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February	12:	Machine	Learning		
for	Materials	Science*	

	

March	12:		Mathema:cs	of	Privacy*	
	

April	9:	Mathema:cs	of	Gravita:onal	
Waves*	

	

May	14:		Algebraic	Geometry*	
	

June	11:	Mathema:cs	of	Transporta:on*	
	

July	9:	Cryptography	&	Cybersecurity*	
	

August	13:		Machine	Learning	in	
Medicine*	

	

September	10:	Logic	and	Founda:ons	
	

	
	
	

October	8:	Mathema:cs	of	Quantum	
Physics	

	

November	12:	Quantum	Encryp:on	
	

December	10:	Machine	Learning	for	Text	

MATHEMATICAL FRONTIERS 
2019 Monthly Webinar Series, 2-3pm ET 

2	

	
Made	possible	by	support	for	BMSA	from	the		

Na#onal	Science	Founda#on		
Division	of	Mathema#cal	Sciences		

and	the		
Department	of	Energy		

Advanced	Scien#fic	Compu#ng	Research	
	

*	Webinar	posted	



View	webinar	videos	and	learn	more	about	BMSA	at	www.nas.edu/MathFron:ers		

							Mark	Green,		
							UCLA	(moderator)	

MATHEMATICAL FRONTIERS 
Logic and Foundations 

3	

Julia	Knight,		
University	of	Notre	Dame	
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University	of	Denver	
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Professor	of	Mathema:cs	

Logic	and	
FoundaOons	of	
MathemaOcs	

Natasha	Dobrinen,		
University	of	Denver	
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What	is	founda0ons?	How	did	it	arise?	

Founda0ons	a7empts	to	do	for	all	of	math		
what	Euclid	did	for	geometry.										
	

	
	
	
	
	
	
	
	
	

Hilbert’s	Program:		Fix	a	precise	language.	
Decide	on	a	set	of	axioms	(premises)	which	are	self-evident.	
Build	and	prove	everything	from	these	premises.	
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A	Key	Idea	in	the	Development	of	
Logic	and	Founda0ons	

		The	Liar	Paradox		
	

“I	am	lying.”	
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Central	to	this	paradox	is	“self-reference.”	
	
This	idea	is	key	to	several	leaps	in	the	
development	of	modern	logic	and	founda0ons.	
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Logic:	A	means	of	reasoning	within	a	
precise	language	

Rules	of	reasoning	are	clearly	stated.	
No	contradic0ons	should	arise.	

	
Logic	is	central	to	human	discourse.	

	
The	law	and	scien0fic	development	rely	on	logic.	
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Modus	Ponens	

Senten0al	Logic	is	used	to	model	basic	arguments.	
	

“If	you	do	your	chores,	then	I	will	pay	you	$20.”	
	

C	=	“You	do	your	chores.”				P	=	“I	will	pay	you	$20.”	
The	red	sentence	is	C	implies	P	or	C	⇒ P.			

	
	

				This	is	the	rule	of	inference	called	modus	ponens:		
				If	C	implies	P	and	C	is	true,	then	P	must	also	be	true.		
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First-Order	Logic	

First-order	logic	can	talk	about	“for	all”.	
	

Variables:	v1,v2,v3,…	range	over	all	elements	of	one	
sort.	
	

Symbols:		⇒	(implies),		¬ (not),		∀	(for	all),		=	
	and	possibly	rela0on	and	func0on	symbols.	

	

Axioms:		Logical	and	other	axioms.	
	

Rule	of	Inference:	Modus	Ponens	((A	⇒ B)	and	A)	⇒ B	
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First-Order	Logic	of	Number	Theory	
Language:		v1,v2,…	,	¬,	⇒,	∀,	=,	<,	+,	x,	S,	0.			
Variables	are	intended	to	range	over	0,1,2,3,4,…	
	

Peano	Postulates	(12)	
•  0	is	not	the	successor	of	any	natural	number.			

∀v1	¬(S(v1) = 0)

•  First-Order	Induc0on:		For	each	formula	ψ,	
[ψ(0)	and	∀v1	(ψ(v1)	⇒ ψ(S(v1)))] ⇒ ∀v1	ψ(v1)		

	

•  Second-Order	Induc0on:		Suppose	K	is	a	set	containing	0,	and	
whenever	n	is	in	K	then	n+1	is	in	K.	Then	K	contains	all	natural	
numbers.	
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Set	Theory	as	a	Founda0on	for	Math	

Language:		v1,v2,…,	∀,	¬,	⇒, =,	∈	(membership	
rela0on)	
Variables	range	over	sets.	
	

