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Abstract

Data, and hence data quality, transcend all boundaries of science, commerce,
engineering, medicine, public health, and policy. Data quality has histori-
cally been addressed by controlling the measurement processes, controlling
the data collection processes, and through data ownership. For many data
sources being leveraged into data science, this approach to data quality may
be challenged. To understand that challenge, a historical and disciplinary
perspective on data quality, highlighting the evolution and convergence of
data concepts and applications, is presented.
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1. INTRODUCTION

Data quality has historically been addressed by controlling the measurement and data collection
processes and through data ownership. For many data sources being leveraged into data science,
this approach to data quality may be challenged. Today, the data revolution is experiencing mas-
sive data acquisition and repurposing to support analyses of all kinds and across all of science,
engineering, and business. This warrants a renewed look at data quality assessment.

This article presents a historical and disciplinary perspective on data quality, highlighting
the evolution and convergence of data concepts and applications. The article begins with a brief
consideration of the fundamental types of data that underlie today’s data applications. Three types
of data dominate current data applications:

� Designed data: data that have traditionally been used in scientific discovery. Designed
data include statistically designed data collections, such as surveys or experiments, and in-
tentional observational collections. Examples of intentional observational collections in-
clude data obtained from specially designed instruments such as telescopes, DNA se-
quencers, or sensors on an ocean buoy, and also data from systematically designed case
studies such as health registries. Researchers have frequently devoted decades of sys-
tematic research to understanding and characterizing the properties of designed data
collections.

� Administrative data: data collected for the administration of an organization, program,
or service process. Examples of administrative data include Internal Revenue Service data
for individuals and businesses, Social Security earnings records, Medicare and Medicaid
health utilization data, 911 and Emergency Management Services, property tax data from
local governments, credit data, banking and other financial data such as insurance coverage,
production processes, and taxi trip data. When removed from their administrative function,
the statistical properties of these data become problematic because they come with little to
no documentation about coverage, representativeness, bias, and longitudinal gaps. In some
cases, these statistical properties may be knowable, but simply have not been well-studied
(NRC 2013a).

� Opportunity data: data generated on an ongoing basis as society moves through its daily
paces. Opportunity data derive from a variety of sources such as GPS systems and embedded
sensors, social media exchanges, mobile and wearable devices, and Internet entries. Captured
through a variety of methods including direct flows, Internet searches, web crawling, and
scraping, these data may exist in a variety of electronic and physical modalities. Though tech-
nological advances allow users to collect volumes of data opportunistically, these collections
are likely to be the least understood and studied.

The three data types are highlighted throughout this article. They occur in different propor-
tions in different disciplines, and each discipline takes a slightly different focus in managing the
quality of its data. As a result, each discipline has contributed in different ways to the development
and adoption of definition, methods, and approaches relevant to data quality. These are briefly
summarized in Table 1 and provide a guide for this review of the literature.

The remainder of this article describes data quality from the perspective of physical and biolog-
ical sciences; engineering, computer science, and business; medicine and public health; social and
behavioral sciences; and statistical sciences (Sections 2 through 6). Additional attention is given to
the emerging role of opportunity data (Section 7). Section 8 presents conclusions and a forward
vision.
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Table 1 Contributions to evolution of data quality by discipline

Discipline Contributions to data quality

Physical and biological
sciences

� Experimental methods
� Data repositories/portals
� Reproducibility and replication

Engineering,
information
technology, business

� Pareto Principle (80% of a problem is triggered by 20% of the sources)
� Fitness-for-use
� Total data quality management
� Data management
� Standards

Medicine and public
health

� Clinical data standardization
� Validity of self-reporting
� Parsimony and respondent burden
� Registries

Social and behavioral
sciences

� Total survey error (sampling and nonsampling error)
� Randomized control trials, observational studies, and natural experiments

Statistics and official
statistics

� Decision theoretic approach
� Statistical methods
� Privacy and confidentiality
� Quality improvement projects from staff within organization

2. THEMES FROM PHYSICAL AND BIOLOGICAL SCIENCES

2.1. Experimental Methods

The need to address data quality is a persistent one in the physical and biological sciences, where
scientists often seek to understand subtle effects that leave minute traces in large volumes of data.
The variety of designed data collections covers a broad range of disciplines from agronomy to
zoology. Perhaps the most recognized starting point for data quality across the sciences using
designed data collection was in the 1920s, with R.A. Fisher’s revolutionary research in experi-
mental design. Fisher’s work introduced the theory, methods, and practice of randomization and
replication (Fisher 1925). These concepts are critical for estimating error, understanding the bias
and precision of data, and assessing the quality of data in general (Williams et al. 2006).

For most scientists, three factors motivate their work on data quality: first, the need to create a
strong foundation of data from which to draw their own conclusions; second, the need to protect
their data and conclusions from the criticisms of others; and third, the need to understand the
potential flaws in data collected by others. The work of these scientists in data quality primarily
concentrates on the design and execution of experiments, including in laboratory, field, and clin-
ical settings. The key ingredients are measurement implementation, laboratory and experimental
controls, documentation, analysis, and curation of data.

Data quality in the sciences centers on testing and refining theory, starting with prioritizing
the parameters or variables to be used in the analyses. Implicit in this work and a tenet of data
quality is that data quality cannot be thought of independently from the data user (Chapman
2005). Training in scientific methods provides practical solutions for theory development, such
as methodologies, benchmarks for the most effective techniques, case studies, examples, and the
importance of statistics (Chapman 2005, Milham 2012, Becker 2001, Keller et al. 2008).
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2.2. Creation of Data Repositories

Scientists working with designed data made a major contribution to the data quality field with the
creation of data repositories and portals that allow researchers access to important scientific data.
Sharing data through repositories enhances both the quality and the value of the data through
standardized processes for curation, analysis, and quality control (Contreras & Reichman 2015).
By allowing broad access to data, these repositories encourage and support the use of previously
collected data to test and extend previous results. Data repositories are quite common in science
fields such as astronomy, genomics, and earth sciences (examples given below).

These repositories have accelerated discovery by expanding the reach of these data to
scientists who are not involved in the initial data collection and experiments. Repositories address
challenges that affect data quality through governance, interoperability across systems, and costs.
Yet barriers remain, and these barriers vary by field. For example, sharing of data may not be
possible due to competitiveness across organizations, the inability to share in-house software to
analyze the data, the need to create data standards, or the fact that access to the data may violate
privacy (Milham 2012).

