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My research

Develop cutting-edge machine learning and Al theory, methods, algorithms and
systems to deliver effective personalized healthcare

1) support clinical decisions for the patient at hand

2) understand the basis of health and disease

3) inform and improve clinical pathways, better utilize resources & reduce costs
4) transform public health and policy

Genome, Transcriptome and Proteome “Clinome”, Patient Experience, Risk Factors etc



Goal: deliver decision support for the patient at hand

Cancer - a useful exemplar

« Common, costly and important group of disorders

« Varied aetiologies, presentations and long-term outcomes
 Complex management affecting multiple clinical systems
« Care delivered through multiple organisations

* Leads in personalised medicine therapeutics & genotype-phenotype
correlation



§§ ML-AIM PREDICTOR BETA

ML-AIM Predictor (Beta)

BREAST CANCER COLON CANCER LUNG CANCER

L
ML-AIM Predictor for Risk Prognosis

Making more informed and dynamic estimates about c: survival .
by learning on diagnosis da%a and patient events time

TRY THE DEMO

PROSTATE CANCER

HOW IT WORKS

CREDITS
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ML-AIM PREDICTOR BE™4 BREAST CANCER COLON CANCER LUNG CANCER PROSTATE CANCER HOW IT WORKS CREDITS

Breast Cancer

Input Diagnosis Information Input Pathology Information or, Upload Pathology Report
Age at Diagnosis Tumor Size Vascular Invasion Distance to Resection
ER Status HER2 Status PT PN
pa
Cancer Stage Nodes Inv 1 Ki6Z

Select a patient

Tumor Grade Detected

Time since Initial Diagnosis (Months)

0
Create New Patient...
Mortality Risk over Time Patient 1
Patient 2
v Patie
0.9
0.8 Patient 4

ity



ML-AIM Predictor (Beta) ar

ML-AIM PREDICTOR BE™4 BREAST CANCER COLON CANCER LUNG CANCER PROSTATE CANCER HOW IT WORKS CREDITS
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Tumor Grade Detected by Screening
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ML-AIM Predictor (Beta)

ML-AIM PREDICTOR BET4

Input Pathology Information

Vascular Invasion Distance to Resection

N 7
PT PN
X pn0
PR Ki67
N X
BSB E-cadherin
X X

Breast Cancer

or, Upload Pathology Report

IMIATKITY axmiary wil. Al

approximately 12 o'clock position needle tract
with surrounding fat

is identified. There is some fibrosis and this
area extends up to

around 60mm and lies 15mm from the deep
margin, 20mm from superior

and 60mm from inferior margin.

Part C - labelled ""Left sentinel node #2*".

A lvmnh nada with euirennindinn fat maacurine -~

Drag-and-Drop or Select File

BREAST CANCER COLON CANCER

LUNG CANCER

PROSTATE CANCER HOW IT WORKS

CREDITS

+

Mortality Risk over Time

== Historical One-Year Risk *+®*-* Estimated Forward Risk

1.0
0.9
0.8

ity

Patient 3

Individualized Feature Importance

« Prediction Horizons —

Age

Tumor Size

w

1

0.8

Upload a
pathology
report
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ML-AIM PREDICTOR BE™4 BREAST CANCER COLON CANCER LUNG CANCER PROSTATE CANCER HOW IT WORKS CREDITS
Age at Diagnosis Tumor Size Vascular Invasion Distance to Resection MATKING axmary wil. At
approximately 12 o'clock position needle tract
60 . 41 . N 7 with surrounding fat
is identified. There is some fibrosis and this
area extends up to
ER Status HER2 Status PT PN around 60mm and lies 15mm from the deep
margin, 20mm from superior
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Part C - labelled "“Left sentinel node #2*".
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Time since Initial Diagnosis (Months)
Patient 3 v
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ML-AIM PRED
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HER2 Status
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PROSTATE CANCER
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Estimated Probability

Status
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ML-AIM Predictor (Beta)
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ML-AIM PREDICTOR BET4