Zermelo	and	Fraenkel’s	9	Axioms	=	ZFC		(1930’s)	
	

1.	Extensionality	Axiom:		“Two	sets	are	equal	if	and	only	if	they	
	 	 	 	 	have	the	same	members.”	

	

4.	Axiom	of	Pairs:		“If	x	and	y	are	sets,	then	there	is	a	set	
	 	 	 	 	 	 	containing	both	x	and	y.”	

	

9.	Axiom	of	Choice:			

	11	
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Much	of	math	can	be	done	in	ZFC	
	

Using	the	ZFC	Axioms	of	Set	Theory,	we	can	
	
•  Construct	the	coun0ng	numbers,	frac0ons,	
real	numbers,	func0ons,	mathema0cal	
structures.		

	
•  Develop	the	majority	of	mathema0cs	within	
this	first-order	logic	framework.		
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Limita0ons	of	Formal	Systems	
Hilbert’s	Program												
Find	a	complete	and	consistent	set		
of	axioms	for	all	of	mathema0cs.	
	

	 	 	 	Gödel’s	Incompleteness	Theorem	(1931)	
	 	 	 	Any	computable	set	of	axioms	strong	enough	to	
	 	 	 	do	arithme0c	has	statements	which	cannot																			
	 	 	 	be	proved	or	disproved.	

	

	“I	am	not	provable.”	
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An	unprovable	statement		
Cantor’s	Con0nuum	Hypothesis	(1873)	

There	is	no	set	of	real	numbers	with	size	intermediate	
between	the	integers	and	the	real	numbers.	

	
	
	

	
	
	
	
	

“Is	the	Con0nuum	Hypothesis	true?”		
	

(on	Hilbert’s	List	of	Problems	of	the	20th	Century)	
	

Gödel	(1938):	There	is	a	model	of	the	Axioms	of	Set	Theory	in	
which	CH	is	true.		
	

Cohen	(1962):	There	is	a	model	of	the	Axioms	of	Set	Theory	in	
which	CH	is	false.		
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What	has	been	achieved?	
	

•  Firm	foo0ng	for	mathema0cs.	Precision	in	the	
logic	and	axioms.		No	contradic0ons	arising.		

•  Given	axioms,	some	sentences	cannot	be	proved	
or	disproved;	true/false	is	not	always	decidable	by	
a	computer.		

•  But,	we	have	rigorous	methods	for	proving	
statements	are	unprovable	from	some	set	of	
axioms.	
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Modern	Founda0ons	and	Logic	

•  Maps	out	what	is	and	what	is	not	provable	
from	a	given	set	of	axioms.	

	

•  Classifies	precisely	the	rela0ve	strengths	of	
mathema0cal	statements.		

	

•  Applies	techniques	to	solve	tough	problems	in	
general	mathema0cs,	computer	science,	
philosophy,	linguis0cs,	…	
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Professor	of	Mathema:cs	

	Computability	and	
Definability	

Julia	Knight,		
University	of	Notre	Dame	
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Outline	

•  Computability—why	we	need	a	defini0on.			
•  Two	ideas	of	Turing,	with	applica0ons.			
•  Connec0on	between	recursion-theore0c	
complexity	and	complexity	of	defini0ons	in	
the	natural	numbers.			

•  Results	of	Tarski	on	computability	and	
definability	in	the	reals,	with	applica0ons.	
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Need	for	a	defini0on	of	computability	

When	we	describe	an	algorithm,	or	machine-like	
method	for	deciding	or	compu0ng	something,	
we	don’t	need	a	defini0on.			
	
We	need	a	defini0on	in	order	to	show	that	there	
is	no	algorithm.			
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Defining	computability	

Several	different-looking,	but	provably		
equivalent	defini0ons	were	proposed	
Turing’s	defini0on	involved	an		
abstract	machine.	
			
The	“Church-Turing	Thesis”	
is	the	claim	that	the	defini0ons		
are	correct.	

Useful	DefiniOon	for	Today.		Something	(a	par0al	func0on)	
is	computable	if	we	can	write	a	program	to	compute	it.		
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The	universal	machine	

•  Turing	had	the	theore0cal	idea	of	a	machine	
that	could	take	a	program	as	part	of	its	input.	

