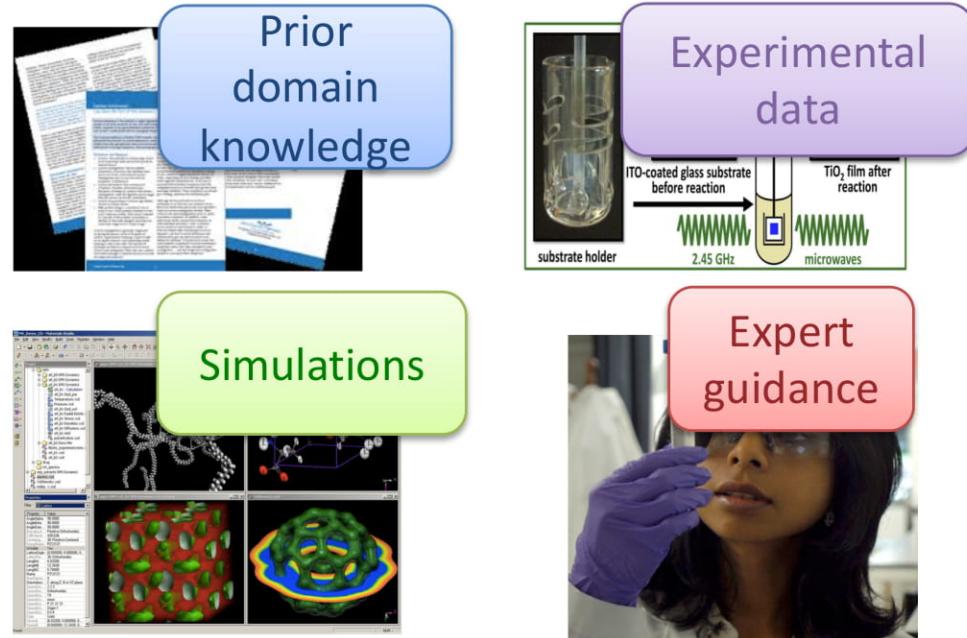
- Multi-modal
- Direct vs indirect
- Missing, incorrect
- Biased



Data Challenges

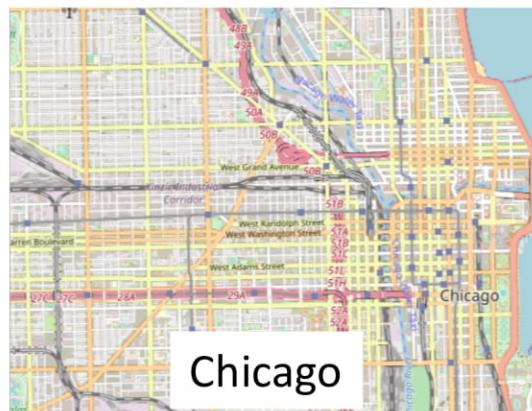
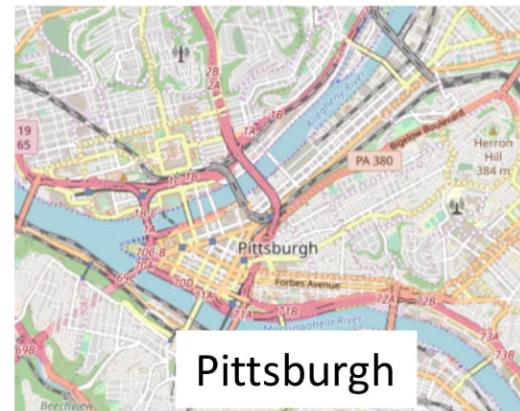
Heterogeneous types of data