BREAST CANCER COLON CANCER LUNG CANCER

Estimated Probability

Events (Occurrences)

50
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Event 15 - Other tumor diagnosis

Event 16 - CT from AV_TREATMENT

Event 17 - RT from AV_TREATMENT

Event 18 - Surgery from AV_TREATMENT
Event 19 - Major Surgery from AV_TREATM
Event 20 - SACT cycle event

Event 21 - SACT drug event

Event 22 - Hormone from AV_TREATMENT
Event 23 - Brachy from AV_TREATMENT
Event 24 - Biopsy

Event 25 - Endoscopy from COSD

Event 26 - COSD Pathology

M Cunnt 27 - DTN ctavk naind

ADD NEW EVENT

PROSTATE CANCER

HOW IT WORKS

CREDITS

15



ML-AIM PREDICTOR BT

Time since Initial Diagnosis (Months)

Mortality Risk over Time

=== Historical One-Year Risk ***-* Estimated Forward Risk
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BREAST CANCER COLON CANCER LUNG CANCER
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ML-AIM PREDICTOR BE™ BREAST CANCER COLON CANCER LUNG CANCER PROSTATE CANCER HOW IT WORKS CREDITS
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ML-AIM PREDICTOR 5™ BREAST CANCER COLON CANCER LUNG CANCER PROSTATE CANCER HOW IT WORKS CREDITS
i HER2 Status
8 s
® tage 0.4
.g Nodes
a Involved
Grade 02
Detected by
Screening
36 42 48 60 66 72 78 84 1y 2yr  3yr  4yr
Tim§gsince Initial Diagnosis (Months)
13.6 27 21.0 53.0 39.0 RTD start point
15.5 15 48.0 41.0 50.0 Other tumor diagnosis
15.7 44 11.0 35.0 34.0 Genetic test test results reported
- v o v Uonveu mu s
9.6 44 3.0 Genetic test test results reported
9.8 5 26.0 HES A&E attendance
15.8 22 34.0 39.0 38.0 Hormone from AV_TREATMENT
16.4 7 13.0 10.0 6.0 Major Surgery
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ML-AIM Predictor (Beta)

i

ML-AIM PREDICTOR BE™

Estimated Pi

COLON CANCER LUNG CANCER PROSTATE CANCER HOW IT WORKS CREDITS

RTD start point
Other tumor diagnosis

Genetic test test results reported
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Genetic test test results reported
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ML-AIM Predictor (Beta)
ML-AIM PREDICTOR BETA BREAST CANCER COLON CANCER LUNG CANCER PROSTATE CANCER HOW IT WORKS CREDITS
i HER2 Status
E Stage
& 9 04
,g Nodes
8 Involved
Grade 0.2
Detected by
Screening
3 42 48 54 60 66 72 78 84 1yr  2yr  3yr 4y
Tim§since Initial Diagnosis (Months)
13.6 27 21.0 53.0 39.0 RTD start point
155 15 48.0 41.0 50.0 Other tumor diagnosis
15.7 44 11.0 35.0 34.0 Genetic test test results reported

oy EIRY)

vonveu miu 1

- uu
9.6 44 3.0 Genetic test test results reported
9.8 5 26.0 HES A&E attendance

15.8 22 34.0 39.0 38.0 Hormone from AV_TREATMENT
16.4 7 13.0 10.0 6.0 Major Surgery

Deep Sensing
[ICLR 2018]
ASAC
[ML4HC 2019]
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BREAST CANCER COLON CANCER LUNG CANCER PROSTATE CANCER HOW IT WORKS CREDITS

-~ - 8 2 80 o ‘v (st st ey
x 18.6 42 1.0 230 17.0 Genetic test sample analysis requested

x 18.7 46 7.0 26.0 51.0 Ct level results from genetic test
x 20.0 18 29.0 230 39.0 Surgery from AV_TREATMENT

x 21.0 45 29.0 40.0 35.0 Gene-level results from genetic test

v m 211 22 140 11N 24N Path camnla takan

Risk of Recurrence vs. Treatment Options

M NoTreatment Ml Radiotherapy WM Chemotherapy Ml Chemo + Radiotherapy

50%

40%

30%

20%

10%

One-Year Risk (Population-based) One-Year Risk (Individualized) Treatment Propensity Score

