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What and why is synthetic biology?

The recent and ongoing interest in “synthetic biology’ is being driven
by at least four different groups: biologists, chemists, ‘re-writers’ and
engineers. Briefly, for biologists, the ability to design and construct
synthetic biological systems provides a direct and compelling
method for testing our current understanding of natural biological
systems™*”; disagreements between expected and observed system
behaviour can serve to highlight the science that is worth doing. For
chemists, biology is chemistry, and thus synthetic biology is an
extension of synthetic chemistry; the ability to create novel molecules
and molecular systems allows the development of useful diagnostic
assays and drugs, expansion of genetically encoded functions, study
of the origins of life, and so on'®. For ‘re-writers, the designs of
natural biological systems may not be optimized for human inten-
tions (for example, scientific understanding, health and medicine);
synthetic biology provides an opportunity to test the hypothesis that
the genomes encoding natural biological systems can be ‘re-written,
producing engineered surrogates that might usefully supplant some
natural biological systems''. Finally, for engineers, biology is a
technology; building upon past work in genetic engineering, syn-
thetic biology seeks to combine a broad expansion of biotechnology
applications with—as the focus of this article—an emphasis on the
development of foundational technologies that make the design and
construction of engineered biological systems easier.

Nature v438, 24 November 2005, doi:10.1038/nature04342
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THE DECISION

Having described the two developmental pathways available to an infecting A phage,
we now must ask: what determines which pathway is taken? What factors drive the
system toward lysis or lysogeny?

We do not have a complete understanding of these matters but we can construct
a plausible scenario. Briefly put, the “decision” is effected by a single protein—ClI.

Infection
N

Figure 3.10. The lysis-
Bactenal lysogeny decision. Host pro-

S proteases teases regulate the level of

activity ot ClI protein. Al-
> though ClIl protein is not
shown here, the host tactors
may exert their effects by
& working on ClII, which pro-
tects Cll. It is likely that

Q c

other host proteins regulate
translation of the Cll mRNA

Lysis Lysogeny as well.

Ptashne, The Genetic Switch, p58
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Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335—338 (2000)
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Feeding Solution

Noireaux & Libchaber, Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17669-74.
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forces interstrand contact here. as
far from the backbone as possible

FIGURE 14. Backbone charges force interstrand contacts in a DNA
duplex to the Watson—Crick edge of the heterocycles, hinder folding,
and dominate physical behavior, allowing DNA/RNA to mutate and
evolve.

Understanding Nucleic Acids Using Synthetic Chemistry, Steven Benner, Acc. Chem. Res. 2004, 37, 784-797
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- Why repeated negative charges?

- Replace anionic phosphodiester
linkers with uncharged
dimethylene sulfones

- Discover phosphate backbone
hinders folding, enables base
pairing, and allows for mutations
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far from the backbone as possible

FIGURE 14. Backbone charges force interstrand contacts in a DNA
duplex to the Watson—Crick edge of the heterocycles, hinder folding,

and dominate physical behavior, allowing DNA/RNA to mutate and
evolve.

Understanding Nucleic Acids Using Synthetic Chemistry, Steven Benner, Acc. Chem. Res. 2004, 37, 784-797
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The liberation of synthetic biology

2y 1 -
B T | [
R102 = —rouco - —L PCEBS 59 gk

B4k v("cljs Ten — {m .
* v 38 ’ nf - 1K %
Bt - G20 e

s _lggmo L <~|:J:)Pc19
Qm‘ 11 | N ‘ OPC106
pos1s L —__r:—ﬁ?"“ | erczpt— [ M

!
T [ Koo owca}—0s15
132K —I(‘DL:cn ,,%3,5 R159

- NEGTS |
TR Ipvadk:
e POSI5) J ‘60189 -”"*’r—f;. 2}5;09. .
SOURCE 1 9 1063 I J.R. Koza et al.
+ls ﬁom 16 $ | [z 47% —— o Automated Synthesis of Computational
= [ o1 ) 19 ‘”‘"I:._F‘ B2084 4 I'p1as Circuits using GeneticProgramming,
T o195} |weecf0203le 207 _
: £ =5 NEGIS ch%ﬁs . 1997 IEEE International Conference on

