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John	Humphrey	Plummer	Professor	of	Machine	Learning,	
Ar:ficial	Intelligence	and	Medicine	at	University	of	Cambridge	
Turing	Faculty	Fellow	at	the	Alan	Turing	Ins:tute	in	London	

Chancellor’s	Professor	at	UCLA	

Transforming	medicine	through		
AI-enabled	healthcare	

pathways	Mihaela	van	der	Schaar,		
University	of	Cambridge,		

Alan	Turing	InsMtute,	and	UCLA	



       My research 

Develop cutting-edge machine learning and AI theory, methods, algorithms and 
systems to deliver effective personalized healthcare 
1)   support clinical decisions for the patient at hand  

2)   understand the basis of  health and disease  

3)   inform and improve clinical pathways, better utilize resources & reduce costs 
4)   transform public health and policy   

& 
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Cancer - a useful exemplar 

•  Common, costly and important group of  disorders 

•  Varied aetiologies, presentations and long-term outcomes  

•  Complex management affecting multiple clinical systems 

•  Care delivered through multiple organisations 

•  Leads in personalised medicine therapeutics & genotype-phenotype 
correlation 

Goal: deliver decision support for the patient at hand 
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Select	a	pa0ent	
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MAMMO 
(ML4HC 2019) 
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Upload	a	
pathology	
report	
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AutoPrognosis 
[ICML 2018] 
[SciRep 2018] 
[Plos 2019] 
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INVASE [ICLR 2019] 
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ER	Posi0ve	

ER	Nega0ve	
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PASS 
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Deep Sensing 
[ICLR 2018] 

ASAC 
[ML4HC 2019] 
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NSGP [NIPS 2017] 

GANITE [ICLR 2018] 
CMGP [ICML 2018] 

Counterfactual 
Recurrent Nets 

[NIPS 2018] 
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Bob 

Which treatment is best for Bob?  

Diagnosed with  
Disease X 

 

Problem:  
Estimate the effect of a treatment/intervention on an individual 

Personalized medicine needs to go beyond risk predictions- 
Individualized Treatment Recommendations 
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     RCTs do not support Personalized Medicine 
       

Randomized Control Trials: 
Average Treatment Effects 

Non-representative patients 
Small sample sizes 

Time consuming  
Enormous costs 

 
 

Population-level 

Adaptive Clinical Trials  
[Atan, Zame, vdS, AISTATS 2019] 
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     Delivering Personalized (Individualized) Treatments 
       

Randomized Control Trials: 
Average Treatment Effects 

Non-representative patients 
Small sample sizes 

Time consuming  
Enormous costs 

 
 

Machine Learning: 
 Individualized Treatment Effects 

Population-level Patient-centric 

 
 

Real-world observational data 
Scalable & adaptive implementation 

Fast deployment 
Cost-effective 

 [Atan, vdS, 2015, 2018] 
[Alaa, vdS, 2017, 2018, 2019] 
[Yoon, Jordon, vdS,  2017] 
[Lim, Alaa, vdS, 2018] 
[Bica, Alaa, vdS, 2019] 
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     Potential outcomes framework [Neyman, 1923] 

Each patient    has features 
 
 

  Observational data	

Factual outcomes 

Causal effects 

Two potential outcomes 

Treatment assignment  
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     Assumptions 

No unmeasured  
confounders (Ignorability) 

Common support 

Observed Hidden 
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     Estimating individualized treatment effects 

Observational data 

Treatment response surfaces 

Estimate causal effects: individualized treatment effects 
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Training examples 

	

     Beyond supervised learning… 

Fundamental challenge of causal inference: 
we never observe counterfactual outcomes 

Ground-truth causal effects	

. . . 
. . . 
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1- Need to model interventions 

2- Selection bias →	covariate shift:  
training distribution ≠ testing distribution  

Training distribution Testing distribution 

     Causal modeling ≠ predictive modeling 
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      Many recent works on individualized treatment effects (ITEs) 

Bayesian Additive Regression Trees (BART) [Chipman et. al, 2010], [J. Hill, 2011] 

 
Causal Forests [Wager & Athey, 2016] 

 
Nearest Neighbor Matching (kNN) [Crump et al., 2008] 

 
Balancing Neural Networks [Johansson, Shalit and Sontag, 2016] 

 
Causal MARS [Powers, Qian, Jung, Schuler, N. Shah, T. Hastie, R. Tibshirani, 2017 ] 

 
Targeted Maximum Likelihood Estimator (TMLE) [Gruber & van der Laan, 2011] 

  

Counterfactual regression [Johansson, Shalit and Sontag, 2016] 

 
CMGP [Alaa & van der Schaar, 2017] 

 

      No theory, ad-hoc models 

GANITE [Yoon, Jordon & van der Schaar, 2018] 
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A first theory for causal inference - individualized treatment effects 

Algorithms Theory 

What is possible? How can it be achieved? 