One example of a successful data repository is the Sloan Digital Sky Survey (SDSS), a large-
scale astronomy survey that has been in progress since 2000 (NRC 2014). SDSS was created in
1998 to use state-of-the-art instruments and software to conduct astronomical surveys at a level of
detail not possible until then (http://www.sdss.org/). SDSS started with a commitment to create
high-quality public datasets that would allow for collaborations around the world for all scientists,
not just those with access to astronomy equipment. SDSS creates three-dimensional maps of the
universe with multicolor images of 1/3 of the sky and spectra for more than 3 million astronomical
objects. The data are calibrated, checked for quality, and made available on an annual basis to
researchers through online databases. The availability of SDSS data has supported a vast range of
scientific investigations by astronomers and other researchers around the world, demonstrating
the role for repositories that ensure high data quality leading to reproducible experiments and
findings. “Half of these achievements were among the original ‘design goals’ of the SDSS, but the
other half were either entirely unanticipated or not expected to be nearly as exciting or powerful
as they turned out to be” (Sloan Digital Sky Survey 2008, p. 7).

Another example is the sharing of cDNA microarray data through research consortia, which
has led to a common set of standards and relatively homogeneous data classes (Becker 2001). There
are many issues with the sharing of these data, which requires the transformation of biologic to
numeric data. These issues may include loss of context, such as laboratory practices followed, and
therefore lack of information about the quality of the data when they are transformed. To avoid
this loss of information, the consortium ensures that documentation is comprehensive so that
other researchers can assess the quality of the data and make comparisons with other studies using
the same data (Becker 2001). The documentation also includes information on when incorrect
assignments of sequence identity are made so that errors are not perpetuated in other studies.

A relatively new example of a data portal is the NSF-funded National Ecological Observa-
tory Network (NEON). The NEON virtual laboratory components are connected using cyber-
technology networks to create an integrated platform for regional- to continental-scale ecologi-
cal research. Scientists and engineers use NEON to conduct real-time ecological studies across
all levels of biology and all temporal and geographical scales. NEON’s infrastructure enables
hypothesis-driven basic biological and ecological research by providing raw and transformed data
in close to real time (Keller et al. 2008). NEON is in the early stages of releasing data products, with
the caveat that only limited quality control procedures, such as range checking and spike identifi-
cation, have been implemented. Subsequent releases of provisional, and then science-grade, data
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products are planned as part of their Science Design Plans for improving data quality. The plans
include using and reporting statistical and scientific measures (e.g., uncertainty, quality assurance/
quality control procedures, and sensor validations) and engineering measures (e.g., system verifi-
cation and sensor calibrations; see http://www.neonscience.org/).

2.3. Reproducibility

Reproducibility is another facet of data quality that is particularly important in all of science and
engineering, including the disciplines in the remaining sections. Many journals provide mecha-
nisms to make reproducibility possible, including PLoS, Nature, and Science (McNutt 2014). This
entails ensuring access to the computer code and datasets used to produce the results of a study. In
contrast, replication of scientific findings involves research conducted by independent researchers
using their own methods, data, and equipment that validate or confirm the findings of earlier stud-
ies. Replication is not always possible, however, so reproducibility is a minimum and necessary
standard for confirming scientific findings (Peng 2009).

Reproducibility goes well beyond validating statistical results and includes empirical, computa-
tional, ethical, and statistical analyses (Madigan & Wasserstein 2014, Stodden 2015). For example,
empirical reproducibility emphasizes documenting experiments in sufficient detail, computational
reproducibility ensures that the same results are obtained from the data and code used in the
original study, and statistical reproducibility focuses on statistical design and analysis to ensure
replication of an experiment (Stodden 2015). There are also definitions of ethical reproducibility
such as documenting the methods used in biomedical research or in social and behavioral science
research so others can reproduce algorithms used in analysis (O’Neil 2016).

Many studies have been undertaken to understand reproducibility of scientific findings and have
come to different conclusions about the findings. For example, one scientist argues that half of all
scientific discoveries are false (Ioannidis 2005), others find that a large portion of the reproduced
findings produce weaker evidence compared with the original findings (Nosek et al. 2015), and
others find that more than 4/5 of the results are true positives ( Jager & Leek 2013). Each of these
studies used different methods to reach their conclusion. Despite this controversy, the premise
underlying reproducibility is data quality in the form of good experimental design and execution,
documentation, and making scientific inputs available for reproducing the scientific work.

The data revolution within the biological and physical science world is generating massive
amounts of data from the research cited above as well as a wide range of other projects, such as
those undertaken at the Large Hadron Collider and genomics-proteomics-metabolomics research.
The methods and approaches developed to work with the data produced from this research have
led to the development of repositories that curate the data, ensure data quality and comparability
across studies, and, importantly, create trust when using the data. Curation of the data in these
repositories anticipates data users’ needs and perceptions, including the opportunity to reproduce
the research (Stvilia et al. 2015).

3. THEMES FROM ENGINEERING, COMPUTER SCIENCE,
AND BUSINESS

In the computer science, engineering, and business worlds, data quality management focuses
largely on administrative data and is driven by the need to have accurate, reliable data for daily
operations. The kinds of data traditionally discussed in this data quality literature are fundamental
to the functioning of an organization—if the data are bad, firms will lose money (Lima et al. 2007),
or defective products will be manufactured (Hazen et al. 2014).
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The advent of data quality in the engineering and business worlds traces back to the 1940s and
1950s with Edward Deming (Deming & Geoffrey 1941, Deming 1950) and Joseph Juran ( Juran
1951). Japanese companies embraced these methods and transformed their business practices using
them. Deming’s approach used statistical process control that focused on measuring inputs and
processes and thus minimized product inspections after a product was built (Reilly 1994, Neave
2000). Juran (1964) integrated quantitative and qualitative approaches to quality issues through
application of the Pareto Principle, that is, 80% of a problem is triggered by 20% of the sources.
Although Deming’s and Juran’s methods were different, their questions were not. Their emphasis
on data quality centered around the question, “What is the variation trying to tell us about a
process, about the people in the process?” (Deming 1993). Taguchi (1992) later created statistical
methods to eliminate variation by concentrating first on the design of the product and then on
the manufacturing process.

Since those beginnings, there has been an abundance of work in the literature to define data
quality and its dimensions. Redman (1992, 2004) defines high-quality data as those that are fit for
their intended uses in operations, decision-making, and planning. An alternative statement of this
is “data that are fit for use by data consumers” (Strong et al. 1997). These definitions imply that
the data meet the specification requirements, which reflect the implied needs and the degree to
which a set of data characteristics (e.g., completeness, validity, accuracy, consistency, availability,
and timeliness) fulfill requirements (ISO 1992, Abate et al. 1998). Data quality is further defined
from the perspective of the ease of use of the data (Wang & Strong 1996) with respect to the
integrity, accuracy, interpretability, and value assessed by the data user (Strong et al. 1997) and
other attributes that make the data valuable (Wang et al. 1995, O’Brien et al. 1999).