1 ) Evolutionary Computation




The liberation of synthetic biology

o POS15 ]mnl cPOS1S mgTiF
R102 = -r —L l—(‘[ﬂm 596K
W AKE L. i—L-); 77 i
L EG'S " : w S
R10D :
2 EK

v | ﬂn)—“‘,g s | |.VWhat does it do?

oty ) o] mﬁ.;ll'% 2. How does it work?

_"l'
o “po140 H— u%ﬂa F1z . .
) T u i | 3.Why this design?

+ j '
s Dt T GD189 IKe R200
VSODURCE \—‘ -}/i i : l_' 9_|w-é' POS1S JR Koza et al.

+|a : Roa7e T o Automated Synthesis of Computational
= [ R201 ) \Lim 7.6 “k RZ0B4 L L p1ad Circuits using GeneticProgramming,
- o1egts u-ox 0203 1N az0r _

: £ + % NEGIS e, 1997 IEEE International Conference on

Evolutionary Computation




The liberation of synthetic biology

Chan, Kosuri, & Endy, Refactoring bacteriophage T7. Mol. Syst. Biol. 13 September 2005 (doi:10.1038/msb4100025).
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Design &
disc pattern

Growth

Morphogen-defined patterning of Escherichia coli enabled by an externally
tunable band-pass filter

Journal of Biological Engineering 2008, 3:10 doi:10.1186/1754-1611-3-10

Takayuki Sohka (takayuki2003jp2003 @gmail.com)
Richard A Heins (rheins2@jhu.edu)
Marc Ostermeier (oster@jhu.edu)
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Teach me how to...

Design and build living organisms
that behave as expected.

Debug existing or write new
genetic programs to do my bidding.
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- How will (should?) we
change ourselves and
our environments?

- New schools of science
and engineering? E.g.,
integration without
isolation?

- New modes of humanity?
E.g., responsibility with
representation?







Learn (& play) by making

Help (& enable) by building
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Challenges

Make biology easy

to engineer.

Enable humanity.
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Challenges

Make biology easy
to engineer.

Enable humanity.

Opportunities

Enable all constructive
biotechnologies.

Better understand
nature.
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Food Energy Environment Agriculture Health Chemicals Security
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Energy Environment Agriculture Chemicals Security

3 crop species (rice, wheat and maize) provide 60%
of all calories and 54% of all protein in human food
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3 crop species (rice, wheat and maize) provide 60%
of all calories and 54% of all protein in human food
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1973

Construction of
biologically functional

bacterial plasmids in vitro

Cohen et al., PNAS, 1973

MATERIALS AND METHODS

E. coli strain W1485 containing the RSF1010 plasmid, which
carries resistance to streptomycin and sulfonamide, was
obtained from S. Falkow. Other bacterial strains and R
factors and procedures for DNA isolation, electron microscopy,
and transformation of E. coli by plasmid DNA have been
described (1, 7, 8). Purification and use of the EcoRI restric-
tion endonuclease have been described (5). Plasmid hetero-
duplex studies were performed as previously described (9,
10). E. coli DNA ligase was a gift from P. Modrich and R. L.
Lehman and was used as described (11). The detailed pro-
cedures for gel electrophoresis of DNA will be described else-
where (Helling, Goodman, and Boyer, in preparation); in
brief, duplex DNA was subjected to electrophoresis in a tube-
type apparatus (Hoefer Scientific Instrument) (0.6 X 15-
em gel) at about 20° in 0.7%, agarose at 22.5 V with 40 mM
Tris-acetate buffer (pH 8.05) containing 20 mM sodium ace-
tate, 2 mM EDTA, and 18 mM sodium chloride. The gels
were then soaked in ethidium bromide (5 ug/ml) and the DNA
was visualized by fluorescence under long wavelength ultra-
violet light (“black light”). The molecular weight of each frag-
ment in the range of 1 to 200 X 10° was determined from its
mobility relative to the mobilities of DNA standards of
known molecular weight included in the same gel (Helling,
Goodman, and Boyer, in preparation).
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Construction of
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1985