Top 3 Similar Patients

Patient ID Age Tumor Size ER Status HER2 Status Stage 1 Stage 2 Stage 3 Stage4 Nodes Involved Grade 1 Grade 2 Grade3 Detected by Screening

1 48 19 1 1 0 1 0 0 4 1 0 0 0
32 53 17 1 1 0 1 0 0 4 0 1 0 0
27 45 25 0 1 0 1 0 0 3 0 1 0 0
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27 45 25 0 1 0 1 0 0 3 0 1 0 0
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1 48 19 1 1 0 1 0 0 4 1 0 0 0
32 53 17 1 1 0 1 0 0 4 0 1 0 0
27 45 25 0 1 0 1 0 0 3 0 1 0 0
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ML-AIM Predictor (Beta)
ML-AIM PREDICTOR BE™4 BREAST CANCER ~ COLON CANCER  LUNG CANCER  PROSTATE CANCER  HOWITWORKS  CREDITS
- 199 o i 290 7o tast sample analysis reg;
18.6 42 1.0 23.0 17.0 Genetic test sample analysis requested
18.7 46 7.0 26.0 51.0 Chromosome-level results from genetic test
20.0 18 29.0 23.0 39.0 Surgery from AV_TREATMENT
21.0 45 29.0 40.0 35.0 Gene-level results from genetic test
m 211 a2 1A N0 11N 24N DPath camnla takan
Risk of Recurrence vs. Treatment Options
B nNoTreatment M Radiotherapy [ Chemotherapy M Chemo + Radiotherapy
50%
NSGP [NIPS 2017]
GANITE [ICLR 2018]
30%
oo, CMGP [ICML 2018]
EEA chemo +Rad. Counterfactual
10%
Recurrent Nets
0% ;
One-Year Risk (Population-based) One-Year Risk (Individualized) Treatment Propensity Score [N | P S 2 0 1 8]
Top 3 Similar Patients
Patient ID Age Tumor Size ER Status HER2 Status Stage 1 Stage 2 Stage 3 Stage4 Nodes Involved Grade 1 Grade 2 Grade 3 Detected by Screening
1 48 19 1 1 0 1 0 0 4 1 0 0
32 53 17 1 1 0 1 0 0 4 0 1 0
27 45 25 0 1 0 1 0 0 3 0 1 0
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Personalized medicine needs to go beyond risk predictions-
Individualized Treatment Recommendations

Bob

Diagnosed with
Disease X

Which treatment is best for Bob?

@ Problem:
Estimate the effect of a treatment/intervention on an individual

28



RCTs do not support Personalized Medicine

Randomized Control Trials:
Average Treatment Effects

Population-level

Non-representative patients
Small sample sizes
Time consuming
Enormous costs

Adaptive Clinical Trials
[Atan, Zame, vdS, AISTATS 2019]

29



Delivering Personalized (Individualized) Treatments

Randomized Control Trials:
Average Treatment Effects

Population-level

Non-representative patients
Small sample sizes
Time consuming
Enormous costs

Machine Learning:
Individualized Treatment Effects

Patient-centric

Real-world observational data
Scalable & adaptive implementation
Fast deployment
Cost-effective

[Atan, vdS, 2015, 2018]
[Alaa, vdS, 2017, 2018, 2019]
[Yoon, Jordon, vdS, 2017]
[Lim, Alaa, vdS, 2018]
[Bica, Alaa, vdS, 2019]
30



Potential outcomes framework [Neyman, 1923]

