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What is Direct Air Capture?

Using Chemicals to Remove CO, from the air

Pros:
e Has the potential to be an NET
 Method for dealing with difficult to avoid emissions
e Does not require arable land

Cons:

e Energy inputs are significant
e Land footprint is large

DAC Should Not Replace Mitigation




= 50% capture; 80% purity

19 : .
Closer Look at the Energy Difectair capture . _ 750 capture; 80% puriy
2 eaaas 90% capture; 80% purity
17 / — 50% capture; 95% purity
 Minimum work for separation — — 75% capture; 95% purity

----- 90% capture; 95% purity
— 50% capture; 99% purity
= == 75% capture; 99% purity
----- 90% capture; 99% purity

may be derived from combined 1t 15

and 2"9 laws of thermodynamics

e Energy scales with dilution — 3x BT

more energy to do DAC vs
combustion exhaust

Natural gas combustion
« 6-9 kJ/mol CO,

e 300x greater contactor area for
CO, separation to do DAC vs
combustion exhaust

Coal combustion
N _5-7 kJ/mol CO,

Minimum work (kJ/mol CO, captured)
|

.. Coal gasification
= " -._ 1-4kJ/mol CO,

“"t.:

e High purity is desired for transport

0 005 0.1 015 02 025 03 035 04

Reference: Wilcox, Carbon Capture, 2012 CO, concentration



What Does Scrubbing CO, from a Point Source Look Like?
First patent filed by Bottoms in 1930!
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115 Meters Tall Absorber




Direct Air Capture Contactor Looks Very Different
need 10 of these to capture 1 MtCO, per year




Today’s technologies are based on liquids or solid materials
containing CO,-grabbing chemicals

Solvents rely on structured packing with solvent
flow over the packing

Solid sorbents rely on a honey-comb structure
with chemicals (amines) bound to structure




To Design a DAC Plant, you First Need to Design a Power Plant

 No matter which approach you choose, the heat required to recycle the
material is dominant over the electricity required to drive the fans,

* To capture 1 MtCO,/yr from air requires 300-500 MW of power!

* Choosing which energy resource to fuel the DAC plant will dictate the
net CO, removed



Cost Differences
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Cost Differences
OPEX
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To drive costs down will require some technological advancement, but more
will be needed

Investing as a global society is essential — whether through regulation or
subsidies or taxes on carbon.

In 1966 the US invested about 1/2% of gross domestic product in the Apollo
Program — today this is ~ $100 billion

... SO let’s say we invest 20% in DAC, knowing its one front in our fight against
climate change



Where does a $20 billion investment and a cost reduction down to
$100/tCO, get us?

This would mean building 200 synthetic forests each capturing 1 MtCO,
per year. This is equivalent to nearly 5% of our annual emissions.

Determining the land area required depends on what energy system you
decide on for fueling your DAC plant.



Consider 2 Different Energy System Scenarios
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Consider 2 Different Energy System Scenarios

2. Solar Electricity + H,-Fired Kiln
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Natural gas and solar land requirements
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Capturing 200 million tonnes from the air?

Powered by natural gas with CCS? Powered by solar and H,?

200 DAC plants = 1/2 land area of The size of Maryland
Washington D.C. roughly 37 mi? roughly 12,400 mi?




DAC Siting Low-Carbon Available Thermal Energy

Results of a Recent Study from Our Team

» Regardless of the technology (solvent or sorbent), the energy distribution is 80% thermal and 20% electric for
DAC

e Solid sorbent selected due to low-quality of thermal energy required (i.e., 100 °C)

e Thermal we’re considering from 3 pathways:
e Geothermal — “waste” heat
* Nuclear — 5% slipstream of steam
e Stranded natural gas - avoided flare gas

e Beneficial Reuse: EOR and beverage bottling industry

e Geologic Storage: USGS basin-level storage

e Ultimate Goal: delivered cost of compressed CO, at 99% purity in light of 45Q
e Electricity prices and carbon intensity based upon grid mix of a given DAC site

e Careful of Definitions:
e Cost of Capture — “break-even cost”
e Cost of CO, Avoided — considering fossil-based energy to fuel DAC
e Cost of CO, Produced — combining point-source capture with DAC
e Cost of Net Removed CO, — true cost from climate’s perspective

Reference: Wilcox et al., under review PNAS (2019)



Geological Sequestration — satisfying the 45Q criteria, i.e., > 100 ktCO,/yr
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Co-located w/ geothermal and stranded NG
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Costs of Geologic Storage
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What Would it Take for CO,-EOR to be Negative?