Cloning and expression
of the human

bacterial plasmids in vitro erthropoietin gene

Cohen et al., PNAS, 1973

MATERIALS AND METHODS

E. coli strain W1485 containing the RSF1010 plasmid, which
carries resistance to streptomycin and sulfonamide, was
obtained from S. Falkow. Other bacterial strains and R
factors and procedures for DNA isolation, electron microscopy,
and transformation of E. coli by plasmid DNA have been
described (1, 7, 8). Purification and use of the EcoRI restric-
tion endonuclease have been described (5). Plasmid hetero-
duplex studies were performed as previously described (9,
10). E. coli DNA ligase was a gift from P. Modrich and R. L.
Lehman and was used as described (11). The detailed pro-
cedures for gel electrophoresis of DNA will be described else-
where (Helling, Goodman, and Boyer, in preparation); in
brief, duplex DNA was subjected to electrophoresis in a tube-
type apparatus (Hoefer Scientific Instrument) (0.6 X 15
em gel) at about 20° in 0.7% agarose at 22.5 V with 40 mM
Tris-acetate buffer (pH 8.05) containing 20 mM sodium ace-
tate, 2 mM EDTA, and 18 mM sodium chloride. The gels
were then soaked in ethidium bromide (5 ug/ml) and the DNA
was visualized by fluorescence under long wavelength ultra-
violet light (“black light”). The molecular weight of each frag-
ment in the range of 1 to 200 X 10° was determined from its
mobility relative to the mobilities of DNA standards of
known molecular weight included in the same gel (Helling,
Goodman, and Boyer, in preparation).

Lin et al, PNAS, | 985

Assembly of Expression Vector for the Epo Gene. For direct
expression of the genomic Epo gene, the 4.8-kilobase (kb)
BstEIl-BamHI fragment of \HE1 (see Results), which contains
the entire Epo gene, was used. After converting the BsrEII site
into a BamHI site with a synthetic linker, the fragment was
inserted into the unique BamHI site of the expression vector
pDSVL (unpublished data), which contains a dihydrofolate
reductase (DHFR) minigene from pMgl (24). The resulting
plasmid pDSVL-gHuEPO (Fig. 14) was then used to transfect
Chinese hamster ovary (CHO) DHFR ™ cells (25) by the calcium
phosphate microprecipitate method (26). The transformants
were selected by growth in medium lacking hypoxanthjne and
thymidine. The culture medium used was Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum,
penicillin, streptomycin, and glutamine (25).
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Construction of
biologically functional
bacterial plasmids in vitro

Cohen et al., PNAS, 1973

MATERIALS AND METHODS

E. coli strain W1485 containing the RSF1010 plasmid, which
carries resistance to streptomycin and sulfonamide, was
obtained from S. Falkow. Other bacterial strains and R
factors and procedures for DNA isolation, electron microscopy,
and transformation of E. coli by plasmid DNA have been
described (1, 7, 8). Purification and use of the EcoRI restric-
tion endonuclease have been described (5). Plasmid hetero-
duplex studies were performed as previously described (9,
10). E. coli DNA ligase was & gift from P. Modrich and R. L.
Lehman and was used as described (11). The detailed pro-
cedures for gel electrophoresis of DNA will be described else-
where (Helling, Goodman, and Boyer, in preparation); in
brief, duplex DNA was subjected to electrophoresis in a tube-
type apparatus (Hoefer Scientific Instrument) (0.6 X 15
em gel) at about 20° in 0.7%, agarose at 22.5 V with 40 mM
Tris-acetate buffer (pH 8.05) containing 20 mM sodium ace-
tate, 2 mM EDTA, and 18 mM sodium chloride. The gels
were then soaked in ethidium bromide (5 ug/ml) and the DNA
was visualized by fluorescence under long wavelength ultra-
violet light (“black light”). The molecular weight of each frag-
ment in the range of 1 to 200 X 10° was determined from its
mobility relative to the mobilities of DNA standards of
known molecular weight included in the same gel (Helling,
Goodman, and Boyer, in preparation).