A slightly different approach is to view the information (data) from the perspective of elimi-
nating errors to improve efficiency and quality of outputs, resulting in increasing consumer sat-
isfaction. Extending the definitions to the operational realms, data quality is sometimes divided
into three types: (a) operational quality, which examines strategic and tactical work, (b) behavioral
quality, which focuses on the human aspects and everyday activities, and (c) process quality, which
looks at techniques and methods including data control tools and information systems (Ballou
et al. 1998, Lima et al. 2007).

In this vein, the term “information quality” was introduced in the late 1990s with the recognition
that just as a physical product has quality associated with it, so does information (Wang 1998). It
has been introduced as a multidimensional concept with respect to assessment, management, and
context (Ge & Helfert 2007, Lee et al. 2002) At the earliest stage of the introduction of the term,
the difference between data and information began to be debated. Most publications since the
late 1990s use the terms data quality and information quality interchangeably. Data quality has
become synonymous with fitness-for-use of the information provided to the consumers (Wang &
Strong 1996), the quality of the content in an information system (Redman 1996), or the quality
of any particular data source or product evaluated in light of its intended use (UNECE 2013). In
this manuscript, the term data quality will be used to cover both data and information quality.

3.1. Total Data Quality Management

The engineering, computer science, and business fields were closely intertwined in the creation of
the total data quality management (TDQM) approach (Redman 1992, Wang 1998). TDQM pro-
vides a general framework for understanding the improvement-through-management approach
to data quality. TDQM defines data quality challenges in four areas: process, systems, policy and
procedures, and data design (Mosley et al. 2010). The central idea is that to understand and change
data quality, information systems should be considered analogous to manufacturing systems, with
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Table 2 Hierarchical data quality dimensions

Level I Dimensions Level II Dimensions

Intrinsic Believability, accuracy, objectivity, reputation

Contextual Value-added, relevancy, timeliness, completeness, appropriate amount of data

Representational Interpretability, ease of understanding, representational consistency, concise representation

Accessibility Accessibility, access security

Source: Wang & Strong (1996).

data as the raw material and data products as the output. This analogy afforded a natural spring-
board for the adoption of principles from total quality management ( Juran & Godfrey 1999) into
the data space, as evidenced by the TDQM movement adopting the International Organization
for Standardizations’ ISO 9000 (ISO 1992), which emphasizes the quality of any product.

TDQM puts equal emphasis on all aspects of quality management, from the technical, to
administrative operations, to human resources, and it includes all stages of manufacturing from
detecting issues in quality to final customer satisfaction and legal ramifications. The data quality
management approach focuses on the process of collecting, recording, checking, editing, storing,
and accessing data, and continually improving the process at each step. In the short run, errors
are corrected. In the longer run, the ultimate goal is to prevent errors. Data quality is relative to
time as processes improve. The analogy between ISO 9000 and data quality has proven useful,
so much so that it serves as a basis for the TDQM framework ontology that includes the fol-
lowing: management responsibilities, operational and assurance costs, research and development,
production, distribution, personnel management, and legal function (Wang & Strong 1996). This
comprehensive nature of TDQM is one of its benefits.

A core feature of the TDQM process is its description of the dimensions of data quality,
which provide a transparent basis for judging the quality of a data source. These dimensions
capture multiple aspects of the systems generating the data products in a hierarchical fashion.
Table 2 presents one of the early examples of this approach (Wang & Strong 1996). Although
there are several dimensional schemes (see Batini & Scannapieco 2006 and Batini et al. 2009 for
a comprehensive review), Table 2 is presented because of its historical significance for official
statistics, which will be discussed in Section 5.

3.2. Data Management

The evolution of the field of data management overlaps significantly with data quality management
and TDQM. The concept of data quality management within the world of data management
developed in the 1980s in step with the technological ability to access stored data in a random
fashion (http://en.wikipedia.org/wiki/Data_management). Specifically, as data management
encoding process moved from the highly controlled and defined linear process of transcribing
information to tape, to a system allowing for the random updating and transformation of data
fields in a record, the need for a higher level of control over what exactly can go into a data
field (including type, size, and values) became evident (Mosley et al. 2010). Two key data quality
concepts came from these data management advances—ensuring data integrity and cleansing
legacy data. Data integrity refers to the rules and processes put in place to maintain and assure the
accuracy and consistency of a system that stores, processes, and retrieves data (Boritz 2005). Data
cleaning refers to the identification of incomplete, incorrect, inaccurate, or irrelevant parts of the
data and then replacing, modifying, or deleting this so-called dirty or coarse data (Wickham 2014,
Wu 2013).
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As the capability to store increasing amounts of data grew, so did the business motivation to
improve the quality of administrative data and thereby improve decision making, reduce costs, and
gain trust of customers (Redman 1992, 1998, 2001; Mandal 2004). High-quality data facilitates
obtaining a competitive advantage by understanding customers and being able to deliver results
quickly. Accurate, comprehensive, and timely data provide the foundation for achieving company
goals (Redman 1996, 2001). Cleaning data is a short-term solution, and preventing errors is
promoted as a permanent solution. The drawback to cleaning the data is that the process never
ends, is costly, and may allow many errors to evade detection (Redman 1996, 2001).

The 1980s and 1990s presented the opportunity to combine managing business data for
administrative purposes and accessing business data for building business analytics. Mandal
(2004) defined business data as part of the business processes. In defining data quality in the
context of statistical process control, he streamlines the Wang & Strong (1996) framework to
include product features (e.g., price, color, and strength) and the ability of the data to provide
useful information but not perceptions of quality (e.g., believability and reputation). Based on
these criteria, Mandal defines eight classes of data—wrong, noisy, irrelevant, inadequate, hard,
redundant, right, and rich data.

These characteristics correspond to the Wang & Strong (1996) categories in Table 1, except for
the needed addition of redundancy, which Mandal (2004) feels is important for process calibration
or to provide new information. He also points out the relation between factors that affect data
quality, such as measurement bias, poor repeatability, correlation, and loss of some data, to data
collection problems. Mandal recognizes that the data may be used for future applications and poses
questions that should be asked when data are used for new purposes: “Will the data be wrong?”
“Will the data be noisy?” and “Will the data be rich?”

4. THEMES FROM MEDICINE AND PUBLIC HEALTH

The use of data in the fields of medicine and public health is concerned with the broad notion of
health information: all of the data related to an individual’s or a population’s health (Cabitza &
Batini 2016). The uses of health information are broad and include, for example, clinical trials,
direct facilitation of patient care, billing and insurance, scientific and epidemiologic research, and
policy analysis.

