Hydrogen for Transport

Infrastructure Pathway to Parity and Below

Jason Munster, PhD
Product Strategy, Shell Hydrogen
The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this presentation “Shell”, “Shell Group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to Royal Dutch Shell plc and its subsidiaries in general or to those who work for them. These terms are also used where no useful purpose is served by identifying the particular entity or entities. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to entities over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to as “joint ventures” and “joint operations”, respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in an entity or unincorporated joint arrangement, after exclusion of all third-party interest.

This presentation contains forward-looking statements (within the meaning of the U.S. Private Securities Litigation Reform Act of 1995) concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “aim”, “ambition”, “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. No assurance is provided that future dividend payments will match or exceed previous dividend payments. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s Form 20-F for the year ended December 31, 2018 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward-looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 6-26-2019. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that the United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov.
Infrastructure Pathway to Parity - Overview

- Light-Duty (LDV) and Heavy Duty (HD) Vehicle Cost Reduction Roadmap, what has changed, key differences
- Vehicle Types: Parity Progression with Volume and Size
- Technology Advances, Liquid Hydrogen, and Gaseous Hydrogen use cases
- Heavy Duty as an Early Driver for Cost Reduction
Heavy Duty and Light Duty: Divergent Cost Reduction Triggers

50+ Stations

35 MPa
5 Stations, 2TPD each

$11.72

$1.48
$0.58
$1.16
$0.69

$9.41

$0.37

Green at $0.05/kwh

Parity with gasoline (35 MPG @ 3.50 $/gal)

Pathways to Parity

<table>
<thead>
<tr>
<th></th>
<th>LDV</th>
<th>HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 (1-5 years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50+ stations in a large region (California)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 MPa Fleets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-cost renewables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>County-scale density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large stations (75+ buses or 100+ delivery vehicles each)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-15 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Improvements – compressors, tube trailers, construction, liquefiers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greater density of HRS, 70MPa, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipelines from low-cost renewables, better H₂ production tech, 60-65+% efficient fuel cells</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright of Shell International B.V.
Why FCEV for HD? Infrastructure, Scaling, and Power Demand of EVs

- The peak load at the substation level is challenged by a B-EV fleet
- Larger scale means FC is better able to handle fueling with a lower TCO
- Volt charge rate 3.3 kw, truck 15 kw, bus 60kw (4-6 hours to full charge for bus)
Demand Will Drive Infrastructure Changes

- Increasing volumes of sales will drive cost-reducing infrastructure changes
- Progressively lower cost levels will open the market for larger volume and scale opportunities, further reducing costs
- Many Standards and fueling for heavy duty systems still need to be define
- The heaviest duty and longest haul vehicles will very likely need LH₂
LH₂ for Heaviest Use Cases, GH₂ for LDV and Distribution

GH₂ vs LH₂ Distribution: 15 Year NPV Break-Even

LH₂ vs. GH₂ – Key Differences in 15 Year NPV Costs

Economic Limits: There are limits to economic overland shipment of H₂ with either GH₂ or LH₂.

LH₂ - More Capital Intensive: Liquefaction is capital intensive, and the process does not get great returns to scale.

GH₂ for Regional Production and Distribution: Low-cost H₂ will require <$1/kg distribution costs. With current technology, the $1/kg isoline for delivery distance is always underneath the break-even cost for considering LH₂ vs GH₂.

LH₂ is necessary for several large use cases

Next Steps for Technologies: LH₂: Lower cost liquefaction facilities (50%+ reduction); more efficient liquefaction (kWh/kg). GH₂: Lower cost carbon fiber for tube trailers; compressors that are less expensive, more reliable, and more efficient (kWh/kg).
Major Liquid Use Cases

Marine
Ferries & Cruise Ships
Electrically driven, space limited, massive power requirements (50 tons per day)

Mining
Very Large Mining Equipment
Tons of use per day per rig, often remote and off-grid

Intercontinental Market Arbitrage
All Use Cases
Low-cost energy availability in other countries, LH2 to export energy

June 2019
Current Opportunities: Scale and Demand Drive Cost Reduction

70 MPa Pilot

Same, but 35 MPa

10 TPD Hub-and-Spoke

Renewable Electrolysis
SMR Grey
With Contingency
SMR w/ RNG

35 MPa Use Case

- Pressure to Reduce Cost: 35 MPa in use cases with <250 miles per day range allows for down-sizing of expensive and less reliable Hydrogen Refueling Station equipment
- Centralize Production: Returns to scale with construction and locating near low-cost inputs reduce cost
- Increase Station Size: Returns to scale on construction and distribution reduce cost
Cost Reduction and Technology with Scaling

DEMAND AND SCALE UNLOCK COST REDUCTIONS

Demand drives costs lower through each fueling paradigm – 70 MPa car, 35 MPa truck, 50-70 MPa truck, LH₂ vessels

Larger vehicles drive exponentially increasing demand, driving costs down further

MEDIUM TERM COST REDUCTIONS WITH FIT-TO-CASE SOLUTIONS

Tailoring heavy-duty refueling systems to specific use cases can provide low-cost H₂ now for specific segments

Cost reductions in HRS and distribution allow for lower-cost refueling paradigms for these segments

Industry consortiums contribute to system cost reductions

LONG TERM EFFICIENCY GAINS

Increasing numbers of stations will reduce costs for components, driving down overall costs

Regional H₂ use rates will dictate emplacement of pipelines to drastically lower future transport costs
Summary

- Refueling station scale and density of refuelling are both necessary to achieve lower costs.
- Centralized production and next-gen gaseous distribution are both pathways to reduce cost in the next decade.
- High volumes of H$_2$ production from heavy duty applications, particularly return-to-base applications like buses, drayage trucks, and fleet vehicles, will drive down hydrogen production costs, reducing the entire cost stack.
- Liquid H$_2$ will be necessary for specific use cases and for some the largest H$_2$ use cases.
Questions and Answers