- Multi-modal
- Direct vs indirect
- Missing, incorrect
- Biased



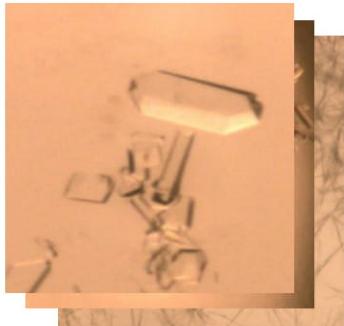
Handle unseen data from related domain

Self-driving car
trained in
Chicago vs
Pittsburgh

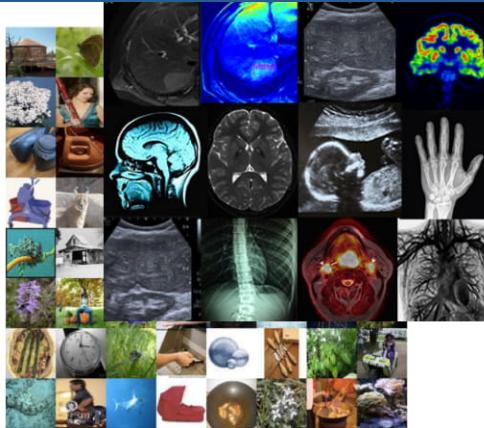


ML tasks: ubiquitous across domains

Prediction



Stage of crystal formation



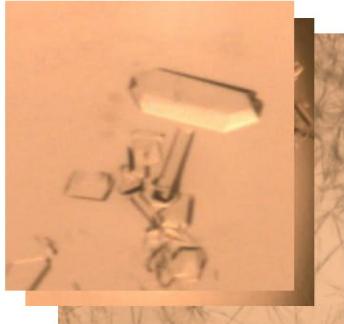
Object category,
Medical diagnosis

Spam/Fraud identification

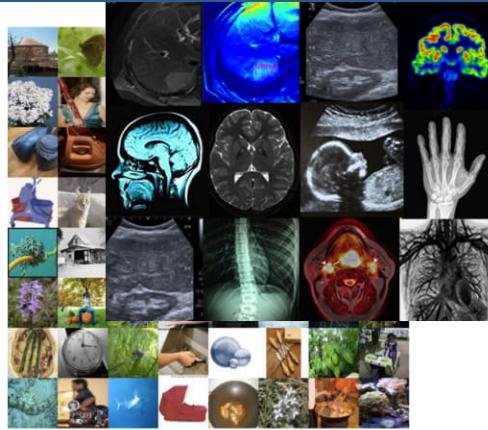
Stock price,
weather
forecasting

ML tasks: ubiquitous across domains

Prediction



Stage of crystal formation



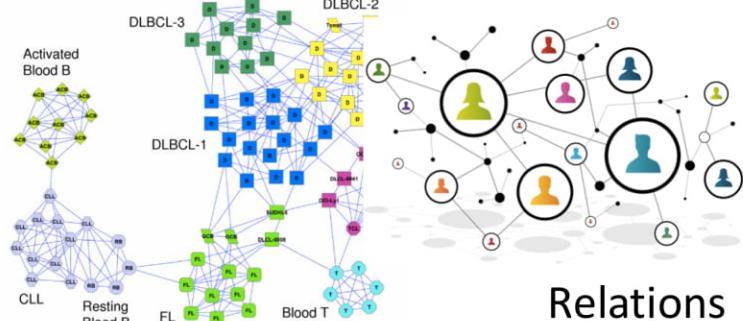
Object category,
Medical diagnosis

Spam/Fraud
identification



Stock price,
weather
forecasting

Unsupervised learning



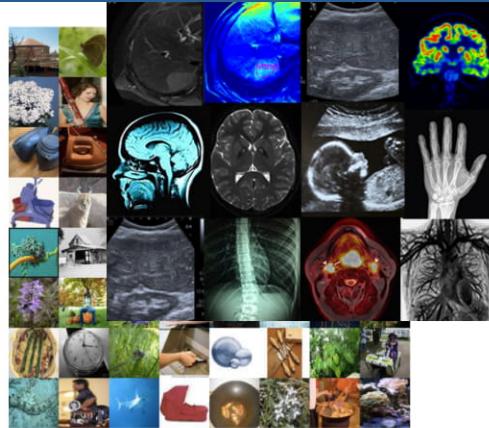
Relations
between people,
proteins, ...

Grouping genes,
commodities, ...