The clinical patient health record is a longitudinal administrative record of an individual’s
health information. The health record is a set of nonstandardized data that spans multiple levels
of aggregation, from a single measurement element (blood pressure) to collections of diagnoses
and related clinical observations (Cabitza & Batini 2016). This complexity is compounded by
the high degree of human interaction involved in the production of clinical records, including
self-reported data, medical diagnosis, and other patient information. An electronic version of
this record is an electronic health record (EHR). EHR systems are collections of EHRs and are
being used to repurpose these data to support research for the personalization of health decisions
(Richesson et al. 2013, FDA 2013).

Health information quality is concerned with highly dynamic, error-prone, and complex data.
Data quality assessment of health information, historically concerned with accuracy and complete-
ness (Arts et al. 2002, Weiskopf & Weng 2013), has moved toward developing a more comprehen-
sive set of dimensions (Liaw et al. 2013, Weiskopf & Weng 2013) that align with those found in en-
gineering, computer science, and business, as discussed in Section 3. However, there remains little
consensus in terms of definitions and the broader conceptual framework (Cabitza & Batini 2016).

Two areas in which patient health records, including EHRs, are used to support research
are patient registries and clinical trials. These align with the data repositories and experimental
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methods as discussed in Section 2; however, because they are derived from patient health infor-
mation, they have some special data quality challenges worth highlighting.

4.1. Registries

Health registries, such as Breast Cancer Family Registries, are designed observational data repos-
itories used to follow specific patient populations for various purposes, such as tracking a disease
natural history, clinical and cost-effectiveness of care and medical procedures, evaluation of patient
safety, and policy value (http://epi.grants.cancer.gov/CFR/about_breast.html). Common pa-
tient populations are defined by a specific disease diagnosis or an exposure to medical procedures
or treatments, such as a diagnosis of breast cancer. Some common health information data sources
for a single registry could include patient-reported, clinician-reported, medical chart abstraction,
EHRs, institutional administrative records, and vital records (Gliklich et al. 2014).

Data quality is driven by multiple dimensions such as clinical data standardization, the existence
of common definitions of data fields, and the validity of self-reported patient conditions and
outcomes. Recognized issues (Gliklich et al. 2014) include the definitions of data fields and their
relational structure, the training of personnel related to data collection, data processing issues
(data cleaning), and curation. Furthermore, adverse event detection is a fundamental driver of
data quality. The final data structure for a registry balances parsimony (to reduce patient burden),
validity (of all data elements) and use (to reach the specific goals of the registry).

4.2. Clinical Trials

Clinical trials are designed experiments based on the principle and concepts discussed in Section 2.
Clinical trials are fundamentally dependent on data quality, which in this case includes complicated
factors such as the trial design (randomization, blinding, sample size, baseline assessment, measures
and outcomes, and recruitment), the patient population (e.g., variation in adherence by disease
state), and the data entry methods, which can span EHRs, paper-based patient charts, third-party
laboratory data, patient-reported outcomes, and direct entry by the study clinical staff (Soc. Clin.
Data Manag. 2014).

The central dimensions of data quality for clinical trials are accuracy, completeness, and con-
sistency, with particular attention to issues related to missing data in clinical populations. This can
reflect the complex, nonrandom (censored) processes such as attrition or differential follow-up for
highly marginalized populations. Some important data fields are prone to error, including dates
and times. Fraudulent data entry is a serious concern for large multisite trials (George & Buyse
2015). A best practice for ensuring data quality is the formation of a formal data quality monitoring
and surveillance system that is dynamic and responsive to potential errors and includes on-site
visits of clinical sites for the monitoring of procedures (Friedman et al. 2015).

5. THEMES FROM SOCIAL AND BEHAVIORAL SCIENCES

Social and behavioral science researchers use a complementary mix of qualitative and quantitative
approaches to collect data. The data collection often includes data that scientists collect themselves
through designed data collection or observation. They also use secondary data, designed and
administrative, from sources such as those collected by statistical agencies or other organizations.
Data quality varies across topics or subfields of social and behavioral sciences. In some cases, the
collection methodologies and measures, such as Gross Domestic Product and unemployment, are
strictly defined to follow national or international reporting standards. In other cases, the data
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sources are more idiosyncratic or problematic, such as datasets used to measure political issues on
difficult-to-measure topics, such as human rights violations, corruption, and political institutions
and regimes (http://www.nsd.uib.no/macrodataguide/quality.html). The data quality focus in
this article is on quantitative methods, with special attention given to survey and experimental
methods.

Similarly to the physical and biological sciences, the social and behavioral sciences have
adopted the use of data repositories. One well-known example is the Inter-university Consor-
tium for Political and Social Research that was established in 1962 (http://www.icpsr.umich.
edu/icpsrweb/landing.jsp). Statistical organizations also provide repositories primarily of their
own data collections, such as the Organization for Economic Development, EuroStat, the US
Census Bureau, and other national and international statistical agencies. The many benefits of
these repositories include providing a forum for building partnerships, supporting the use of mul-
tiple data sources in research, and providing access to data, especially historical data (Green &
Gutmann 2007). The repositories have also supported the ability to reproduce research (LeVeque
et al. 2012, Stodden et al. 2013, Stodden 2015).

When data are of unknown quality, social and behavioral scientists assess the validity of the data
to understand the relationship between the theory and the data collected, use exploratory analysis
to identify coverage or completeness of the data, and apply statistical methods to overcome data
quality impacts on the analyses and subsequent conclusions. Although in many cases there may
be little control over the original design and collection of the data, obtaining information about
who collected the data and why can provide insights into the quality of the data.

5.1. Survey Data Quality

The advent of large-scale surveys in the 1930s provided a new source of scientific data for quan-
titative social and behavioral science research. These surveys moved the field from systematic
observation to probability-based designed data collection (Groves 2011). Introducing probability-
based surveys immediately improved data quality and the measurement of social and behavioral
phenomena. The field of survey research has kept pace with the data quality methods from en-
gineering, computer science, and business, including the incorporation of TDQM into survey
processing during the early 1980s (Norwood 1990).

Survey research has concentrated on data quality from the perspective of the data collection
process, starting with the research questions and the level of acceptable variability in the findings.
Choices are made about the population of interest, the sampling approach (e.g., random, stratified,
or cluster), and the sample size, subject to the available budget (Dippo 1997). These choices include
how to carry out the processes as carefully as possible, how to document the processes, and how
to identify the potential data quality issues that surround these processes, including both sampling
and nonsampling errors. Data quality is improved by eliminating sources of error at each point in
the data collection and review processes.

