Policy approaches to deep decarbonization in the United States

Professor Kelly Sims Gallagher
• Uncertainty and consequences of delay
• Sectoral versus economy-wide approaches
• Sequencing and growth
• Interaction of policies
 • Complementary versus undermining effects
 • Synergies between mitigation and adaptation
Typology of climate mitigation policies

REGULATORY/ADMINISTRATIVE
- Performance standards
- Command and control
- Permitting
- Siting
- Deregulation
- Target allocation or assignment

INFORMATIVE
- Labeling
- Public education campaigns
- Required disclosures

DIPLOMATIC
- Dialogues or forums
- Treaties
- International negotiations

MARKET-BASED
- Gov't procurement
- Public-private partnerships
- Market-formation policies

INNOVATION
- Investments in R&D

FISCAL
- Taxes on fossil fuels
- Tax credits
- Feed-in tariffs
- Caps and-trade
- Carbon taxes
- Loans
- Loan guarantees
- Fees
- Rebates

OTHER
- Industrial Sectoral
- Voluntary Pilot programs
- Infrastructure
- Joint R&D or science projects

Joint R&D or science projects

Emissions budgeting

Consequences of delay

Global CO$_2$ scenarios for approximately 50% chance of not exceeding 2°C

All scenario pathways ((a) C+4, (b) C+5, (c) C+6) are for the same cumulative twenty-first century CO$_2$ budget of 1578 GtCO2 (blue line, Annex 1; red line, non-Annex 1; dotted line, global including deforestation).

Kevin Anderson and Alice Bows 2011, “Beyond ‘dangerous’ climate change: emission scenarios for a new world” The Royal Society

https://doi.org/10.1098/rsta.2010.0290
UK Carbon Budgets for 2008-2032

<table>
<thead>
<tr>
<th>Budget</th>
<th>Carbon budget level</th>
<th>Reduction below 1990 levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st carbon budget (2008 to 2012)</td>
<td>3,018 MtCO2e</td>
<td>25%</td>
</tr>
<tr>
<td>2nd carbon budget (2013 to 2017)</td>
<td>2,782 MtCO2e</td>
<td>31%</td>
</tr>
<tr>
<td>3rd carbon budget (2018 to 2022)</td>
<td>2,544 MtCO2e</td>
<td>37% by 2020</td>
</tr>
<tr>
<td>4th carbon budget (2023 to 2027)</td>
<td>1,950 MtCO2e</td>
<td>51% by 2025</td>
</tr>
<tr>
<td>5th carbon budget (2028 to 2032)</td>
<td>1,725 MtCO2e</td>
<td>57% by 2030</td>
</tr>
</tbody>
</table>

Consequences of policy uncertainty

- Continued investment in high carbon technology and infrastructure, which can contribute to carbon lock-in and/or stranded assets
- Higher interest rates for low-carbon investments because of perceived financial risk due to policy instability
- Loss of technological leadership, knowledge depreciation
- Loss of green manufacturing capacity and related jobs
- Higher costs if steep emissions reductions are later needed as a consequence of continued delay
- Higher costs due to ad hoc, redundant, contradictory, or fragmented policy approaches that arise due to policy vacuum
Percent change:

1990–2017

- ▲ 22.2%
- ▼ 5.2%
- ▼ 11.8%
- ▲ 8.8%
- ▼ 2.6%
- ▼ 4.0%

Total: ▲ 1.3%

Sectoral vs. economy-wide approaches

Policy sequencing

Fig. 1 | California and the EU have moved through three stages in developing low-carbon policies. First, they have adopted green innovation and industrial policies. Most of the world is currently at this stage. These initial policies have helped grow political support coalitions and reduce the cost of low-carbon technologies (green arrows indicate growth, red arrows indicate decline). Second, they have developed carbon-pricing policies. China, for example, is currently at this stage of low-carbon policy development. Third, California and the EU have reformed their pricing policies with an eye toward increasing their environmental effectiveness, responding to growing political support and continuing drops in the cost of low-carbon technologies. Regional Greenhouse Gas Initiative (RGGI) states have also gone through this third stage of ratcheting up.

Table 1 | Policy sequencing in power and transport sectors (numbers of jurisdictions)

<table>
<thead>
<tr>
<th></th>
<th>Green industrial policy</th>
<th>Carbon pricing</th>
<th>Green industrial policy preceding carbon pricing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>132</td>
<td>52</td>
<td>65–86%</td>
</tr>
<tr>
<td>Transport</td>
<td>99</td>
<td>12</td>
<td>58–95%</td>
</tr>
</tbody>
</table>

Green industrial policy: in the power sector, this includes renewable portfolio standards or feed-in tariffs; in the transport sector, this includes biofuel mandates or electric vehicle incentives. In terms of carbon pricing, this includes carbon tax or cap-and-trade systems. Data: authors own. *Lower bound of range calculates ratio based on existing carbon-pricing systems; upper bound accounts for potential of carbon pricing to appear in jurisdictions that currently have adopted green industrial policies.

Green industrialization as policy opportunity:

US GDP versus energy-related CO₂ emissions
Approaches to ratcheting up climate policy over time

Market-based approaches and getting the prices right – but so far the politically-achievable carbon prices have had little impact on emissions.

Politically-achievable incremental progress? The hardest part is to start. A $1/ton carbon tax, for example.

Hidden prices (e.g. regulatory approaches)? The main approach used federally in the United States despite stated preference for market-based approaches.

Fiscal approaches? Very effective at mobilizing finance and technology deployment (feed-in tariffs, auctions)

Green industrial and innovation policies? Good at cost reduction and political buy-in but more effective when matched with market-formation policies.

Interaction of policies: complementary versus undermining approaches

Synergies among mitigation, adaptation, and economic growth

Sources:
https://www.solarnovus.com/hurricane-sandy-puts-solar-installation-to-the-test_N6467.html; personal photo;
https://www.flickr.com/photos/plant-trees/2242389620/;
https://inhabitat.com/lucasfilms-new-singapore-headquarters-is-a-giant-glass-sandcrawler/#ixzz3AOvRtaY3&i
Thanks

Professor Kelly Sims Gallagher

www.climatepolicylab.org
Kelly.Gallagher@tufts.edu
@kellysgallagher