ML tasks: ubiquitous across domains

Prediction

Stage of crystal formation



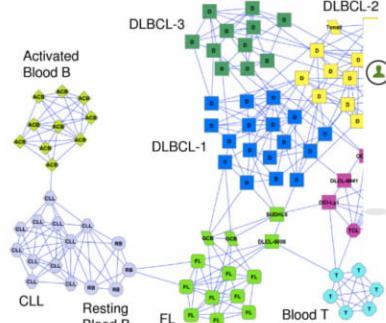
Object category,
Medical diagnosis

Spam/Fraud identification



Stock price,
weather
forecasting

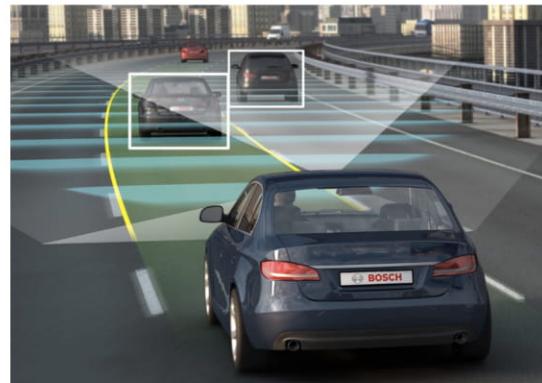
Unsupervised learning



Grouping genes,
commodities, ...

Relations
between people,
proteins, ...

Decision making



Automated Navigation

Games

ML Task Challenges

- + Input-Output mapping tasks with given representations, lots of data and clearly defined performance metric

ML Task Challenges

- + Input-Output mapping tasks with given representations, lots of data and clearly defined performance metric
- Higher level tasks beyond input-output mapping (e.g. learn representations; guide data collection; design, test and refine hypothesis; interact with humans and environment)
- Multiple heterogeneous tasks
- High-stake decision making with very little tolerance for errors (e.g. criminal justice, medical decisions, etc.)

ML Performance Challenges

Current focus:

Accuracy/error

ImageNet error: 30% to 3% (since 2010)

runtime, memory, ...

Google speech recognition: 8.4% to 4.9% (since 2016)

ML Performance Challenges

Current focus:

Accuracy/error

ImageNet error: 30% to 3% (since 2010)

runtime, memory, ...

Google speech recognition: 8.4% to 4.9% (since 2016)

Robustness [Szegedy et al'14]

dog

ostrich

ML Performance Challenges

Current focus:

Accuracy/error

ImageNet error: 30% to 3% (since 2010)

runtime, memory, ...

Google speech recognition: 8.4% to 4.9% (since 2016)

Robustness [Szegedy et al'14]

Interpretability and Transparency

dog

ostrich

Trust and Accountability

ML Performance Challenges

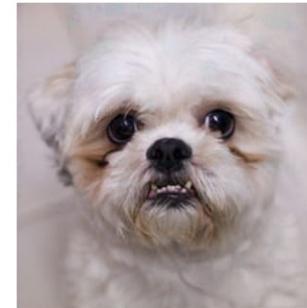
Current focus:

Accuracy/error

ImageNet error: 30% to 3% (since 2010)

runtime, memory, ...

Google speech recognition: 8.4% to 4.9% (since 2016)



Robustness [Szegedy et al'14]

Interpretability and Transparency

dog

ostrich

Trust and Accountability

Fairness and Ethics

[Buolamwini-Gebru'18]

1% error

35% error

MATHEMATICAL FRONTIERS

Why Machine Learning Works

David Donoho,
Stanford University

*Anne T. and Robert M. Bass Professor of
Humanities and Sciences
Professor of Statistics*

**What Makes
Machine Learning
Work?**

Outline

Overview

Empirical Revolution

Deepnet Emergence

A Role for Math

Speed up Training

Improve Learning

Improve Embeddings

Improve Understanding

Themes

In a longer talk, I would situate the current moment as follows:

- (a) Smartphone Revolution
- (b) Computing Disocntinuity
- (c) Empirical Science Revolution
- (d) Deepnet emergence
- (c) Role for Math