Nonsampling error accounts for the uncertainty about the quality of the survey or census data.
This error is the sum of all nonsampling errors that occur when constructing the sampling frame,
selecting the sample, collecting and processing the data, and estimating the data for analysis.
Methods have evolved to understand the quality of survey and census data using a total survey
error approach that applies statistical and qualitative analysis to provide a holistic view of survey
error, especially nonsampling error (Biemer 2010). For example, Brooks & Bailer (1978) created
error profiles for the Current Population Survey to inform both users and producers of statistics.
Similarly, total survey error was examined in detail for the US Census Bureau’s Survey of Income
and Program Participation, a longitudinal survey with a complicated structure and response burden
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resulting in high survey attrition (King et al. 1998). Total survey error methods maximize data
quality within the constraints of budget and other resources (Biemer & Lyberg 2003).

5.2. Randomized Control Trials, Observational Studies,
and Natural Experiments

Social and behavioral scientists use a range of experimental methods, from randomized control
trials to observational studies to natural experiments. The emphasis here is on the data generated
or acquired for these studies and the approaches to issues of data quality.

Randomized control trials, similar to the experimental methods in Section 2 and clinical trials
in Section 4, are used for evaluating an intervention’s effectiveness. Randomized control trials
are used to answer a specific question and test this with treatment and control (comparison)
groups that are assigned randomly by the researcher and in which the manipulation of the treat-
ment is under the control of the researcher. Randomized control trials are common across many
fields of study, such as for testing the effectiveness of a vaccine or a fertilizer in an agricul-
tural field trial, or the efficacy of a health behavior intervention. They have been increasingly
used in social and behavioral science research for evaluating policy and public programs (Orr
1999).

Data generated from randomized control trials falls into the category of designed data col-
lection. The measurement processes range from survey instruments to behavioral and biometric
measurement. Development of the measurement process, experimental design and implementa-
tion, data collection, and documentation form the backbone of the assessment of data quality.
Rigorous standards for conducting and reporting randomized control trials have been established
and are updated routinely (http://www.consort-statement.org/consort-2010).

Researchers are aware that randomized control trials are not always possible for ethical, safety,
or other reasons. In addition, they do not explain why a policy works or what caused an im-
provement, because the environment cannot be controlled (Behn 2015). This has led to renewed
interest in observational studies (Rosenbaum 2010, NRC 2012) and natural experiments (Levitt
& List 2009) and suggests that a mixture of approaches is necessary to assess causation (Deaton
& Cartwright 2016). In both cases, the researcher simply observes behavior by evaluating existing
data. These studies are frequently augmented with additional designed data collection to capture
ethnographic and socio-demographic characteristics.

Observational studies and natural experiments are similar to randomized control trials in that
there are two groups (treatment and control) that are assigned randomly, referred to as “as-if
random” (Rosenbaum 2010, Dunning 2012). However, the manipulation of the treatment is not
under the control of the researcher, because the researcher is using already-collected data, usually
from another source. Nonetheless, these experiments have the ability to advance empirical work if
the assumption of randomness is credible, and if the data are used in a coherent model that incor-
porates behavior and additional data, such as technology or economic conditions (Rosenzweig &
Wolpin 2000, Levitt & List 2007, Rosenbaum 2010, NRC 2012). It is frequently argued that these
types of studies may be conducted at lower cost than randomized control trials because they take
advantage of available data (Dunning 2012).

The principal difference between an observational study and a natural experiment rests with
how the treatment is applied (Rosenbaum 2010, Dunning 2012). If external factors assign the
treatment, for example, changes in social insurance benefits, weather events, or genetic difference
in twins, it is considered a natural experiment. If the subjects could exercise choice in selecting the
treatment, then it would be considered an observational study, for example, pursuing educational
degree programs, taking a drug, or applying for a social benefit.
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Natural experiments and observational studies provide additional insights into data quality and
are especially relevant to this review article because they emphasize repurposing already-collected
data, so the analyst has little to no ability to control the data collection or measurement processes.
Understanding the sources of variation provides useful information about data quality (Meyer
1995). Meyer describes the need to acquire a “detailed knowledge of the theory, institutions, data
collection, and other background relevant to a topic . . . to judge the importance of these problems
for a given study” (p. 152). These dimensions can also be described using concepts from the evalu-
ation literature in terms of threats to internal and external validity (Cook et al. 1979, Meyer 1995).

� Internal validity refers to whether one can draw inferences from the results of the study.
Threats to internal validity include omitted variables and interactions, misspecification,
mismeasurement, or endogeneity of explanatory variables, selection bias, and differential
attrition of respondents from treatment or comparison groups.

� External validity involves assessing whether the effects found in an experiment are general-
izable to other situations (individuals, contexts, or outcomes).

� Context validity refers to confusion over what is cause and what is effect; for example, are
higher earnings due to educational credentials that signal ability or the actual learning that
occurred in school?

In using laboratory experimental (e.g., randomized control trials) and naturally occurring data
(e.g., natural experiments), Levitt & List (2009) argue that what is needed to describe the data-
generating process is a model of behavior and its relationships to other contexts: “Theory is the
tool that permits us to take results from one environment to predict in another, and generalizability
of laboratory evidence should be no exception” (p. 170). They conclude that combining labora-
tory analysis with a decision-making model can be designed to reduce biases and provide useful
information. In the same way as Dunning (2012), Deaton (2010), and others, Levitt & List (2009)
advocate the benefits of combining the best of laboratory-generated and naturally occurring data
in an empirical setting to measure social preferences.

Survey, observational, and experimental studies have traditionally used data consistent with the
rubric surrounding the data revolution, such as the criteria described in Table 3 used to assess data
quality. They have also used statistical criteria to assess quality and to establish the credibility of

Table 3 Brackstone’s data quality dimensions

Dimension Definition

Relevance The degree to which data inform issues of importance to the users of data. Although subjective and variable across
current and potential data users, NSOs should strive to put in place a program to meet even potentially conflicting
user needs. The degree to which this is possible, and the approach for implementation, is bounded by resource
limitations.

Accuracy The degree to which data represent the phenomena it was designed to measure. Standard statistical principles of bias,
variance, and sources of error (coverage, nonresponse, etc.) are used to measure this dimension.

Timeliness The temporal difference between the time at which the data were collected and when they become available.

Accessibility From a user’s perspective, the ease of accessing the data from an NSO. This incorporates the degree to which it is
possible to ascertain the existence of the data, the processes for access, and, in some cases, the cost.

Interpretability The degree to which the supplemental data and the metadata are useful for interpretation of the data and its uses.
This includes conceptual issues, generation and classification of variables, and data collection methods.

Coherence The extent to which data can be used with other data and over time. This captures conceptual standards,
classifications, and methods that go beyond numerical consistency.