Observational data (X;, W, Y;) X

@ Each patient 7 has features X; € X C R

@ Two potential outcomes Yz-(l),Yi(O) cR

@ Treatment assignment W; € {0,1}

W — Factual outcomes
=

1
v, (1) (0)
i Y, =w; v\ +(1-w,) Y,

s 0) Causal effects
Wi =0 E T(@) =B |V - v"| X; =

31



Assumptions

N Common support
confounders (Ignorability)

PW=1|X=2) PW=0|X=nx)
@ Hidden

\

No unmeasured J

Observed




Estimating individualized treatment effects

@ Observational data L e fi(z)
Wi=1_ (X, Y;) ® IT(fB)
(Xi, Wi, Yi) ) fo(z) N
xXr
W, = 0 (X’w 1/Z) ° : "

@ Treatment response surfaces
fi(z) =E[YV| X =z

fo(x) =E[YO | X = 7]

@ Estimate causal effects: individualized treatment effects
T(x) = f1(x) — fo(x)

33



Beyond supervised learning...

9 Fundamental challenge of causal inference:
we never observe counterfactual outcomes

Training examples Ground-truth causal effects J
Wy =
X, ' » Y1(1) Yl(l) 'Y1(O)
"2=0 o @ O
X, ' - v,” RENERE

------------




Causal modeling # predictive modeling

1- Need to model interventions (X;; Wi,éYz')
....... - )
2- Selection bias - covariate shift:
training distribution # testing distribution
V.
PX|W=1) PX|W=0)
: P(X)
xr

Training distribution Testing distribution
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Many recent works on individualized treatment effects (ITEs)

p Bayesian Additive Regression Trees (BART) [Chipman et. al, 2010], [J. Hill, 2011]

g Causal Forests [Wager & Athey, 2016]

g Nearest Neighbor Matching (kNN) [Crump et al., 2008]
g Balancing Neural Networks [Johansson, Shalit and Sontag, 2016]

p Causal MARS [Powers, Qian, Jung, Schuler, N. Shah, T. Hastie, R. Tibshirani, 2017 ]

¥ Targeted Maximum Likelihood Estimator (TMLE) [Gruber & van der Laan, 2011]

B Counterfactual regression [Johansson, Shalit and Sontag, 2016]

CMGP [Alaa & van der Schaar, 2017]

GANITE [Yoon, Jordon & van der Schaar, 2018]

No theory, ad-hoc models
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A first theory for causal inference - individualized treatment effects

[Alaa, vdS, JSTSP 2017][ICML 2018]

[ What is possible? } [ How can it be achieved? J

(Fundamental limits) (Practical implementation)
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Bayesian nonparametric ITE estimation

@ True ITE model 3

T(CE) — fl(x> - f()(il?) ‘ |TE

Q@ ITE estimation 0 W fol@

I Prior over response functions: fo, /1 ~ 11 wo 75 <0 25w 25 s 75 w9

® Point estimator 7'(.) induced by Bayesian posterior dI1,, (T | D)
¥ Precision of estimating heterogeneous effects PEHE(T ) E | T-T |2

L2 (p)
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Minimax Rate for ITE Estimation

@ Depends on the “complexity” of fo(z) and f(2) ...

Sparsity d J Smoothness
fo(x) === do relevant dimensions fo(a) === Holder ball FT0
f1 (3;) === (]| relevant dimensions fi (g;) w= Hélder ball H !
T € O,ld,do,d <d 2
0,117, do, ds | .
° Rough
1 functions
2 ap TT
_° functions
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Minimax Rate for ITE Estimation

Q@ Theorem 1
The minimax rate for ITE estimation is given by:

inf;sup; , PEHE(T) =< n-(+3(Eva))



Should we care about selection bias?

