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Ø Find a function !

Input output
!

Ø Sentiment analysis 

Ø Translation

This seminar series is fantastic. positive
sentiment



Ø Find a function !

Input output
!

How do we represent texts inputs as numerical values? 



Ø Vocabulary = {a, aardvark, aardwolf, …, zymurgy} of size !
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Ø Vocabulary = {a, aardvark, aardwolf, …, zymurgy} of size !
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! ∈ # $% ∈ ℝ'

complicated space Euclidean space with  
meaningful inner products



Vocabulary ℝ"##

Goal: 
embedding captures semantics information

(ideally via linear algebraic operations)
Ø inner products characterize similarity

Ø similar words have large inner products

Ø differences characterize relationship 
Øanalogous pairs have similar differences

Picture credit: Chris Olah’s blog post



Meaning of a word is determined by words it co-occurs with. 

⋯
⋮
⋮ ⋱ ⋮

⋮
⋯

word $ → &'

word (
↓

Def: Pr $, ( ≜ prob. of co-occurrences 
of $, ( in a window of size 5

Ø Rows of co-occurrence matrix are
reasonable embeddings [Lund-Burgess’96] 

Ø [Church-Hanks’90]

&' = row of PMI $, ( ≜ log 34[',6]
34 ' 34[6]

(PMI = point-wise mutual information)

Co-occurrence matrix

Pr ⋅,⋅

[Harris’54], [Firth’57]

“a window of size 5”



[Levy-Goldberg’14]

Ø “Linear structure” in the found !"’s :

!#$%&' − !%&' ≈ !*+,,' − !-.'/ ≈ !+'01, − !&+'2 ≈ ⋯

aunt

king

uncle
man

woman

queen

1. Compute PMI 7, 9 = log >?[",A]
>? " >?[A]

2. Take rank-300 SVD (best rank-300 approximation) of PMI
Ø⇔ Fit PMI 7, 9 ≈ 〈!", !A〉 where !" ∈ ℝHII



Ø word2vec [Mikolov et al’13] : 

Pr #$%& #$%', … , #$%* ∝ exp〈01234,
1

5
01237 + ⋯+ 0123: 〉

Ø GloVe [Pennington et al’14] : 

log Pr[#, @] ≈ 01, 0C + D1 + DC + E

Ø [Levy-Goldberg’14] (Previous slide)

PMI #, @ = log
IJ[1,C]

IJ 1 IJ[C]
≈ 01, 0C + E

Logarithm (or exponential) seems to exclude linear algebra!  



Where does the log come from? 
[Arora et al.’16, c.f. Levy-Goldberg’14, Pennington et al’14]

Ø For most of the words !:
Pr[! ∣ '()*]
Pr[! ∣ ,-..)] ≈

Pr[! ∣ 01)]
Pr ! 2301)]

ØFor ! unrelated to gender: LHS, RHS ≈ 1
Øfor ! =dress, LHS, RHS ≪ 1 ;   for ! = John, LHS, RHS ≫ 1

|| PMI '()*,⋅ − PMI ,-..),⋅ − PMI 01),⋅ + PMI 2301),⋅ ||>> ≈ 0

Ø Rows of PMI matrix has “linear structure” 

⇒A
B

log Pr ! '()*
Pr ! ,-..) − log Pr ! 01)

Pr ! 2301)]
>



Empirically can find vectors !"’s such that
PMI &, ( ≈ !", !*

1. PMI is not necessarily PSD

2. Relative approximation error is high (17%); Low-dimensional !"’s have
better linear structure than rows of PMI



[Arora et al’16]

Ø Hidden Markov Model:  
Ødiscourse vector !" ∈ ℝ% governs the discourse/theme/context of time &
Øwords '" (observable); embedding ()* ∈ ℝ% (parameters to learn) 
Ølog-linear observation model 

Pr['" ∣ !"] ∝ exp〈()*, !"〉

!" !"78 !"79 !"7:

'" '"78 '"79 '"7: '"7;

!"7;

Closely related to [Mnih-Hinton’07]



Empirically can find vectors !"’s such that

PMI &, ( ≈ !", !*
1. PMI is not necessarily PSD and low-rank

2. Relative approximation error is high (17%); Low-dimensional !"’s have
better linear structure than rows of PMI

+, +,-. +,-/ +,-0

1, 1,-. 1,-/ 1,-0 1,-2

+,-2

Ø Dimension-reduction reduces the noises

Ø Under rand-walk model, PMI is approximately PSD and low-rank



Ø Theoretical explanations of embeddings methods 

Ø Popular embeddings methods, such as PMI+SVD, word2vec, Glove 

can be viewed as algorithms for learning a generative model of 

language 

Ø Follow-up works: embeddings for sentences, polysemous words, rare 

words [Arora et al.’17,18a&b …]

Ø Open directions: 

Ø Understanding the state-of-the-art contextualized embeddings (Elmo, 

Bert, etc..) 