Lin et al, PNAS, | 985

Assembly of Expression Vector for the Epo Gene. For direct
expression of the genomic Epo gene, the 4.8-kilobase (kb)
BstEIl-BamHI fragment of \HE1 (see Results), which contains
the entire Epo gene, was used. After converting the BsrEII site
into a BamHI site with a synthetic linker, the fragment was
inserted into the unique BamHI site of the expression vector
pDSVL (unpublished data), which contains a dihydrofolate
reductase (DHFR) minigene from pMgl (24). The resulting
plasmid pDSVL-gHuEPO (Fig. 14) was then used to transfect
Chinese hamster ovary (CHO) DHFR ™ cells (25) by the calcium
phosphate microprecipitate method (26). The transformants
were selected by growth in medium lacking hypoxanthjne and
thymidine. The culture medium used was Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum,
penicillin, streptomycin, and glutamine (25).

Ro et al., Nature, 2006

|Plasmid construction. To create plasmid pRS425ADS for expression of ADS
with the GALJ promoter, ADS was PCR amplified from pADS’ using primer pair 9
and 10. (Supplementary Table I). Using these primers the nucleotide sequence 5'-
AAAACA-3" was cloned immediately upstream of the start godon of ADS. This
consensus sequence was used for efficient translation®’ of ADS and the other
galactose-inducible genes used in this study. The amplified product was cleaved with
Spel and Hindlll and cloned into Spel and Hindlll digested pRS425GALI™.
constructed. First Sacll restriction sites were introduced into pRS426GALI™ at the §
end of the GALI promoter and 3' end of the CYC/ terminator. To achieve this, the
promoter-multiple cloning site-terminator cassette of pRS426GAL1 was PCR amplified

digested pRS426GALI1 to construct vector pRS426-Sacll.

HMGI was PCR amplified from plasmid pRH127-3*° with primer pair 13 and 14.

The catalytic domain of
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Cohen et al., PNAS, 1973

MATERIALS AND METHODS
E. coli strain W1485 containing the RSF1010 plasmid, which
carries resistance to streptomycin and sulfonamide, was
obtained from 8. Falkow. Other bacterial strains and R
factors and procedures for DN A isolation, electron microscopy,
and transformation of E. coli by plasmid DNA have been
described (1, 7, 8). Purification and use of the EcoRI restric-
tion endonuclease have been described (5). Plasmid hetero-
duplex studies were performed as previously described (9,
10). E. coli DNA ligase was a gift from P. Modrich and R. L.
Lehman and was used as described (11). The detailed pro-
cedures for gel electrophoresis of DNA will be described else-
where (Helling, Goodman, and Boyer, in preparation); in
brief, duplex DNA was subjected to electrophoresis in a tube-
type apparatus (Hoefer Scientific Instrument) (0.6 X 15
em gel) at about 20° in 0.7%, agarose at 22.5 V with 40 mM
Tris-acetate buffer (pH 8.05) containing 20 mM sodium ace-
tate, 2 mM EDTA, and 18 mM sodium chloride. The gels
were then soaked in ethidium bromide (5 ug/ml) and the DNA
was visualized by fluorescence under long wavelength ultra-
violet light (“black light”"). The molecular weight of each frag-
ment in the range of 1 to 200 X 10° was determined from its