@ Assume that &g = &1 and do = d; Rényi

o . _ Divergence Offset
Minimax-optimal estimator ‘1'

log(PEHE(T)) ~ D2(P(X | W = 0)[[P(X)) + Da(B(X |W = 1)||P(X))

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Flog(C) — =220 _ 1og(n).
Slope —

Selection bias

D2 (Qol|Q)

..................................................
Bias

L ]
...
L
L]

log(PEHE)

.
...
‘e

Increasing 2
Learning rate

log(n)

41



Theory guides model design

@ We want models that do well in both small and large sample regimes

''''''
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*
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Small sample regime Large sample regime
@ Handling selection bias Q@ Flexible model and
@ Sharing training data between hyperparameter tuning

response surfaces
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ITE Estimation using Multi-task Gaussian processes
[Alaa and vdS, NIPS 2017, ICML 2018]

@ Multi-task Gaussian Process [Bonilla et al., 2008].

Jo, J1 ~ QP(O, Kﬂo,ﬁl) Matern kernel = Prior over on vwvRKHS HPo x b

L Ko(z,2') = Ao kg, (z,2") + A1 kg, (z,2) Shared representations!

Posterior potential outcomes distribution  Posterior ITE distribution

s 4
4 LIS ° . . o2,
. ..... . . ‘... ;:. . ;.' @ N .\. . ..' 0..
‘. 'o ..‘ g'. o .. .... L) .' ‘0
. ‘e . I S L 2 - { .
““ ’. - v .’. o s - :. . ® .. "
f | D . i “. P .' . ‘o‘ ‘?. T | D ..... o. - ’.
0 -» De 1 . e,
1 o © ” - . '...
® . L3 . . ..'.
0 " .. ‘o 0 Y : -
e .° D Individualized
-1 D . . uncertainty measure
&
-100 -75 50 25 00 25 50 75 10.0 -100 -75 -5.0 2.5 00 25 50 75 10.0

ZT Z
Automated Feature Relevance Determination !
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Multiple Treatments: GANITE [Yoon, Jordon, vdS, ICLR 2018]

Estimation of Individualized Treatment Effects
using Generative Adversarial Nets

Risk of Recurrence vs. Treatment Options

B NoTreatment W Radiotherapy W Chemotherapy W Chemo + Radiotherapy

50%
40%
KEY A No Treatment
30%
20% -Rild otherapy
kY Y Chemo + Radi
10%
Chemotherapy
0%

wmf HSK (PWUW\-M One-Year Risk (Inle|d Uahzed) TMM PW SOUG



Tumour volume

Individualized Treatment Effects over Time
[Lim, Alaa, vdS, NeurlPS 2018][Bica, Alaa, vdS, 2019]

When to treat? How to treat? When to stop?

\ ) ) — (1 A . ' — (2): A _
Patient hlStOI'y HE ) Counterfactual outcomes Patient hlStOI'y Hg ) Counterfactual outcomes Patient hlstory H§3) Counterfactual outcomes
o = =
= =
1 Best z g \
outcome 3 Best 3 )
@ / g outcome g Best
NN @ [ / ~ ~ \ outcome
Past | Predictions Past . Predictions Past Predictions N
Current Time Current Time Current Time
time { time { time {
(a) Decide treatment plan (b) Decide optimal time of treatment  (¢) Decide when to stop treatment
® Chemotherapy ® Radiotherapy
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%% ML'AIM Machine Learning and Artificial Intelligence for Medicine

Research Laboratory led by Prof. Mihaela van der Schaar

Details about our algorithmes:
http://www.vanderschaar-lab.com

Details about our software:
http://www.vanderschaar-lab.com
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mx The University of Texas at San Antonio”

Human Health Spans Multiple
Temporal and Spatial Scales

° - o
@ [
s hr

The increased availability of data is changing how we approach this
comprehensive understanding.

Machine Learning in Biomedical Research. Juan B. Gutierrez



mx The University of Texas at San Antonio”

Data == Model =+ Prediction

Data Model Prediction

Treatment Group

(92
o
-- N

o
o

0.2

Expression
(4] (4]
o 0
o o o
Expression
o o
D

Time Time

— = f; (81,82,..., Sn)

The canon in mathematical biology is to progress
iteratively through data, models and predictions (not
necessarily in that order).

This paradigm does not always work.