Themes

For reasons of time, I emphasize **only**

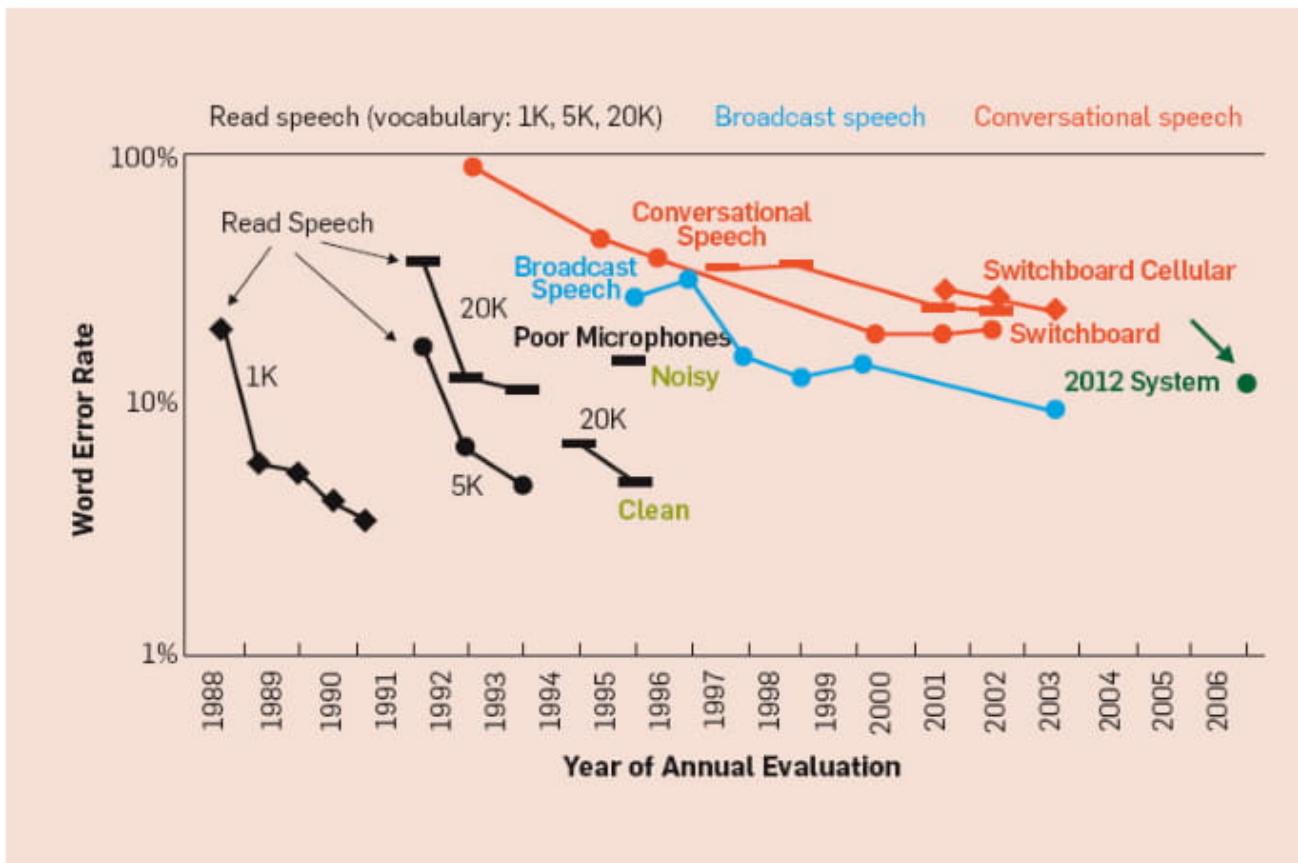
- (a) Smartphone Revolution
- (b) Computing Discontinuity
- (c) **Empirical Science Revolution**
- (d) Deepnet emergence
- (e) **Role for Math**

Common Task Framework (1980's)

Under CTF we have the following ingredients

- (a) A **publicly available training dataset** involving, for each observation, a list of (possibly many) feature measurements, and a class label for that observation.
- (b) A set of **enrolled competitors** whose **common task** is to **infer** a class **prediction rule from the training data**.
- (c) A **scoring referee**, to which competitors can submit their prediction rule. The referee runs the prediction rule against a testing dataset which is sequestered behind a Chinese wall. The referee objectively and automatically reports the score achieved by the submitted rule.