Abbreviation: NSO, national statistics organization
Source: These definitions are paraphrased from Brackstone’s original 1999 article.
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assumptions. These criteria can be directly applied today when repurposing large administrative
datasets to study human behavior.

6. ADDITIONAL THEMES FROM STATISTICAL SCIENCES

Statistics clearly deserves its title as the science of uncertainty, especially in the field of data quality.
Statistics has always played an important role in data quality management through statistical
process control methods, visualization tools, and simulation experiments and is a fundamental
tool for all sciences. From a statistical perspective, data quality has two key components. The first
component is the design of data collection and measurement, and the second component is the
uses of the data. Statisticians assert that data quality is a relative concept and therefore the metrics
change depending on the data use (Spencer 1985).

One of the seminal works in the field originated with John Tukey in the application of ex-
ploratory data analysis to reveal patterns in data through graphical representations and multiple
perspectives on data subsets (Tukey 1962, 1977). These patterns provide insight into the data
quality as well as underlying trends and processes. Asking the right question is critical to data
quality, as Tukey stressed in one of his famous quotes: “Far better an approximate answer to the
right question, which is often vague, than an exact answer to the wrong question, which can always
be made precise” (Tukey 1962, p. 13).

Data quality has a direct impact on the ability to quantify uncertainty and the strength of the
results. Statistics also provides ways to succinctly present data through summary tables, models,
visualization methods, and forecasts, each intended to provide information but also to quantify
uncertainty. Traditionally, the statistics discipline designs data collection to minimize bias and
maximize information content, verifies the quality of the data after it is collected, and analyzes data
in a way that produces insight or information to support decision-making (Madigan & Wasserstein
2014). This tradition is being challenged as repurposed administrative and opportunity data are
being more commonly incorporated into statistical analyses.

6.1. Decision-Theoretic Approach

The decision-theoretic approach concerns the use of data in a decision framework and is the
backbone of data quality assessment in statistics. The direct relationship between data quality and
the consequences of actions derived from the use of the data was first highlighted in the literature
by Morgenstern et al. (1963). There is a desire to ensure high data quality when the importance
of the use of the data increases and the magnitude of the consequences of data error is high.
Morgenstern et al. (1963, pp. 117–18) present these ideas as hypotheses:

� Hypothesis 1. The more rudimentary the use of the data, the less quality is needed.
� Hypothesis 2. The needed data quality increases as the magnitude of the consequences of

data error increases.
� Hypothesis 3. As the probability that a decision uses data increases, the needed data quality

increases.

These trade-offs can be analyzed in a decision-theoretic model, and the conditions under which
they hold or fail can be examined (Spencer 1985).

Also of interest is the determination of data quality when data users do not make optimal choices.
Perception of data quality is as important as actual data quality. This is particularly important in
the context of repurposed data. Data that are perceived to be high quality are more likely to be
used than data that are thought to be low quality (Spencer 1985). Benefit-cost analysis provides
another mechanism to construct utility functions to represent the consequences of different levels
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of data quality, although they cannot take into account all the potential uses of the data, only the
immediate use being evaluated (Spencer 1985).

Karr et al. (2006) note that data quality is a “multi-disciplinary problem that brings together
ideas from computer science, quality control, human factors research, and the statistical sciences; in
any application, these [are] all linked by domain knowledge to the specific context of the problem”
(p. 138). And the questions they pose are similar to survey research but this time are focused on
achieving data quality (Karr et al. 2006):

� What cost is needed to achieve a specified level of data quality?
� What are the financial benefits of improved data quality?
� What are the costs of poor data quality?

For example, in agricultural field experiments, the researcher makes choices about the number
of plots, what research questions are to be answered, and the number of treatments subject to the
level of uncertainty that is acceptable, because accuracy and resources compete.

Decision-theoretic approaches bring together the underlying benefits of data quality with the
outcome that the data can be used to inform and assess decisions. Data quality not only is an
assessment of the data values but also takes into account factors such as accessibility, relevance,
timeliness, metadata, documentation, user capabilities and expectations, cost, and context-specific
domain knowledge. This is a theme across all disciplines. The fact that all aspects of data quality
are important is evident when there is lack of data quality, as demonstrated by our inability to
avert the September 11, 2001, terrorist attack because of data quality problems that prevented
availability of prompt, accurate, and relevant data from federal databases (Karr et al. 2006).

It is this decision construct that drives all of statistics to find optimal strategies. The goal is to
extrapolate this decision construct to using sources of data that were collected for other reasons and
repurposing them for new research purposes. For example, how would one adopt concepts such
as fitness-for-use, relative measures of data quality, and timeliness (Agafitei et al. 2015, Braaksma
& Zeelenberg 2015, Couper 2013)? One could weigh the tradeoffs of lower quality data with
increased timeliness in the short run and the reverse in the longer run. In a decision-theoretic
construct, one can ask, “What am I willing to give up to know this now?” The answer to this
question depends on the uses and decisions to be made. When repurposing data, these tradeoffs in
data quality can be measured along the multiple TDQM dimensions, such as timeliness, accuracy,
usefulness, and customer satisfaction.

This section ends with a cautionary note. An important aspect of data quality is the correct
use and interpretation of statistics. An example is the use of the p-value, a frequently used statis-
tical measure to assess the strength of scientific evidence. The American Statistical Association
(Wasserstein & Lazar 2016) and Baker (2016) warn that the p-value should be only one of the
many measures used to draw scientific conclusions or make policy and that the entirety of the
methods and analysis should be described. The point is made that the binary nature of true or
false associated with hypothesis testing can place too much emphasis on the p-value in making
scientific inferences if other contextual factors are not included. These factors are exactly the data
quality issues that have been repeated many times in this article including documentation of study
design, validity of assumptions for data analysis, and rigor in data collection and measurement.

6.2. Official Statistics

The federal statistical system plays an important role in providing high-quality data to inform
policymakers. Official statistics also have an important role in informing businesses and the public
about economic conditions. Official statistics have evolved from the collection of the first US
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Census of Population in 1790, to the collection of expenditure data in 1890, to development of
sample design and error measurement in the 1930s. Later in the 1980s, business data quality
practices were adopted, along with an additional focus on nonsampling error. Today, data quality
must address the integration of survey and nonsurvey data (e.g., repurposed administrative data)
into the creation of official data products. Each stage has improved data quality and introduced
new dimensions.

Official statistics and data quality have always been closely related through two interrelated
historical threads. The first thread focuses on the sources of measurement error (e.g., sampling
and nonsampling error), the culmination of which are the contemporary approaches to total survey
error (Biemer et al. 2014). The second thread emphasizes very broad notions of data quality that
came to maturity not in official statistics but in information systems, as discussed in Section 3 (e.g.,
Deming 1993, Redman 1992).