Machine Learning in Biomedical Research. Juan B. Gutierrez
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The questions have evolved in mathematical biology
Pluto: An analogy

18 Feb 1930 1994, HST/FOC
4.7 billion miles

1996, HST/FOC July 1, 2015 NHS

HST: Hubble Space Telescope i
FOC: Faint Object Camera July 14, 2015, New Horizons Spacecraft

NHS: New Horizons Spacecraft

We went from “where in the sky is this planet’ to “name this mountain”.
The difference is availability of data.

8/16/19 Machine Learning in Biomedical Research. Juan B. Gutierrez




AN EXAMPLE OF THE NEED OF MACHINE
LEARNING:
EARLY DETECTION OF DISEASE

8/16/19




m The University of Texas at San Antonio™

A “New Horizons” for Biomedical Research: MaHPIC/HAMMER

; ; Susceptible Host Resilient Host @ ) @ Whole blood
Plasmodium knowlesi Malaria Macaca mulatia ; Macaca fascicularis Y @ Plasma
: @ Bone marrow
NHP Sample Cell extract
Collection
Clinical Data
Immune Profiling Telemetry Functional G i Metabolomi Proteomi Lipidomi Pathology
LIMS
Blood and ECG, Activity, Transcriptome Comparative Host and Targeted and Pathology
Bone Marrow Temp., Blood metabolites pathogen untargeted analysis
Pressure “‘ proteins lipid profiles
In-house In-house In-house In-house In-house In-house In-house
analysis analysis analysis analysis analysis analysis analysis
" Informatics
:| Data curation, QC/QA, data management, deposition, exchange. 0101
Quantitative Analysis
Dynamical systems, data mining, statistics, bioinformatics. J-E

el And Public

g / @ ? ﬂ@ | ’Bifrost
x 9 X \ oxt Reposﬁitories

Machine Learning in Biomedical Research. Juan B. Gutierrez

US National Institute of
Allergy and Infectious
Diseases, National
Institutes of Health,
Department of Health and
Human Services contract
#HHSN272201200031C,
2012-2017, which
supported the Malaria
Host-Pathogen Interaction
Center (MaHPIC).

Defense Advanced
Research Projects Agency
(DARPA) and the US Army
Research Office through
the program Technologies
for Host Resilience - Host
Acute Models of Malaria to
study Experimental
Resilience (THOR's
HAMMER), DARPA
contract #W911NF-16-
C-0008, 2016-2019

Terabytes of heterogenous
biomedical data!l!




m The University of Texas at San Antonio”

Two Interesting questions can be
addressed now that we have more data

« What causes severity of disease in some individuals,
and mild or manageable disease in others?
— Some individuals affected with malaria show no symptoms.

* Is it possible to detect disease before the onset of
symptoms?
— Once symptoms develop, severity might be impossible to stop.

— Within 24 hours of the onset of symptoms, a severe malaria
patient could die.

Can mathematics help answer these questions?

Machine Learning in Biomedical Research. Juan B. Gutierrez
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Malaria Parasite Life Cycle

Human host Mosquito vector

= 7
/ ~
Sporozoite = =

30-60
minutes

Malaria killed 435,000
people worldwide in 2017,
mostly kids under the age
of 5 in developing
countries. 219 million
reported cases.

Prophylactic

First site of treatment

Merozoite —®

o[ 67
oo Sr Currently, there is no early
schm}m e diagnostic test to confirm
b == o — the presence of
- Rg\@ :‘fng . Plasmodium parasites in

the liver.

reproductive
stages stage .
(4-8 days?) resistance spread
B Nt
Trophozoite Gametocytes
| 020
3-10 X

__— Once symptoms erupt,

microgamete
K ]
Margaret A. Phillips1, Jeremy N. Burrows2, Christine Manyando3, CO m pl ICatI O n S Ca n OCCU r

Rob Hooft van Huijsduijnen2, Wesley C. Van Voorhis4 and Timothy N. C. Wells2, Malaria Primer . 3
within 24 hours.