See Mark Liberman's description (Liberman, 2009).



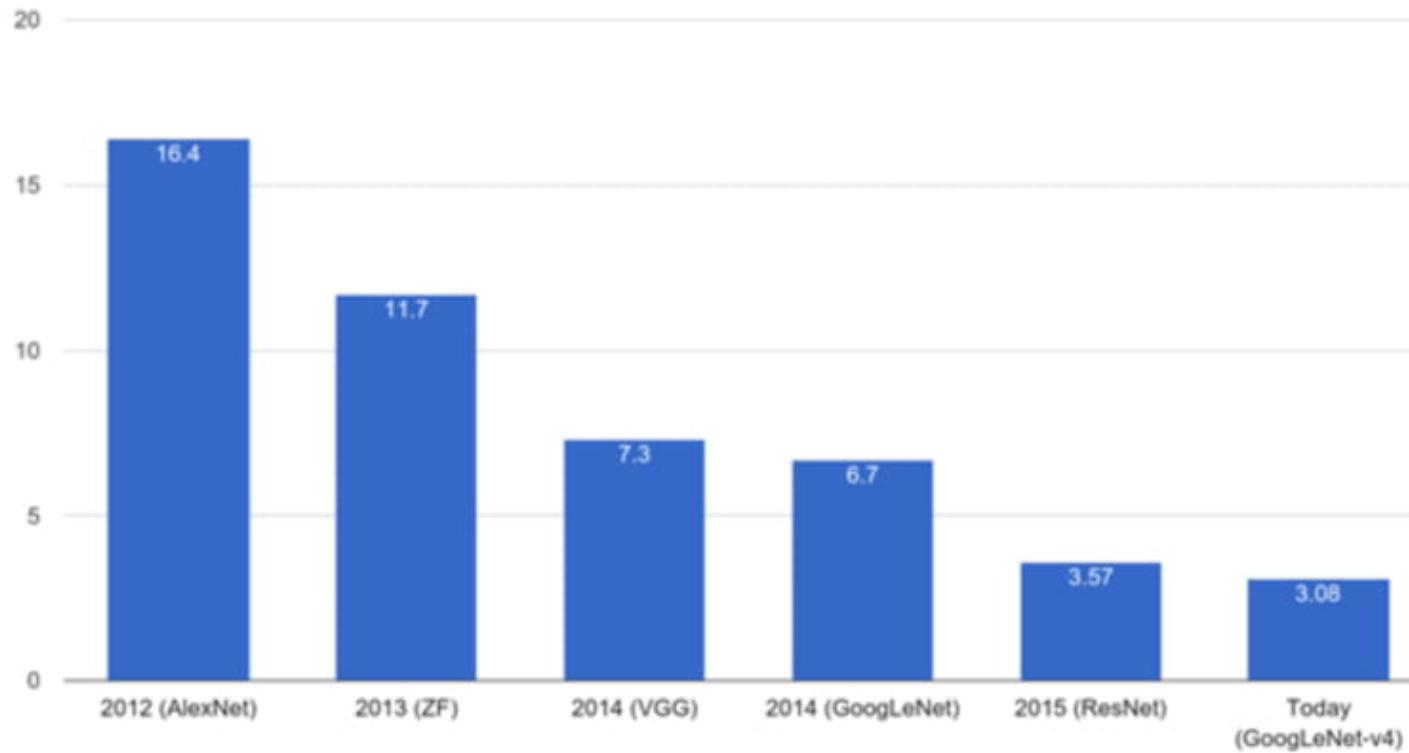
Emergence of Deep Learning Research

- (a) The success of deep nets is an *entirely* empirical success.
All basic ideas were around for 30 years
Nothing beyond high school required
- (b) Deep learning is a new *laboratory science*

