Synthetic Biology for Materials and Manufacturing

WENDY J GOODSON, PHD
ASST CHIEF SCIENTIST
MATERIALS AND MANUFACTURING DIRECTORATE
1 MAY 2019
Perspectives on synthetic biology for materials and manufacturing from where I sit

Biologist

Assistant Chief Scientist

DoD Employee
Materials Research Opportunities

• Metals
• Ceramics, glasses, composites, hybrid mat’ls
• Semiconductors, electronic materials
• Quantum materials
• Polymers, biomaterials, soft matter
• Architected metamaterials
• Materials for energy, catalysis and extreme environments
• Materials for water, sustainability, and clean technologies
• Materials for thermal management
Materials Research Opportunities

- Metals
- Ceramics, glasses, composites, hybrid mat’ls
- Semiconductors, electronic materials
- Quantum materials
- **Polymers, biomaterials, soft matter**
- Architected metamaterials
- Materials for energy, catalysis and extreme environments
- Materials for water, sustainability, and clean technologies
- Materials for thermal management

- Precision macromolecular synthesis
- Supramolecular biomaterials (peptide amphiphiles)
- Sequence controlled polymers, incl. incorporation of non-canonical amino acids
- Self-assembly
- Biopolymers (DNA, hydrogels, cellulose, actin, microtubules)
- Bacterial cells as ‘active matter’
NAS Frontiers of Materials Research: A Decadal Study (2019)

Materials Research Opportunities

- Metals
- **Ceramics**, glasses, **composites**, **hybrid mat’ls**
- Semiconductors, electronic materials
- Quantum materials
- **Polymers**, **biomaterials**, **soft matter**
- **Architected metamaterials**
- **Materials for energy, catalysis and extreme Environments**
- **Materials for water, sustainability, and clean technologies**
- **Materials for thermal management**

Synthetic biology can provide breakthroughs in many of these areas now...esp if they rely on organic small molecules
Materials Research Opportunities

• Metals
• **Ceramics**, glasses, **composites**, hybrid mat’ls
• Semiconductors, electronic materials
• Quantum materials
• **Polymers**, biomaterials, soft matter
• **Architected metamaterials**
• Materials for energy, catalysis and extreme Environments
• Materials for water, sustainability, and clean technologies
• Materials for thermal management

Synthetic biology can provide breakthroughs in many of these areas now...esp if they rely on organic small molecules

There is also great potential for SynBio to impact more complex all-bio or bio-inorganic systems
Materials Research Opportunities

- Metals
- Ceramics, glasses, composites, hybrid materials
- Semiconductors, electronic materials
- Quantum materials
- Polymers, biomaterials, soft matter
- Architected metamaterials
- Materials for energy, catalysis and extreme environments
- Materials for water, sustainability, and clean technologies
- Materials for thermal management

SynBio enables more sustainable manufacturing
- ‘Green’ catalysis
- Energy efficiencies
- Raw materials/feedstocks
- Recyclability
Goals for Today

1. Convey the art of the possible—today
2. Discuss what’ll be possible in 2-10 years
3. Discuss why and when synthetic biology should be considered as a tool in the materials science and manufacturing toolbox
4. Discuss how to achieve more cross-pollination between SynBio and MatSci communities
5. Understand the policy and security landscapes around SynBio
Bio ‘X’ Emphasis Areas, late 1990s

Biomimetic and Bioinspired
- Mimic in non-biological systems

Biotemplating Interface Control
- Use biological molecules to pattern, order, create composites

Biomanufacturing (Biopolymers)
- Use biological molecules directly

Moth eye structures

Diatoms

Silk

All enabled by studying biological systems
What’s new? Massive decreases in costs of reading and writing DNA

Cost of DNA sequencing

![Cost per Raw Megabase of DNA Sequence](image)

Bioinformatics Explosion
Enormous ‘parts’ library
What’s new? Massive decreases in costs of reading and writing DNA