These two historical threads intersected in the 1990s, a (re)union that continues to the present
day to reflect fitness-for-use concepts from the management and industry practices [e.g., the work
of Tayi & Ballou (1998), driven in part by Brackstone’s (1999) seminal article]. Brackstone urges
that official statistics should expand the notion of data quality from a mean-squared error approach
to a more holistic approach, borrowing heavily from the TDQM process (e.g., Wang & Strong
1996). In principle, this holistic approach meant an expansion of both the dimensions on which to
judge the quality of data and the processes and institutional structures to provide assurance of data
quality. Official statistics is maturing into a comprehensive and modern approach to data quality
assurance that incorporates both the total survey error approach and the data quality management
approach (ESS 2015, Statistics Canada 2009, UK ONS 2013, Aust. Bur. Stat. 2009, Tam & Clark
2015).

Brackstone (1999) demonstrates the important influence of the TDQM approach, suggesting
six dimensions of data quality for official statistics: relevance, accuracy, timeliness, accessibility,
interpretability, and coherence. Table 3 summarizes these definitions. In addition, Brackstone
suggests a comprehensive set of institutional mechanisms for managing data quality in federal
statistical organizations, and descriptions of the manner in which data quality dimensions might
be affected by such mechanisms (e.g., corporate planning, user liaisons, dissemination). Today,
Brackstone’s work is strongly reflected in contemporary official statistical products both in terms
of the dimensions of data quality and a more end-to-end business management model (Lee &
Allen 2001; Biemer Lyberg 2003; Statistics Canada 2009; UK ONS 2013; Aust. Bur. Stat. 2009;
ESS 2015; UNECE 2013, 2015).

The federal statistical system mandate is to produce statistics that are objective, relevant, ac-
curate, and timely (NRC 2013b). But these characteristics compete with each other, and tradeoffs
have to be made among them (Norwood 1990). The release of preliminary employment estimates
that are subject to revision when the final estimates are released four months later is an example
of these tradeoffs. Statistical design is the primary emphasis of statistical agencies, with a focus
on reducing sampling and nonsampling errors. To support this, official statistics management
processes in the United States adopted industry approaches to data quality during the 1980s with
great success. This involves systematic identification of major sources of error, seeking out quality
improvement projects from staff, and taking interdisciplinary approaches to examining quality
issues (Norwood 1990).

In addressing sampling and nonsampling errors, Manski (2015) goes back to Morgenstern
et al. (1963) to highlight Morgenstern’s advocacy of providing measurement error (sampling and
nonsampling error) in federal statistics. Manski notes that federal statistical agencies sometimes
publish estimates without measures of error. Strategies for communicating the uncertainty in the
estimates are similar to defining sampling and nonsampling errors, as in Biemer (2010). Manksi
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defines nonsampling error (uncertainty) in federal statistics in three ways: (a) transitory statistical
uncertainty takes into account the release of preliminary and revised estimates, such as the release
of the Bureau of Labor Statistics preliminary monthly state employment estimates and revised
estimates four months later, (b) permanent statistical uncertainty occurs as a result of nonresponse
and inaccurate responses by respondents, and (c) conceptual uncertainty comes from not under-
standing the information derived from the official statistics or lack of clarity about the concepts
themselves, such as how poverty is measured or how data are seasonally adjusted.

In the survey world, federal statistics have focused on automated editing, probabilistic record
linkage, and implementing measurement error and survey methods to improve data quality. A
fundamental premise is that the quality of the data should depend on the use of the data (as
echoed throughout this entire article). Official statistics have adopted the data quality management
approach in two ways—through the adoption of the data quality dimensions and attributes, and
through the lens of total survey error that attempts to control sampling error and nonsampling
error, the latter benefiting from the control processes found in businesses ( Japec et al. 2015).

In the past decade, the use of external data for official statistics has garnered much interest,
mostly in reference to administrative data (see UNECE 2015). In this context, the dimensions of
data quality defined in Table 3 are deemed useful for gauging the quality of administrative data.
However, because administrative data are not in the control of a national statistical organization,
other considerations have emerged (Verschaeren 2012). An influential approach that originated
from Statistics Netherlands (Ossen et al. 2011, Daas et al. 2012, Statistics Netherlands 2012)
introduced the following three hyperdimensions of data quality, specifically for administrative
data: source, metadata, and data.

The source dimension reflects quality related to the data generator such as procedures for
access; metadata refers to the existence of and quality of documentation and knowledge provided by
the source; data refers to the quality of the data in terms of population coverage, nonresponse, and
precision, among other more technical factors (see SN-MIAD 2013 for a review). An important
research thrust has emphasized evaluation frameworks for judging the quality of external data,
specifically administrative data, at the input stage to serve as a screening mechanism against
extensive investment in external data sources of poor quality (EPA 2000, 2006; Daas et al. 2012;
Ossen et al. 2011; Iwig et al. 2013; US Census Bureau 2015).

In the current data revolution, the situation is somewhat different. Current conditions require
a wider set of data quality dimensions, including privacy, security, and complexity (UNECE
2015). In addition, the notion that data should be viewed in terms of potential new trade-offs
(timeliness versus representativeness), as increasing efficiency when combining data sources, and
as potentially generating new data products (Braaksma & Zeelenberg 2015) casts data quality as
relational among all data sources. The use of repositories may help to ensure the quality and
accessibility of these data to advance social and behavioral research (Petrakos et al. 2014). The
creation of the Evidence-Based Policy Commission to recommend the creation of a clearinghouse
for sharing administrative data at the US Census Bureau is also a historical step in this direction
(OMB 2016).

7. OPPORTUNITY DATA

Although observational data have already been mentioned in previous sections, these new sources
of data warrant additional discussion. The data streams that result from opportunity data, such
as social media, open the opportunity to capture observations while individuals are in the act of
behaving. Unlike studies using survey data, there is no researcher control over the process of data
collection. These traditional measurement instruments gather activity data every ten years, as in
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the US Census or through self-reported survey and interview data in daily, weekly, or monthly
time frames. Opportunity data may give social scientists a look into levels of behavior that they
have never before been able to observe (NRC 2012, Keller & Shipp 2017). Many of the data quality
challenges identified in previous sections apply here, but because the data can be so massive and
unstructured, the solutions may be different in both degree and kind.

The data quality issues associated with opportunity data include lack of transparency and
reliability. For example, privately provided and owned data, such as Google searches, web portals,
and sensor data, are not often saved at fixed intervals of time, and their underlying algorithms
are not publicly available. Importantly from a statistical perspective, their representativeness and
error structures are not known.