(Fundamental limits) (Practical implementation) 

 [Alaa, vdS, JSTSP 2017][ICML 2018]	
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      Bayesian nonparametric ITE estimation 
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ITE 

True ITE model 

ITE estimation 

Prior	over	response	funcMons:	

Point	esMmator											induced	by	Bayesian	posterior	
Precision	of	esMmaMng	heterogeneous	effects	

What can be achieved? 
Minimax estimation loss: 

 

 Best estimate 

Most “difficult”  
response surfaces 

Minimax loss = information-theoretic quantity, independent of  the model 



       
      Minimax Rate for ITE Estimation  

Depends	on	the	“complexity”	of												and											…				

relevant	dimensions	

relevant	dimensions	

Hölder	ball	

Hölder	ball	

Relevant dimension 

Rough	
funcMons	

Smooth	
funcMons	

            Sparsity          Smoothness   
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      Minimax Rate for ITE Estimation  
      

Theorem	1	
The	minimax	rate	for	ITE	esMmaMon	is	given	by:	

Measure	of	response	surface	complexity		=		

Smoothness	parameter	

Number	of	relevant	dimensions	

Minimax	rate	depends	on	the	more	complex												or		

Minimax	rate	does	not	depend	on	selecMon	bias	
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     Should we care about selection bias? 
      

	
Assume	that																				and			
	Minimax-opMmal	esMmator	

Offset	

Slope	

Complexity	of	response	surfaces	
dominates	

Need	to	account	for	selecMon	bias	

(Smoothness	&	dimensionality)	

Large-sample	regime	

Small-sample	regime	

Rényi	
Divergence	
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We want models that do well in both small and large sample regimes 

Small sample regime Large sample regime 

Handling selection bias 

Sharing training data between 
response surfaces 

Flexible model and 
hyperparameter tuning 

       
      Theory guides model design 
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ITE Estimation using Multi-task Gaussian processes  
[Alaa and vdS, NIPS 2017, ICML 2018] 
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Multi-task Gaussian Process [Bonilla et al., 2008].  

Matern kernel = Prior over on vvRKHS  

Posterior potential outcomes distribution Posterior ITE distribution 

Individualized 
uncertainty measure 

Automated	Feature	Relevance	DeterminaMon	!	

Shared	representaMons!	



       
      Multiple Treatments: GANITE [Yoon, Jordon, vdS, ICLR 2018] 
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(a) Decide treatment plan (b) Decide optimal time of treatment (c) Decide when to stop treatment 

c 

Counterfactual outcomes Patient history Counterfactual outcomes Counterfactual outcomes Patient history Patient history 

Time Time Current    
time t
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     When to treat? How to treat? When to stop? 

Current    
time t
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Best 
outcome 

     Individualized Treatment Effects over Time 
[Lim, Alaa, vdS, NeurIPS 2018][Bica, Alaa, vdS, 2019] 
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Details	about	our	soGware:		
hcp://www.vanderschaar-lab.com	

Details	about	our	algorithms:		
hcp://www.vanderschaar-lab.com	
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Professor	and	Chair	of	Mathema:cs	

Machine	Learning	in	
Biomedical	Sciences	

	Juan	GuMerrez,		
University	of	Texas	
at	San	Antonio	
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Human Health Spans Multiple 
Temporal and Spatial Scales 

8/16/19 48 

The increased availability of data is changing how we approach this 
comprehensive understanding.  
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Data       Model      Prediction 

The canon in mathematical biology is to progress 
iteratively through data, models and predictions (not 
necessarily in that order).  
This paradigm does not always work.  