Machine Learning in Biomedical Research. Juan B. Gutierrez
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Focus on question 2:
Early Detection of Disease

| ﬁ

N m W T,
it
e +
M%MMvJJ/MMJWL |

Recovery

Machine Learning in Biomedical Research. Juan B. Gutierrez
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8/16/19

Early Detection of Disease E?]*Z

With the entire time series, we could easily identify the
different stages using: wavelets, Fourier analysis, etc.

But in practice the entire time series is not available.

The goal: detect infection as early as possible with as
little data as possible.

Hefty goal: Detect disease with 10 seconds of ECG
data

Apple Watch Series 4
(Not an endorsement. Shown as an example)

Machine Learning in Biomedical Research. Juan B. Gutierrez
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The heart is a pump made of
muscle and regulated by electricity

Electrical System of the Heart * An electrical impulse is generated
(Heart shown as cross-section) |n the SA

* |t travels to the AV, where signal
is slowed down briefly, then

Sinoatrial (SA)
node

Aomodl b continue via the bundle of His
rect into the ventricles.
o Leftbundle  The right and left atria (upper

branch

tract

chambers) contract first for a
short time before the left and right
ventricles (lower chambers)

Conduction

P .
osterior pathway

internodal
tract

Atrioventricular (AV) node Right bundle branch

Image source: htip:/
Accessed on 1/31/2016

8/16/19 Machine Learning in Biomedical Research. Juan B. Gutierrez
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The sequence of depolarization results
INn a characteristic electrlcal pattern

Depolarization begins in the right
”~ atrium at the sinoatrial node
| g . It propagates to the left atrium
first via the Bachman’s bundle,
and then interatrial septum (IS),
anterior IS, and the coronary
sinus.

 Then it propagates to the
J\_\l W atrioventricular node, resulting
2 o in a large electrical discharge.

« |t follows the path of the Bundle
IArr;ig:Sse%u;%e%/h:;;[;;é/%)mmons.wwkimedia.org/vv\Ki/FiIe:ECGfPrmcwD\ejast.gif of HiS, and into the Purke nje
fibers.

P PR QRS ST T U
Wave Segment  Complex  Segment Wave Wave

8/16/19 Machine Learning in Biomedical Research. Juan B. Gutierrez
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ECG Pre-processing

» Four days before inoculation and four days after inoculation.
» Each day was segmented into hourly intervals of data.
* Hour intervals were segmented into 10-second intervals.
» 13 subjects * 8 days * 24 hours * 60 minutes * 6 10-second segments
= 898,560 observations. Each observation is a time series with 10,000 points

E30-1918-ECG
1.5s-ECG

2.5
2
1.5

1

ECG

0.5

e GOSN Y JPSN WSS 7V BN

13:35:23.2 13:35:23.4 13:35:23.6 13:35:23.8 13:35:24 13:35:24.2 13:35:24.4 13:35:24.6 13:35:24.8
Mar 22, 2017

Tao Sheng'’s dissertation

Machine Learning in Biomedical Research. Juan B. Gutierrez



The Canonical Methods Fall

* In trying to identify what 10-second segments of ECG
data correspond to pre-infection of liver-stage, traditional
methods were unable to surpass 70% accuracy
(COSINOR models, wavelets, Fourier analysis).

* This opened the door to explore machine learning. Could
a neural network detect these states with greater

accuracy?

8/16/19
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A e [
ECG Processing L e e
« Arandom 90% of these observations Il
were used to train a neural network. T
« Arandom 10% was used as the BatchNomn | [max pool ]
development. P e
- Each hour was analyzed. Hours with S ‘ 15
lower activity (as measured with —
accelerometers) had better predictive FComelution | ["ax pool ]
power, as expected. —Rel
13 subjects * 8 days * 60 minutes * 6 [ Convolition |
10-second segments [ BatchNorm |
= 18,720 observations. Each =
observation is a time series with W Yo ssamns
10,000 points [ Sofmax ]

. A
Pre-Infection I M

Machine Learning in Biomedical Research. Juan B. Gutierrez
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Early Detection of Disease via Telemetry