Lab Science Term	↔	Deep Learning Term
Laboratory	↔	compute cluster Software Stack
Lab Equipment	↔	Elasticcluster/ClusterJob TensorFlow/Pytorch
Testube/Culture	↔	train/test deepnet modify architecture
Experiment	↔	modify dataset modify training algorithm
High Throughput	↔	Run Hyperparameter Grid

- (c) Today **1000's PhD researchers** developing/studying deepnets **fulltime**
Factoid: Google has hired \approx 1500 PhD researchers over 5 years.
 \approx *all CS faculty in USA!*
Major commitment to deep learning
Major effects on scholarship, conferences, *younger generation*

ImageNet Classification Error (Top 5)



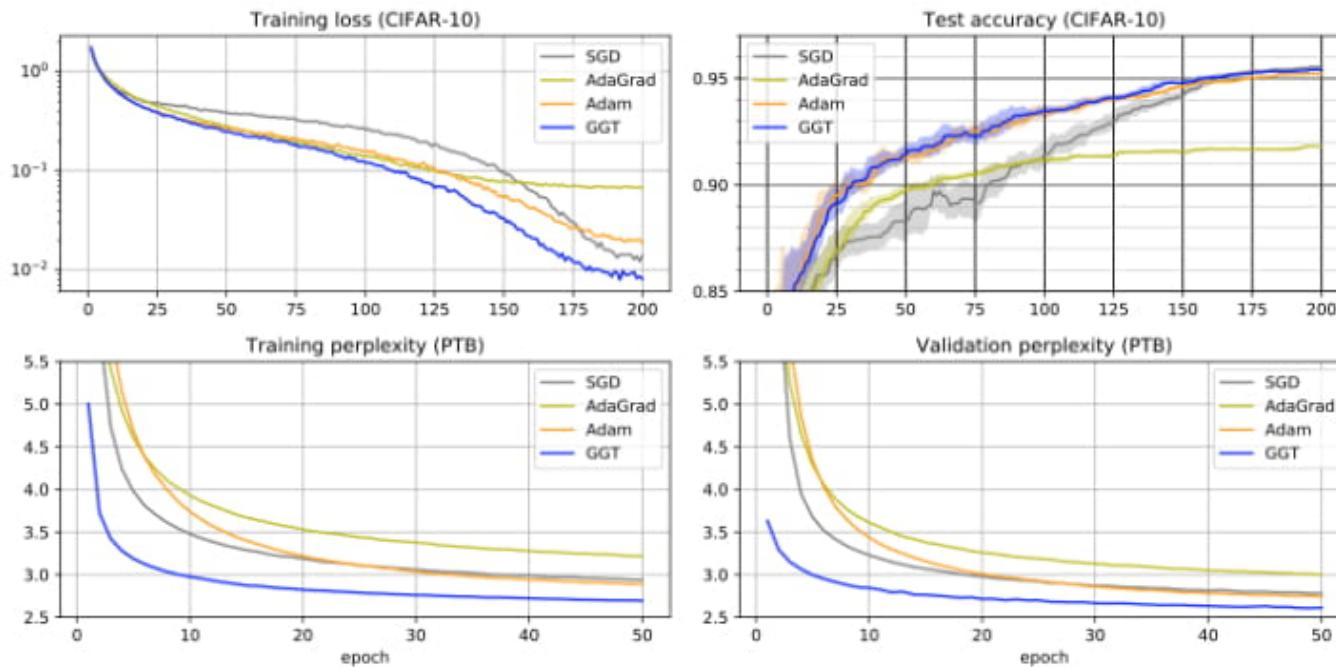


Figure 3: Results of CNN and RNN experiments. GGT dominates in training loss across both tasks, and generalizes better on the RNN task. *Top:* CIFAR-10 classification with a 3-branch ResNet. *Bottom:* PTB character-level language modeling with a 3-layer LSTM.