Cost of DNA sequencing

Cost of DNA synthesis

Bioinformatics Explosion
Enormous ‘parts’ library

Ability to ‘order up’ anything you want to try
What’s new? Massive decreases in costs of reading and writing DNA

Cost of DNA sequencing

Cost of DNA synthesis

Bioinformatics Explosion
Enormous ‘parts’ library

Ability to ‘order up’ anything you want to try

Enhanced creativity, opportunity space, and throughput
contributing directly to advent of ‘synthetic biology’

• The application of **engineering principles** towards the construction of novel biological systems

• Integration of biological and chemical engineering, bioinformatics, computation, metabolic engineering, systems and developmental biology

• Distillation of biology into ‘parts’, ‘circuits’, systems
How does this help?

1. Choose right organism for the job (i.e., ‘chassis’)
2. Build ‘bottom up’ or ‘top down’
3. Tune timing and thus hierarchy
4. Mix/Match to optimize:
 - bio from diverse systems
 - chem + bio
 - non-canonical amino acids, nucleotides
5. Design-Build-Test-Learn
Bio ‘X’ version 2.0: SynBio expands the art of the possible

Biomimetic and Bioinspired
- Mimic in non-biological systems
 - Moth eye structures

Biotemplating (Interface Control)
- Use biological molecules to pattern, order, create composites
 - Diatoms

Biomanufacturing (Biopolymers)
- Use biological molecules directly
 - Silk

Specialty small molecules
- High throughput monomers, nanoparticles
 - *Cell-free or cell-based, ex vivo*

Hierarchically designed, and/or composite mat’ls
- Cellular additive manufacturing
 - *Make and die—time and place*

Living materials
- Cellular responsive additive mfg
 - *Make, live, respond*
Small molecule production is not really new

…we’re just better at it now

“Susterra”
1,3-propanediol
“Bioreachables”
Structural and Engineered Living Materials

Jin and Riedel-Kruse, 2018
Future solutions can come from anywhere…
There are many ways to get there from here…

Alloys
Ceramics
(Bio)Organic polymers
Composites

Chemical synthesis
Enzymatic (Bio)synthesis
Vapor deposition
Sintering
Spinning
Patterned
3D printing/additive mfg
What does biology bring to the table?

- Novel chemistries, ‘R’ groups
- Chiralities
- Templating
- Self-assembly

- Timing
- Scaling
- Purification
- ‘Green’ synthesis

- Multifunctionality
- Defect tolerance
Often less a question of *can* we make it but *why should we*? What advantages does Bio provide?
Fundamental research is still required

- Biotic/abiotic interfaces
- Microbial physiology
- Microbial community ecology
- Developmental biology
- Structure-property relationships
- Self-assembly
- Hierarchy
- Multiscale modeling and characterization
- 2D and 3D processing techniques

Synthetic Biology Catalyst

Better design
More variants to test
Higher throughput
Machine learning
= Accelerated development

New Materials Synthesis, Processing, and Functionality

- Specialty bulk materials
- Hierarchically designed & composite material
- Living materials

- Stimulus
- Stimulus

- Fundamental research is still required
In addition, large gains could be made by increasing dialogue between the communities

Bio to Materials Science
- Standardization of data collection and management
- High throughput analysis, characterization
- Opening up the palette of novel chemistries

Materials Science to Bio
- Understanding of ‘when and why bio’?
- Understanding tolerances for impurities
Goals for Today

1. Convey the art of the possible—*today*
2. Discuss what’ll be possible *in 2-10 years*
3. Discuss *why and when* synthetic biology should be considered as a tool in the materials science and manufacturing toolbox
4. Discuss how to achieve more cross-pollination between communities
5. Understand the policy and security landscapes around synthetic biology
Questions?
Why Bio?

Self-assembly
Hierarchy
Multifunctionality
Defect tolerance

Structural Materials
(adhesives, fibers, gels, composites)

Electronic Effect Photonic Effect

Function

Structure

Functional Materials
(optical, electronic, sensing)

Multifunctional Materials
(sense-and-respond)