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2019 Monthly Webinar Series, 2-3pm ET

February 12: Machine Learning October 8: Mathematics of Quantum
for Materials Science* Physics
March 12: Mathematics of Privacy* November 12: Quantum Encryption
April 9: Mathematics of Gravitational December 10: Machine Learning for Text
Waves*

May 14: Algebraic Geometry* * Webinar posted

ne 11: Mathemati Transportation*
June athematics of Transportatio Made possible by support for BMSA from the

National Science Foundation
Division of Mathematical Sciences

July 9: Cryptography & Cybersecurity*

August 13: Machine Learning in and the
Medicine* Department of Energy
eaicine Advanced Scientific Computing Research

September 10: Logic and Foundations

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers
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Logic and Foundations

Natasha Dobrinen, Julia Knight, Mark Green,
University of Denver University of Notre Dame UCLA (moderator)
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What is foundations? How did it arise?

Foundations attempts to do for all of math

what Euclid did for geometry. L -
—

Hilbert’s Program: Fix a precise language.
Decide on a set of axioms (premises) which are self-evident.

Build and prove everything from these premises.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




A Key Idea in the Development of

Logic and Foundations

The Liar Paradox

“'am lying.”

Central to this paradox is “self-reference.”

This idea is key to several leaps in the
development of modern logic and foundations.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers
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Logic: A means of reasoning within a

precise language

Rules of reasoning are clearly stated.
No contradictions should arise.

Logic is central to human discourse.

The law and scientific development rely on logic.
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Sentential Logic is used to model basic arguments.

“If you do your chores, then | will pay you $20.”

C = “You do your chores.” P = “l will pay you $20.”
The red sentence is C implies P or C = P.

This is the rule of inference called modus ponens:
If Cimplies P and Cis true, then P must also be true.
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First-Order Logic

First-order logic can talk about “for all”.

Variables: v,v,,v,,... range over all elements of one
sort.

Symbols: = (implies), = (not), V¥ (forall), =
and possibly relation and function symbols.

Axioms: Logical and other axioms.

Rule of Inference: Modus Ponens ((A = B)and A) = B

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers




First-Order Logic of Number Theory

Language: v,,v,,..., 1, =, V,=,<,+,%,S, 0.
Variables are intended to range over 0,1,2,3,4,...

Peano Postulates (12)
* 0is not the successor of any natural number.
Vv, =(S(v4) =0)

* First-Order Induction: For each formula ,
[p(0) and Vv (Y(vy) = P(S(v,)))] = Vv p(vy)

 Second-Order Induction: Suppose K is a set containing 0, and
whenever nis in Kthen n+1 is in K. Then K contains all natural
numbers.
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Set Theory as a Foundation for Math

Language: v,Vv,,..., ¥V, 7, =, =, € (membership
relation)

Variables range over sets.

Zermelo and Fraenkel’s 9 Axioms = ZFC (1930’s)

1. Extensionality Axiom: “Two sets are equal if and only if they
have the same members.”

9. Axiom of Choice:

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers
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Much of math can be done in ZFC

Using the ZFC Axioms of Set Theory, we can

e Construct the counting numbers, fractions,
real numbers, functions, mathematical
structures.

* Develop the majority of mathematics within
this first-order logic framework.
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Limitations of Formal Systems

Hilbert’s Program

We must know.
. . We will know.
Find a complete and consistent set

~David Hibbert—

of axioms for all of mathematics.

i Godel’s Incompleteness Theorem (1931)

Any computable set of axioms strong enough to

do arithmetic has statements which cannot
be proved or disproved.

“I am not provable.”
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An unprovable statement

Cantor’s Continuum Hypothesis (1873)

There is no set of real numbers with size intermediate
between the integers and the real numbers.
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“Is the Continuum Hypothesis true?”
(on Hilbert’s List of Problems of the 20t Century)

Godel (1938): There is a model of the Axioms of Set Theory in
which CH is true.

Cohen (1962): There is a model of the Axioms of Set Theory in
which CH is false.
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What has been achieved?