Ø Optimizations of the embeddings 

Ø Understanding other algorithms for other tasks in NLP (machine 

translation, etc.) 

Ø A theory of representation learning



Ø RAND-WALK: A Latent Variable Model Approach to Word Embeddings. 
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. 
Transactions of the Association for Computational Linguistics (TACL), 2016 

Ø A Simple but Tough-to-Beat Baseline for Sentence Embeddings. Sanjeev Arora, 
Yingyu Liang, Tengyu Ma. International Conference on Learning 
Representations (ICLR) 2017

Ø Linear Algebraic Structure of Word Senses, with Applications to Polysemy. 
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. TACL, 
2018 

Ø A La Carte Embedding: Cheap but Effective Induction of Semantic Feature 
Vectors. Mikhail Khodak, Nikunj Saunshi, Yingyu Liang, Tengyu Ma, Brandon 
Stewart, Sanjeev Arora. ACL, 2018 

Ø Neural Word Embedding as Implicit Matrix Factorization. Omer Levy and Yoav 
Goldberg. Neurips 2014. 

Ø GloVe: Global Vectors for Word Representation. Jeffrey Pennington, Richard 
Socher, and Christopher D. Manning. EMNLP, 2014.

Ø Distributed Representations of Words and Phrases and their Compositionality. 
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean. NIPS 2013.
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Toward	Breaking	Language	
Barriers	with	Neural	
Machine	TranslaSon	



 6,800 living languages 
 600 with written tradition   



 
 
 
 

[Xu & Carpuat WMT 2018] 

UMD	Machine	Transla/on		
@WMT	2018	

The Chinese capital, with its 
surprisingly high-speed Internet, 
sophisticated technology such as 
face-recognition software,  has 
invested heavily in artificial 
intelligence and has unrivaled 
international energy, and is one of 
the most exciting cities for 
exploration-minded foreigners. 



Translation as 
Machine 
Learning 



Translation as 
Deep Learning 

Image: Kyunghung Cho 



requires	millions	of	transla/on	
examples	

not	available	for	many	languages!	

raises	fundamental	machine	learning	
challenges	

intractably	large	output	space,	infinitely	
many	correct	outputs…	

makes	errors	that	have	real	world	
impact	

yet	models	are	opaque,	and	developed	
independency	from	use	cases	

Translation as 
Deep Learning: 
Challenges 



Some	approaches:	
	
Learn	from	related	languages	
	
Learn	from	monolingual	text	
	
Improve	the	training	objecSve	

Toward better 
translation with 
limited training 
data 



Training Problem: Exposure Bias, a Gap Between 
Training and Inference


Maximum	
Likelihood	
Training	

Inference	

<s>	

dinner	

made	We	

  	

We	 will	<s>	

?	

  	

Reference	

Model	
TranslaSon	



How to Address Exposure Bias?


Expose	models	to	their	own	predic/ons	during	training	
But	how	to	compute	the	loss	when	the	par/al	transla/on	
diverges	from	the	reference?	
	

Our	method:		

1.	Generate	translaSon	prefixes	via	differen/able	sampling	
2.	Learn	to	align	the	reference	words	with	sampled	prefixes	



Our SoluCon: Align Reference  
with ParCal TranslaCons


[Xu & Carpuat NAACL 2019] 



Some	approaches:	
	
Learn	from	related	languages	
	
Learn	from	monolingual	text	
	
Improve	the	training	objecSve	

Toward better 
translation with 
limited training 
data 



	
Can	machine	transla/on	help	
human	translators	and	interpreters	
be	more	produc/ve?		
	
What	errors	maUer	most	for	
different	use	cases?	
	
Can	we	tailor	machine	transla/on	
output	to	different	audiences?	
	
	

Toward more 
user-centered 
machine 
translation 



Controlling MT Complexity for Different Audiences


Audience:	fluent	
English	speaker	

The	Mauritshuis	

museum	is	staging	

an	exhibi4on	

focused	solely	on	

17th	century	self-

portraits.	

El	museo	

Mauritshuis	abre	

una	exposición	

dedicada	a	los	

autorretratos	del	

siglo	XVII.	

Complexity	
Controlled	

MT	



Audience:	2nd	
language	learner	

The	Mauritshuis	

museum	is	going	to	

show	self-portraits.	

El	museo	

Mauritshuis	abre	

una	exposición	

dedicada	a	los	

autorretratos	del	

siglo	XVII.	

Complexity	
Controlled	

MT	

Controlling MT Complexity for Different Audiences




AdapCng translaCon output to different 
audiences via mulC-task learning


Grade		

English	
sentence	

Source	}	
ES	

EN	

	Spanish	sentences	translated	
into	simpler	English	

Spanish-English	
transla/on	examples	

Complex	English	sentences	
paired	with	simpler	English		



Deep neural networks provide a powerful 
framework to model translation 

How can we improve quality in low-resource 
settings? 

How can we make machine translation 
more user-centric when it works well? 
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