																						Turing	himself	had	in	mind	prac0cal	
																						applica0ons.			
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Rela0ve	computability	

A	second	theore0cal	idea	of		
Turing	was	the	“oracle	machine.”	
	

This	is	implemented	today	by		
equipping	a	computer	with	a	CD-rom,	or	using	an	
interac0ve	program.	
	
DefiniOon.		A	is	computable	rela:ve	to	B	if	there	
is	a	program	for	deciding	membership	in	A,	given	
answers	to	ques0ons	about	membership	in	B.	
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Computably	enumerable	sets		

•  A	set	is	computably	enumerable	(c.e.)	if	we	
can	effec0vely	list	the	elements;	equivalently,	
it	is	the	domain	of	a	par0al	computable	
func0on.		

		
•  Fact:		A	set	is	computable	if	and	only	if	it	and	
its	complement	are	both	c.e.		
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Hal0ng	set	

•  The	hal:ng	set	K	is	the	set	of	numbers	n	such	that	
program	number	n,	with	input	n,	will	halt.	

•  Fact:		K	is	c.e.	but	not	computable.	

•  The	existence	of	such	a	set	has	applica0ons	in	
several	branches	of	mathema0cs.			
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Jumps	

•  For	any	set	X,	the	jump	is	the	set	X'	consis0ng	
of	numbers	n	such	that	program	number	n	
halts	given	oracle	X	and	input	n.			

•  Fact:		X'	is	c.e.	rela0ve	to	X	but	not	
computable	rela0ve	to	X.			
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Arithme0cal	sets		

•  The	arithme:cal	sets	and	rela0ons	are	the	ones	
definable	in	the	“standard	model”	of	arithme0c	
(ℕ,+,x,0,1,<).		

	
•  We	get	a	proper	hierarchy,	based	on	the	number	
of	alterna0ons	of	existen0al	and	universal	
quan0fiers	in	the	defining	formula.	

This	hierarchy	is	important	to	me,	for	measuring	
complexity	in	algebraic	structures.				
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True	Arithme0c	
•  True	Arithme0c	(TA)	is	the	set	of	elementary	first	
order	sentences	true	in	the	standard	model.	

	
•  It	follows	from	Gödel’s	Incompleteness	Theorem	
that	this	set	is	not	computable.	

Fact:		We	have	elementary	first	order	sentences	
saying	that	n	ε K,	n	ε K’,	n	ε K’’,	etc.	
	
Hence,	TA	is	much	more	complicated	than	K.			
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Tarski	and	the	reals	

•  The	ordered	field	of	reals	is	(ℝ,+,x,0,1,<).			
	
•  We	have	seen	that	the	theory	TA	is	very	
complicated.		

	
Theorem	(Tarski):		The	elementary		
first	order	theory	of	the	reals	is		
computable—decidable.						
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Tarski’s	proof	

•  Tarski	gave	a	computable	set	of	axioms	
sufficient	to	show	every	formula	equivalent	to	
one	that	is	quan0fier-free,	and	to	prove	all	
true	quan0fier-free	sentences.		

•  He	remarked	that	the	sets	definable	in	the	
reals	are	just	the	finite	unions	of	intervals.		
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Building	on	Tarski’s	remark	

30	

van	den	Dries,	and	
Pillay-Steinhorn	began	a	
study	of	“o-minimality.”	

Wilkie	showed	that	when	we	add	to	the	
reals	the	exponen0al	func0on	and	pieces	
of	other	analy0c	func0ons,	the	structure	
remains	o-minimal.	
	

There	are	now	many	applica0ons	of		
o-minimality.		
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Lafferriere,	Pappas,	and	Sastry	
•  A	hybrid	system	has	discrete	aspects	and	
con0nuous	aspects.		

•  With	luck,	there	are	formulas	defining	the	regions	
of	good	behavior	of	the	system	in	some		

				o-minimal	expansion	of	the	reals.	
•  By	o-minimality,	each	definable	region	is	a	finite	
union	of	nice	“cells.”	

•  We	may	then	treat	the	whole		
				system	as	discrete,	admiyng		
				control	by	a	finite	automaton.			
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Julia	Knight,		
University	of	Notre	Dame	

Natasha	Dobrinen,		
University	of	Denver	
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