Lin et al, PNAS, | 985

Assembly of Expression Vector for the Epo Gene. For direct
expression of the genomic Epo gene, the 4.8-kilobase (kb)
BstEll-BamHI fragment of \HE1 (see Results), which contains
the entire Epo gene, was used. After converting the BsrEII site
into a BamHI site with a synthetic linker, the fragment was
inserted into the unique BamHI site of the expression vector
pDSVL (unpublished data), which contains a dihydrofolate
reductase (DHFR) minigene from pMgl (24). The resulting
plasmid pDSVL-gHuEPO (Fig. 14) was then used to transfect
Chinese hamster ovary (CHO) DHFR ™ cells (25) by the calcium
phosphate microprecipitate method (26). The transformants
were selected by growth in medium lacking hypoxanthjne and
thymidine. The culture medium used was Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum,
penicillin, streptomycin, and glutamine (25).

Ro et al., Nature, 2006

|Plasmid construction. To create plasmid pRS425ADS for expression of ADS

with the GALJ promoter, ADS was PCR amplified from pADS’ using primer pair 9

and 10. (Supplementary Table I). Using these primers the nucleotide sequence 5™
AAAACA-3" was cloned immediately upstream of the start godon of ADS. This
consensus sequence was used for efficient translation®’ of ADS and the other
galactose-inducible genes used in this study. The amplified product was cleaved with
Spel and Hindlll and cloned inte Spel and Hindlll digested pRS425GALL".

For integration of an expression cassette for MR, plasmid pd-HMGR was
constructed. First Sacll restriction sites were introduced into pRS426GALI™ at the §
end of the GALJ promoter and 3' end of the CYC/ terminator. To achieve this, the

promoter-multiple cloning site-terminator cassette of pRS426GAL1 was PCR amplified

using primer pair 11 and 12. The amplified product was cloned directly into Pyyll-

Ainactad aDCAVACIAT 1 4tn  canctenat crantar aDCAYL Canll Tha  actalitin dassain o8

Genetic engineering basics unchanged past 30+ years
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1973 1985

Cloning and expression
of the human
erthropoietin gene

Construction of
biologically functional
bacterial plasmids in vitro

Cohen et al., PNAS, 1973

MATERIALS AND METHODS
E. coli strain W1485 containing the RSF1010 plasmid, which
carries resistance to streptomycin and sulfonamide, was
obtained from S. Falkow. Other bacterial strains and R
factors and procedures for DNA isolation, electron microscopy,
and transformation of E. coli by plasmid DNA have been
described (1, 7, 8). Purification and use of the EcoRI restric-
tion endonuclease have been described (5). Plasmid hetero-
duplex studies were performed as previously described (9,
10). E. coli DNA ligase was a gift from P. Modrich and R. L.
Lehman and was used as described (11). The detailed pro-
cedures for gel electrophoresis of DNA will be described else-
where (Helling, Goodman, and Boyer, in preparation); in
brief, duplex DNA was subjected to electrophoresis in a tube-
type apparatus (Hoefer Scientific Instrument) (0.6 X 15
em gel) at about 20° in 0.7%, agarose at 22.5 V with 40 mM
Tris-acetate buffer (pH 8.05) containing 20 mM sodium ace-
tate, 2 mM EDTA, and 18 mM sodium chloride. The gels
were then soaked in ethidium bromide (5 ug/ml) and the DNA
was visualized by fluorescence under long wavelength ultra-
violet light (“black light”"). The molecular weight of each frag-
ment in the range of 1 to 200 X 10° was determined from its

Lin et al, PNAS, | 985

Assembly of Expression Vector for the Epo Gene. For direct
expression of the genomic Epo gene, the 4.8-kilobase (kb)
BstEll-BamHI fragment of \HE1 (see Results), which contains
the entire Epo gene, was used. After converting the BsrEII site
into a BamHI site with a synthetic linker, the fragment was
inserted into the unique BamHI site of the expression vector
pDSVL (unpublished data), which contains a dihydrofolate
reductase (DHFR) minigene from pMgl (24). The resulting
plasmid pDSVL-gHuEPO (Fig. 14) was then used to transfect
Chinese hamster ovary (CHO) DHFR ™~ cells (25) by the calcium
phosphate microprecipitate method (26). The transformants
were selected by growth in medium lacking hypoxanthjne and
thymidine. The culture medium used was Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum,
penicillin, streptomycin, and glutamine (25).