* Firm footing for mathematics. Precision in the
logic and axioms. No contradictions arising.

* Given axioms, some sentences cannot be proved
or disproved; true/false is not always decidable by
a computer.

* But, we have rigorous methods for proving
statements are unprovable from some set of
axioms.
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Modern Foundations and Logic

* Maps out what is and what is not provable
from a given set of axioms.

* Classifies precisely the relative strengths of
mathematical statements.

* Applies techniques to solve tough problems in
general mathematics, computer science,

philosophy, linguistics, ...
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 Computability—why we need a definition.
* Two ideas of Turing, with applications.

e Connection between recursion-theoretic
complexity and complexity of definitions in
the natural numbers.

e Results of Tarski on computability and
definability in the reals, with applications.
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Need for a definition of computability

When we describe an algorithm, or machine-like
method for deciding or computing something,
we don’t need a definition.

We need a definition in order to show that there
IS no algorithm.
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Defining computability

Several different-looking, but provably
equivalent definitions were proposed
Turing’s definition involved an
abstract machine.

The “Church-Turing Thesis”
is the claim that the definitions
are correct.

alamy stock photo

Useful Definition for Today. Something (a partial function)
is computable if we can write a program to compute it.
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The universal machine

* Turing had the theoretical idea of a machine
that could take a program as part of its input.

Turing himself had in mind practical
applications.
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A second theoretical idea of
Turing was the “oracle machine.”

Relative computability

This is implemented today by

equipping a computer with a CD-rom, or using an
Interactive program.

Definition. A is computable relative to B if there
is a program for deciding membership in A, given
answers to questions about membership in B.
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Computably enumerable sets

* Asetis computably enumerable (c.e.) if we
can effectively list the elements; equivalently,
it is the domain of a partial computable
function.

* Fact: Asetiscomputableif and only if it and
its complement are both c.e.
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Halting set

* The halting set K is the set of numbers n such that
program number n, with input n, will halt.

* Fact: Kis c.e. but not computable.

* The existence of such a set has applications in
several branches of mathematics.
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24



* For any set X, the jump is the set X' consisting
of numbers n such that program number n
halts given oracle X and input n.

e Fact: X'is c.e. relative to X but not
computable relative to X.

View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 75




Arithmetical sets

e The arithmetical sets and relations are the ones
definable in the “standard model” of arithmetic
(NI+)X10111<)‘

* We get a proper hierarchy, based on the number
of alternations of existential and universal
guantifiers in the defining formula.

This hierarchy is important to me, for measuring
complexity in algebraic structures.
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True Arithmetic

* True Arithmetic (TA) is the set of elementary first
order sentences true in the standard model.

* |t follows from Godel’s Incompleteness Theorem
that this set is not computable.

Fact: We have elementary first order sentences
sayingthatn € K, n € K, n € K”, etc.

Hence, TA is much more complicated than K.
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Tarski and the reals

 The ordered field of reals is (R,+,x,0,1,<).

 We have seen that the theory TA is very
complicated.

Theorem (Tarski): The elementary
first order theory of the reals is
computable—decidable.
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Tarski’s proof

e Tarski gave a computable set of axioms
sufficient to show every formula equivalent to
one that is quantifier-free, and to prove all
true quantifier-free sentences.

e He remarked that the sets definable in the
reals are just the finite unions of intervals.
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Building on Tarski’s remark

van den Dries, and
Pillay-Steinhorn began a
study of “o-minimality.”

Wilkie showed that when we add to the
reals the exponential function and pieces

of other analytic functions, the structure
remains o-minimal.

There are now many applications of
o-minimality.

s
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Lafferriere, Pappas, and Sastry

A hybrid system has discrete aspects and
continuous aspects.

With luck, there are formulas defining the regions
of good behavior of the system in some
o-minimal expansion of the reals.

By o-minimality, each definable region is a finite
union of nice “cells.” — ) X

y 1-cell

We may then treat the whole !
system as discrete, admitting %

control by a finite automaton.

: L 2-cell
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