8/16/19 49 

Data Model Prediction 
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The questions have evolved in mathematical biology 
Pluto: An analogy 

50 

July 14, 2015, New Horizons Spacecraft 

5 miles 

18 Feb 1930 
4.7 billion miles 

July 1, 2015 NHS 

8/16/19 

1994, HST/FOC 

1996, HST/FOC 

We went from “where in the sky is this planet” to “name this mountain”.  
The difference is availability of data.  

HST: Hubble Space Telescope 
FOC: Faint Object Camera 
NHS: New Horizons Spacecraft 
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AN EXAMPLE OF THE NEED OF MACHINE 
LEARNING:  
EARLY DETECTION OF DISEASE 

Given the brevity of this presentation, no technical details are discussed. Only the high-
order organization of a case study are presented next.  

8/16/19 51 
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A “New Horizons” for Biomedical Research: MaHPIC/HAMMER 
US National Institute of 
Allergy and Infectious 
Diseases, National 
Institutes of Health, 
Department of Health and 
Human Services contract 
#HHSN272201200031C, 
2012-2017, which 
supported the Malaria 
Host-Pathogen Interaction 
Center (MaHPIC).  
 
Defense Advanced 
Research Projects Agency 
(DARPA) and the US Army 
Research Office through 
the program Technologies 
for Host Resilience - Host 
Acute Models of Malaria to 
study Experimental 
Resilience (THoR's 
HAMMER), DARPA 
contract #W911NF-16-
C-0008, 2016-2019 
 
Terabytes of heterogenous 
biomedical data!!! 
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Two interesting questions can be 
addressed now that we have more data 

8/16/19 53 

•  What causes severity of disease in some individuals, 
and mild or manageable disease in others?  
–  Some individuals affected with malaria show no symptoms. 

•  Is it possible to detect disease before the onset of 
symptoms?  
–  Once symptoms develop, severity might be impossible to stop.  
–  Within 24 hours of the onset of symptoms, a severe malaria 

patient could die.  

 
Can mathematics help answer these questions?  
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Malaria Parasite Life Cycle 

Margaret A. Phillips1, Jeremy N. Burrows2, Christine Manyando3, 
Rob Hooft van Huijsduijnen2, Wesley C. Van Voorhis4 and Timothy N. C. Wells2, Malaria Primer  
 

 
Malaria killed 435,000 
people worldwide in 2017, 
mostly kids under the age 
of 5 in developing 
countries. 219 million 
reported cases.  
 
Currently, there is no early 
diagnostic test to confirm 
the presence of 
Plasmodium parasites in 
the liver. 
 
Once symptoms erupt, 
complications can occur 
within 24 hours.  
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Focus on question 2:  
Early Detection of Disease 

8/16/19 55  

Normal activity and temperature Infection Asymptomatic Symptomatic Treatment and 
Recovery 
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Early Detection of Disease 

8/16/19 56  

•  With the entire time series, we could easily identify the 
different stages using:  wavelets, Fourier analysis, etc.  

•  But in practice the entire time series is not available. 
•  The goal: detect infection as early as possible with as 

little data as possible.  
•  Hefty goal: Detect disease with 10 seconds of ECG 

data 

Apple Watch Series 4 
(Not an endorsement. Shown as an example) 
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The heart is a pump made of 
muscle and regulated by electricity 

•  An electrical impulse is generated 
in the SA. 

•  It travels to the AV, where signal 
is slowed down briefly, then 
continue via the bundle of His 
into the ventricles.  

•  The right and left atria (upper 
chambers) contract first for a 
short time before the left and right 
ventricles (lower chambers) 

Image source: http://www.hopkinsmedicine.org/healthlibrary/test_procedures/cardiovascular/signal-averaged_electrocardiogram_92,P07984/  
Accessed on 1/31/2016 

57 8/16/19 
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The sequence of depolarization results 
in a characteristic electrical pattern 

•  Depolarization begins in the right 
atrium at the sinoatrial node 
(SA). 

•  It propagates to the left atrium 
first via the Bachman’s bundle, 
and then interatrial septum (IS), 
anterior IS, and the coronary 
sinus. 

•  Then it propagates to the 
atrioventricular node, resulting 
in a large electrical discharge. 

•  It follows the path of the Bundle 
of His, and into the Purkenje 
fibers.  