Confusion Matrix Hour 21

Using machine learning, we detected Plasmodium infection

based on electrocardiogram (ECG) signals with over 98%
accuracy during the liver stage of the disease, importantly, 4000
before the onset of symptoms that are caused by the blood- Pre-Infection
stage of the disease that is characteristic of malaria. 3000
2
Classification Results of 24 Hours é
= - 2000
0.9 * 10-fold Cross-Validation
Testin P i
0.8 9 Liver Stage L 1000
0.7
© 0.6
g 0.5 . . - n L]
o 04 &° (,J@o’
0.3 ,\(“\Z '\\0.\
. ¢e )
0.2 Predicted label
0.1
0 0 5 10 15 20
. Precision | Recall | F}y score | Support
me Pre-Infection | .082 093 | 087 1026
The later hours with less activity yield the best classification Liver Stage | .993 984 | .989 4654
Tao Sheng'’s dissertation Zerotti Wood’s dissertation

Machine Learning in Biomedical Research. Juan B. Gutierrez
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Machine Learning: Improved Cognition
for Humans

« ML allows detection of phenomena that remains
undetectable through other methods.

|t requires large data sets.

* ML present challenges that open opportunities
for foundational mathematical work.

8/16/19 Machine Learning in Biomedical Research. Juan B. Gutierrez
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Challenges

* We looked at a particular study in a specific context, but
there are traits that seem to be universal when we
consider machine learning applied to medicine.

« Data collection and management is an often overlooked
and a deep source of complications.

* There are foundational questions that deserve attention:

— What are (necessary and sufficient) conditions for consistency of a
learning process?

— How to accelerate the rate of convergence of the learning
process?

— Why does it work

8/16/19 Machine Learning in Biomedical Research. Juan B. Gutierrez
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 Machine learning adds value to quantitative studies, particularly when we
understand poorly a phenomenon, or when a well understood phenomenon
becomes too complex to model.

« There is a delicate balance between knowledge and understanding. In this
case, a neural network detected a phenomenon we poorly understand. It
opens opportunities for basic research.

* The expertise required to undertake such studies is broad and takes a long
time to develop. But this poses a conundrum: How to empower the next
generation of scientists to execute multi-scale studies?

8/16/19 Machine Learning in Biomedical Research. Juan B. Gutierrez
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FUTURE DIRECTION:
Early Detection of Disease

The ability to detect disease before symptoms
occur could revolutionize health care and public
Early Detection of Disease health.

Malarial liver-stage infections could be
detected with only 10 seconds of ECG data.

Other diseases may have unique signatures as
well.

M
ED?

ED2 could be the next big thing. It would be a
historical win, comparable to the Internet and GPS.

Machine Learning in Biomedical Research. Juan B. Gutierrez
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FUTURE DIRECTION:
Early Detection of Disease

Hold your finger on
the crown.

Apple Watch Series 4

ECG, accelerometers, The roadblock for broad In the US, only the US
and other telemetry adoption of these findings is Armed Forces have the
measures, have the inability to reconcile capability to create this

market (large personnel +

reached the consumer telemetry data of hundreds of VA)

market. There is a thousands of subjects with :

complex ecosystem of medical records to train lThe out::omer:/voyld bte a
capabilities distributed artificial intelligence (;’g’tveg‘t’; h?seigmagr;farr °
across many classifiers. changes and promote
manufacturers. early interventions.

Machine Learning in Biomedical Research. Juan B. Gutierrez
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THANKS FOR YOUR ATTENTION!

8/16/19 Machine Learning in Biomedical Research. Juan B. Gutierrez
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2019 Monthly Webinar Series, 2-3pm ET

September 10: Logic and Foundations

February 12: Machine Learning for Materials
Science*

March 12: Mathematics of Privacy*

April 9: Mathematics of Gravitational Waves*
May 14: Algebraic Geometry*

June 11: Mathematics of Transportation*
July 9: Cryptography & Cybersecurity*
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Advanced Scientific Computing Research
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