Sebastiao Salgado, *Work*

Speed up Training

- ▶ A 6-page conference paper may burn $> \$100K$ (retail) computer time.
- ▶ State of the Art Deepnet training *extremely slow*:
Stochastic Gradient Descent
- ▶ State of the Art hyperparameter search *extremely slow*:
Exhaustive evaluation
- ▶ Traditional mathematical sciences attacked both problems
 - ▶ Second-order methods (Newton's Method and successors)
much better than First-order
 - ▶ Experimental design much better than exhaustive evaluation
- ▶ Adapt/Extend traditionally successful optimization ideas in mathematical sciences to Deepnet setting
Save \$100's M in research costs annually. *Forever.*

Improve Learning

- ▶ State of the Art results often use gigantic datasets (e.g. Laurens van der Maaten, FB, 700M images).
- ▶ Hopes for perfection: driving force for even larger data
- ▶ Scaling relation of errors vs. dataset size *very unfavorable*
- ▶ Training practices *very doubtful* (train to zero error).
- ▶ Traditional mathematical sciences attacked both problems
 - ▶ Most accurate estimates possible for a given sample size (RA Fisher etc.)
 - ▶ Regularization to defeat curse of dimensionality (Tikhonov Regularization, Stein Shrinkage, Lasso etc.)
- ▶ Adapt/Extend traditionally successful estimation ideas in mathematical sciences to Deepnet setting
Deepnets achieve current performance specs at much smaller dataset size N

Improve Embeddings

- ▶ State of the Art results often use special embeddings to make Deepnets applicable.
 - ▶ Word2Vec (Glove, etc)
 - ▶ TSNE
- ▶ Successful but poorly understood.
Possibly can be much improved
- ▶ Traditional mathematical sciences attacked embeddings, but without invariances:
 - ▶ PCA
 - ▶ ISOMAP
 - ▶ LLE
- ▶ Recent mathematical sciences attacked embeddings, *with invariances*
S. Mallat, Scattering Networks
- ▶ Adapt/Extend traditionally successful embedding ideas in mathematical sciences to Deepnet setting
Deepnets applicable to many other problems.

Historic Challenge to the Mathematical Sciences

- ▶ Ingrid Daubechies' *dictum*
*When a **mathematical** object has interesting behavior, there's a **mathematical** reason.*
- ▶ Great deal of historical success
- ▶ But does it continue to work here?
 - ▶ Deepnets involve *mathematically-definable* entities
 - ▶ Superhuman performance is *interesting*
- ▶ Daubechies' *dictum* seems to apply.
- ▶ Encounter with Ian Goodfellow suggests difficulties with mathematical mindset:
 - ▶ Must there be a reason?
 - ▶ Should we care about the reason?

Historic Challenge to the Mathematical Sciences, 2

If we care about 'understanding' and 'reasons' here are some challenges:

- ▶ Deepnets in practice are *high-dimensional interpolation scheme*.
Almost nothing known about the classes of functions well approximated by *actual deepnets* using *actual training algorithms typical in practice*.
Learning more can lead to better training and better nets.
- ▶ High-dimensional training uses high-dimensional Hessian and gradient.
We have limited window on such objects, learning more enables speed ups optimization.

MATHEMATICAL FRONTIERS

Why Machine Learning Works

Aarti Singh,
Carnegie Mellon University

David Donoho,
Stanford University

Mark Green,
UCLA (moderator)

MATHEMATICAL FRONTIERS

2018 Monthly Webinar Series, 2-3pm ET

February 13*:

Mathematics of the Electric Grid

March 13*:

Probability for People and Places

April 10*:

Social and Biological Networks

May 8*:

Mathematics of Redistricting

June 12*: *Number Theory: The Riemann Hypothesis*

*** Recording posted**

July 10*: *Topology*

August 14*: *Algorithms for Threat Detection*

September 11*: *Mathematical Analysis*

October 9*: *Combinatorics*

November 13:

Why Machine Learning Works

December 11:

Mathematics of Epidemics

Made possible by support for BMSA from the
National Science Foundation Division of Mathematical Sciences and the
Department of Energy Advanced Scientific Computing Research