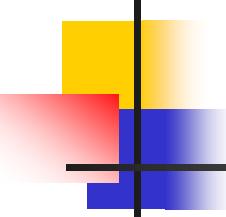

Securing Energy Security and Preventing Global Warming

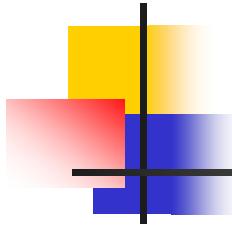
· · · Role of Nuclear Energy and Japan-US Cooperation · · ·

Takuya HATTORI
Japan Atomic Industrial Forum, Inc


June 14, 2007

Introduction

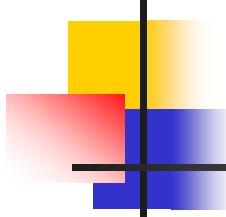
- **IPCC 4 th Assessment Report : WG-III**
 - N-Power is “key mitigation technology”
- **2008**
 - Kyoto Protocol First Commitment Period
 - G8 Summit : Hokkaido-Toyako, Japan
- **Nuclear Renaissance**



Main Points

Japan-US Cooperation

- ▶ To secure **energy security** and prevent **global warming**
- **Sharing Recognition** on Importance of Nuclear Power
- **Work Together** for Steady Development of Nuclear Power


Energy Situation of Japan

• • • Diversification is basic strategy

■ Pursue “Best Energy Mix”

• • • • Share of Power Source

	1973	2005	(US)
Oil	73	10	(3)
Gas	2	24	(18)
Coal	5	25	(50)
Nuclear	3	32	(20)
Hydro	16	8	
(9)			

Energy Policy of Japan

• • • How to challenge trilemma ?

- Basic Law on Energy Policy (June, 2002)
- Balance of 3E
 - Energy Security
 - Environment Protection
 - Economic Growth
- Harmonization of Basic Policy
 - Energy, Environment and S&T

Nuclear Power Program in Japan

• • • Japan steadily develop N-Power

- Introduction of Reactor Tech. from US
- Development of Indigenous Technology
- 55 units, 50Gw, ~1/3 of power supply
- Replacement start ~2030

Nuclear Policy of Japan

• • • **Steady advancement of fuel cycle**

- **Framework of Nuclear Energy Policy**
 - 30~40% Electricity Supply by Nuclear
 - Pursue Nuclear Fuel Cycle
 - Commercial FBR development by 2050
- **Pu recycle as MOX Fuel in LWR**
- **Final Geological Repository of HLW ?**

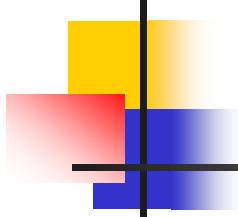
GHG emissions

• • • Involvement of US, China, India is crucial

Total CO₂ emissions ;25 Gt/yr (2003)

US • • • • • • • 24%

China . . . 14%

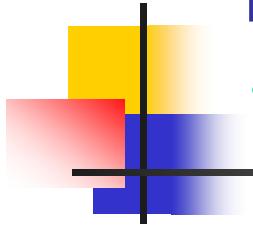

* EU · · · · · 16%

* Russia . . . 6%

* Japan . . . 5%

India • • • • • 4%

* Kyoto Protocol mandated countries



Energy Conservation

• • • Japan utilize energy efficiently

- GHG emission per GDP (C t-eq/M\$)

- Japan	58
- US	174
- Canada	197
- UK	120
- Russia	1126
- China	777
- India	565

Reduction of GHG emissions

• • • NPP has a great advantages

- Basic concept of Japan :
Simultaneous Pursuit of Economy and Environment
- CO2 emissions intensity (KgCO2/Kwh)
Japan/US : 0.38/0.57
- NPP reduce ~10% of world GHG emissions
by 430 units / 390Gw / 2700Twh

Nuclear Renaissance

• • • 200Gw of fleet join by 2030

- US 36 Gw (32 units)
- Russia ~40 Gw by 2030
- China ~30 Gw by 2020
- India ~40 Gw by 2030
- Japan 17 Gw (13 units)

Japan-US Cooperation

• • • How to manage the 1st project ?

- US~30 yrs blank
- Japan~40 yrs continuous development
- **US 1st project** is most important
 - **on time & within budget**
- How to minimize the “**risk- Technical, Financial and Social Risk
- reliable “**project management**”
- sound “**supply chain**”**