_— Production Well €O,
* CO,-EOR started in 1972 o CO; Injection Well
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operational choices,
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Advanced EOR: 0.94 tCO, produced/tCO2 sequestered
Max Storage EQR: 0.66 tCO, produced/tC02 sequestered

Reference: 2015, IEA Report, Storing CO, through Enhanced Oil Recovery



e Excess CO, from the
separation facility is
injected into an
underlying saline aquifer

* Note that all approaches
are negative in the early
years of the project.

a) Continuous gas injection
b) Water curtain injection
c) Water alternating gas

d) Hybrid WAG + WCI
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IEA’s Maximum Storage EOR+
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Reduce Carbon Sources Enhance Carbon Sinks

Energy efficiency Negative emissions technologies:

Low or zero-carbon fuel sources
Conventional CCS Coastal blue carbon

Terrestrial carbon

removal and

sequestration

Bioenergy with carbon .

capture and ’@
sequestration (BECCS)

Direct air capture @

Carbon mineralization
Geologic
sequestration
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Reference: Pacala et al., NASEM, 2019



Questions?

More Information:

https://users.wpi.edu/~jlwilcox/

https://www.ted.com/talks/jennifer wilcox a new way to remove co2 from the atmosphere

https://www.npr.org/2019/06/07/730392105/jennifer-wilcox-how-can-we-remove-co2-from-the-
atmosphere-will-we-do-it-in-time

http://nas-sites.org/dels/studies/cdr/



https://users.wpi.edu/%7Ejlwilcox/
https://www.ted.com/talks/jennifer_wilcox_a_new_way_to_remove_co2_from_the_atmosphere
https://www.npr.org/2019/06/07/730392105/jennifer-wilcox-how-can-we-remove-co2-from-the-atmosphere-will-we-do-it-in-time
http://nas-sites.org/dels/studies/cdr/

Study will be published in New Journal on NETs — Open-Access
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Today DAC is Taking Place at the Kiloton Scale
How Might we Get to a Gigaton by Mid Century?

Cumulative CO,Removal - DAC [ki]

100000

1000

100

10

10 100 1000 10000
‘h-‘._‘_:
10000 } Treg
E '
(;ﬁ‘ ......
> R
0
O . *1a - e
B o ), A“ 5
T .0
= 1000 | O
= . ] ) el
e R W)
O GT RD&D 0O DAC RD&D
® GT commercial-scale B DAC commercial-scale
A Wind B DAC - wind model
PV DAC - PV model
100 . . .
10 100 1000 10000

Cumulative Installed [MW)]

Reference: Wilcox et al., under review PNAS (2019)

100000

Capture Cost - DAC [$/tCO,]

Technology Experience Rate
(%)

PV 25

Wind 18

Gas Turbine RD&D 23

Gas Turbine -commercial 12
DAC — learning by doing

RD&D 23

commercial 9

DAC — wind model 17

DAC — solar model 25

* PV Model - $100 by 2040 — 40 MT — 1 Gt by 2050
* Wind Model - $100 by 2050 — 20 MT - 1 Gt 2070
e Conventional - $100 by 2060 — 100 MT - 1 Gt 2070



OPT 1 Spacing DAC Contactors and Indirect Land Use

tropospheric mixing region




OPT 2 Spacing DAC Contactors and Indirect Land Use
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Comparison to Point Source Capture (amine scrubbing)

SCPC Power Plant NGCC Power Plant

O OPEX
m CAPEX

O0OPEX
m CAPEX

Reference: Integrated Environmental Control Module, developed by Ed Rubin
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