Ro et al., Nature, 2006

|Plasmid construction. To create plasmid pRS425ADS for expression of ADS

with the GALI promoter, ADS was PCR amplified from pADS’ using primer pair 9

and 10. (Supplementary Table I). Using these primers the nucleotide sequence 5™
AAAACA-3" was cloned immediately upstream of the start godon of ADS. This
consensus sequence was used for efficient translation®™ of ADS and the other
galactose-inducible genes used in this study. The amplified product was cleaved with
Spel and Hindlll and cloned inte Spel and Hindlll digested pRS425GALL".

For integration of an expression cassette for (HMGR, plasmid pd-HMGR was
constructed. First Sacll restriction sites were introduced into pRS426GAL1™ at the 5
end of the GALJ promoter and 3' end of the CYC/ terminator. To achieve this, the
promoter-multiple cloning site-terminator cassette of pRS426GAL1 was PCR amplified
using primer pair 11 and 12. The amplified product was cloned directly into Pyyll-
Tha aatahstin Adamsain A8
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Should the public support foundational research
& the development of open technology platforms?
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The Imperative of Synthetic Biology: A Proposed National Research Initiative

Drew Endy Ed Lazowska
Stanford University University of Washington

Version 6: Decemberl2, 2008'

The oxygen in the air we breathe, the plants or animals we eat, the environments we cherish and
struggle to protect, the fuels that keep us warm and power our industries and vehicles, our
medicines and clothes, ourselves and future generations as yet unborn — we are of biology and
dependant upon her. In turn, our ability to develop and deploy biology as a technology — for
sustainable energy production, green manufacturing, agile crop development, affordable
healthcare and medicines — depends on the tools we have for engineering life itself.

35 years ago researchers learned to directly manipulate DNA using crude molecular tools to
construct relatively simple genetic programs. These first tools gave birth to the biotechnology
industry, resulting in new drugs and therapies (e.g., from recombinant insulin for treating
diabetes to cheap artemisinin for fighting malaria), concerns (e.g., biological security),
controversies (e.g., genetically engineered foods), and unmet promises (e.g., nitrogen fixing
crops). Today, more powerful tools are being developed to help make biology easier to engineer
via an emerging field of research known as “synthetic biology.” Using early versions of these
new tools, researchers have begun constructing genomes — the entire DNA program encoding an
organism — from scratch”. Catalogs containing thousands of standardized DNA parts are being
produced and freely distributed’. Undergraduates and high school students are developing
genetic programs of their own designs such as bacteria that take living photographs, smell as
bananas, detect and warn of arsenic contaminated well water, or provide probiotic supplements”.

Endy & Lazowska (2008), doi:1721.1/43950



The Imperative of Synthetic Biology: A Proposed National Research Initiative

Drew Endy Ed Lazowska
Stanford University University of Washington

Version 6: Decemberl2, 2008'

|. Invest in DNA synthesis & construction tech.
2. Invest in open libraries of standard biological parts
3. Explore and test improved legal frameworks for biotech.

4. Develop & implement integrated strategy for biosecurity

prduced and freely distributed”. ndergradutes and high school students are developing

genetic programs of their own designs such as bacteria that take living photographs, smell as
bananas, detect and warn of arsenic contaminated well water, or provide probiotic supplements”.

Endy & Lazowska (2008), doi:1721.1/43950