7.1. Social Media

Social media includes blogs, social networking websites, wikis, social bookmarking or folk-
sonomies, and online media sharing. Social media is grouped into categories based on their
functionalities: blogging, media sharing, micro blogging, social bookmarking, social friendship
networks, social news, and wikis. Each category can be expected to provide a different form of data
requiring different procedures to assure data quality. The enormity of the information that prop-
agates through these communities presents an opportunity for harnessing the data into predictive
analyses that touch on topics as diverse as movie box-office revenue (Asur & Huberman 2010),
political elections (Tumasjan et al. 2010), civil unrest events (Chen & Neill, 2014, Ramakrishnan
et al. 2014, Korkmaz et al. 2016), the stock market (Bollen et al. 2011, Zhang et al. 2011), flu trends
(Lampos et al. 2010, Culotta 2010), housing market fluctuations (Wu & Brynjolfsson 2009), and
even earthquakes (Sakaki et al. 2010). The use of social media also can inform difficult-to-measure
topics such as unemployment rates (Ettredge et al. 2005), inflation (Guzman 2011), consumer
sentiments (Choi & Varian 2012), consumer price indices (Cavallo 2015), and housing prices and
sales (Wu 2013). Goel et al. (2010) provide a useful survey of work in this area and describe some
of the limitations of web search data.

Data quality issues with social media arise for several reasons: Not everyone in a population
of interest is present on social media, the degree of activity varies per user, not all users can
be identified, and the collection of social media content created by an individual is selective.
Unsophisticated collection and analysis of social media messages (e.g., without using additional
sources of information) will be wrought with issues of representativeness and systematic error
and/or bias (Daas et al. 2012).

Other data quality challenges associated with social media include spam, colloquial usage and in-
tentional misspelling, lack of contextual relevance, and freshness of information. To address these
challenges, especially to identify and filter spam content, supervised machine learning techniques
with graph-centric (e.g., Kamaliha et al. 2008, Zhu et al. 2008) and content-centric approaches
(e.g., Kolari et al. 2006, Ntoulas et al. 2006, Lin et al. 2008) have been developed.

Agarwal & Yiliyasi (2010) propose a TDQM approach to tackle the challenges in social media.
Their approach maps data quality dimensions, social media categories, social media challenges,
and data quality tools to bridge the gap between the data quality framework and its application
in addressing data quality challenges. Their TDQM methodology is an iterative and continuous
data quality monitoring and improvement process (Fisher et al. 2012). Table 4 illustrates the
relationship between social media challenges and data quality dimensions of the Wang & Strong
(1996) framework given in Table 2.

Data quality in the context of social media encompasses many challenges due to the wide
accessibility, performance, global audience, recentness, and ease of use of social media (Agarwal &
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Table 4 Mapping social media challenges and data quality dimensions

Social Media Challenges Data Quality Dimensions

Spam Accuracy, believability, reputation, value-added, relevancy

Contextual relevance Relevancy

Colloquial usage and
intentional misspelling

Accuracy, value-added

Information overload Amount of data, ease of understanding, manipulability, conciseness

Freshness of information Accuracy, believability, reputation, timeliness

Source: Adapted from Agarwal & Yiliyasi (2010).

Yiliyasi 2010). Of fundamental importance is the lack of a common theoretical basis for addressing
these challenges. However, there is some recent research to do this. Emamjome et al. (2013)
propose a conceptual model for assessing data quality in the context of social media. Here, data
quality is defined as the degree to which information is suitable for doing a specified task by a
specific user, in a certain context. Their conceptual model builds directly off the TDQM concepts
presented in Section 3. Emamjome (2014) further maps information dimensions in social media
to three types of quality definitions: (a) manufacturing-based quality to define quality of stored
information including syntax rules of media representation and language; (b) user-based quality to
include conformance to users’ cognitive and meaning system; and (c) value-based quality defined
as the fitness of information to be used for a specific user, the efforts and costs to derive the
information, and how much it contributes to organizations’ decision-making.

Research based on opportunity data is gaining in popularity, and issues surrounding the use
of these data are emerging. The initial data quality approaches are anchored on past concepts of
data quality with significant attention to fitness-for-use.

8. CONCLUSIONS

Data quality transcends all the disciplinary boundaries of science, commerce, engineering, and
governing activities. This review has revealed that, as an ever-evolving transdisciplinary under-
taking, data quality has benefited from the contributions of all disciplines. Scientific fields created
accessible repositories and methods to ensure careful documentation and preservation of data
that anticipates future data uses. Engineering and business fields introduced both statistical and
qualitative approaches and developed the concept of TDQM dimensions that other disciplines
(including national statistical organizations) have adopted. Medicine and public health bridge the
disciplines through the standardization of clinical data, refining validity measures, and minimizing
respondent burden. Social and behavioral sciences introduced and refined survey quality through
measures of sampling and nonsampling error, and embraced natural experiments and observa-
tional studies that use and repurpose large corpuses of data, including administrative data. The
decision-theoretic approach that provides the underpinnings for sound statistical practices informs
the data quality methods and approaches in each of the fields.

The ultimate data quality goal is to develop a disciplined process of identifying data sources,
preparing the data for use, and assessing the value of these sources for the intended uses. Donoho
(2015) provides a six-part framework that solidifies the future role of data quality and reproducibil-
ity of research. The first part includes the activities related to data exploration and preparation
that involve learning about the data, identifying issues with the data, and addressing the issues for
the selected variables. The second part encompasses the data representation and transformation
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activities that address the range of formats and files types, such as text, images, sensors, and tabular
data, as well as how the data are saved, and require the capability to work with all types of data.
The third part incorporates the activities related to computing with data including utilization of
multiple programming languages, such as R and Python, as well as data storage options, such as
cluster and cloud computing. Fourth are the activities concerning data visualization. The fifth part
concerns activities related to data modeling, including both generative modeling to infer proper-
ties of the underlying mechanism and predictive modeling through machine learning. The sixth
part addresses the activities associated with creating a new discipline called the Science about Data
Science, which focuses on identifying and creating a process to accelerate the science of learning
from data.

Statistical sciences are central to Science about Data Science in understanding all types of data
and the advances in their use. This may be more important than first imagined, and opportunities
exist to amplify this role. Designed data will continue to provide a statistical baseline for accuracy,
consistency, and representativeness, although at the expense of timeliness. Administrative and
opportunity data allow for earlier and deeper insights into human behavior and organizational
processes and the interactions of the two. What is different when using administrative and oppor-
tunity data is that we cannot change the collection of the data to improve its quality. What this
means is that we must be explicit in accepting larger variation in results when using these data.
Statisticians have many creative approaches for making these decisions about tradeoffs, and these
tradeoffs between data quality and data usability require conversations between the statisticians
and scientists, engineers, business people, administrators, and decision-makers across disciplines.
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