Image source: https://commons.wikimedia.org/wiki/File:ECG_Principle_fast.gif  
Accessed on 1/31/2016 

58 8/16/19 
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ECG Pre-processing 

1.5s-ECG 

Tao Sheng’s dissertation 

•  Four days before inoculation and four days after inoculation.  
•  Each day was segmented into hourly intervals of data.  
•  Hour intervals were segmented into 10-second intervals. 
•  13 subjects * 8 days * 24 hours * 60 minutes * 6 10-second segments 

 = 898,560 observations. Each observation is a time series with 10,000 points 
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The Canonical Methods Fail 
•  In trying to identify what 10-second segments of ECG 

data correspond to pre-infection of liver-stage, traditional 
methods were unable to surpass 70% accuracy 
(COSINOR models, wavelets, Fourier analysis).  

•  This opened the door to explore machine learning. Could 
a neural network detect these states with greater 
accuracy?  

8/16/19 60 



Machine Learning in Biomedical Research.  Juan B. Gutierrez 61 

ECG Processing 
•  A random 90% of these observations 

were used to train a neural network.  
•  A random 10% was used as the 

development. 
•  Each hour was analyzed. Hours with 

lower activity (as measured with 
accelerometers) had better predictive 
power, as expected. 

•  13 subjects * 8 days * 60 minutes * 6 
10-second segments 
 = 18,720 observations. Each 
observation is a time series with 
10,000 points 

Zerotti Wood’s dissertation 
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Early Detection of Disease via Telemetry 

Using machine learning, we detected Plasmodium infection 
based on electrocardiogram (ECG) signals with over 98% 
accuracy during the liver stage of the disease, importantly, 
before the onset of symptoms that are caused by the blood-
stage of the disease that is characteristic of malaria.  

The later hours with less activity yield the best classification 

8/16/19 62 

Tao Sheng’s dissertation Zerotti Wood’s dissertation 
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Machine Learning: Improved Cognition 
for Humans 

•  ML allows detection of phenomena that remains 
undetectable through other methods.  

•  It requires large data sets. 
•  ML present challenges that open opportunities 

for foundational mathematical work.  

8/16/19 63 
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Challenges 
•  We looked at a particular study in a specific context, but 

there are traits that seem to be universal when we 
consider machine learning applied to medicine. 

•  Data collection and management is an often overlooked 
and a deep source of complications.  

•  There are foundational questions that deserve attention: 
–  What are (necessary and sufficient) conditions for consistency of a 

learning process?  
–  How to accelerate the rate of convergence of the learning 

process? 
–  Why does it work 

64 8/16/19 
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Challenges 

•  Machine learning adds value to quantitative studies, particularly when we 
understand poorly a phenomenon, or when a well understood phenomenon 
becomes too complex to model.  

•  There is a delicate balance between knowledge and understanding. In this 
case, a neural network detected a phenomenon we poorly understand. It 
opens opportunities for basic research.  

•  The expertise required to undertake such studies is broad and takes a long 
time to develop. But this poses a conundrum: How to empower the next 
generation of scientists to execute multi-scale studies?  

65 8/16/19 
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Early Detection of Disease 

The ability to detect disease before symptoms 
occur could revolutionize health care and public 
health. 

Malarial liver-stage infections could be 
detected with only 10 seconds of ECG data.  
Other diseases may have unique signatures as 
well.   

ED2 could be the next big thing. It would be a 
historical win, comparable to the Internet and GPS.  

8/16/19 66 

FUTURE DIRECTION: 
Early Detection of Disease 
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In the US, only the US 
Armed Forces have the 
capability to create this 
market (large personnel + 
VA).  
The outcome would be a 
low-cost mechanism to 
detect physiological 
changes and promote 
early interventions.  

ECG, accelerometers, 
and other telemetry 
measures, have 
reached the consumer 
market. There is a 
complex ecosystem of 
capabilities distributed 
across many 
manufacturers.  

Apple Watch Series 4 

The roadblock for broad 
adoption of these findings is 
the inability to reconcile 
telemetry data of hundreds of 
thousands of subjects with 
medical records to train 
artificial intelligence 
classifiers.  

1 2 3

8/16/19 67 

FUTURE DIRECTION: 
Early Detection of Disease 
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THANKS FOR YOUR ATTENTION! 
JUAN.GUTIERREZ3@UTSA.EDU 
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