

FDA/CFSAN Food Defense Research Needs

LeeAnne Jackson, Ph.D.
Food Defense Oversight Team
Center for Food Safety and Applied Nutrition

Technology Workshop on Food Safety and National Defense
Government-University-Industry Research Roundtable (GUIRR)
National Academy of Sciences, Washington, D.C.
September 29, 2009

Food Defense Research

Four Primary Food Defense Research and Laboratory Needs

- New Methods
- Prevention Technologies
- Agent Characteristics
- Dose-Response Relationships

Four Primary Food Defense Research and Laboratory Needs

- **New Methods**

- Validation of field methods for the detection of microbiological and chemical agents
- Development of new field methods for the detection of microbiological and chemical agents
- Technology transfer of field methods
- Development of laboratory-based confirmation methods
- Development of techniques for fingerprinting agents
- Sampling techniques

Four Primary Food Defense Research and Laboratory Needs

- **Prevention Technologies**
 - Priority intervention technologies and related factors include thermal treatments, ionizing radiation treatments, ultra-violet radiation (UV) treatments, acidification, dehydration / water activity, disinfectant / biocides, temperature, freezing, and fermentation.
 - Examples of microbial agents include *B. anthracis*, *F. tularensis*, *B. abortis*, *Y. pestis*, *C. parvum*, and *S. dysenteriae*.
 - Examples of chemical agents include abrin, amanitin, aconitine, colchicine, digoxin/digitalis, fluoroacetic acid, nicotine sulfate, picrotoxin, ricin, strychnine, and tetrodotoxin.

Four Primary Food Defense Research and Laboratory Needs

- **Agent Characteristics**

- Examining the effect of food characteristics and processing conditions on the stability of biologically derived toxins (e.g., ricin, abrin, amanitin) and toxic chemicals (e.g., nicotinic acid, organophosphates, fluoroacetic acid)
- Determining the growth and survival kinetics of *Y. pestis* and *F. tularensis* in foods as affected by temperature, pH, water activity, and the presence of commonly used antimicrobials
- Determining the growth and survival characteristics of *Burkholderia mallei* and *Burkholderia pseudomallei* in foods
- Characterizing the radiation resistance of *B. anthracis* spores in selected foods

Four Primary Food Defense Research and Laboratory Needs

- **Agent Characteristics (cont'd)**
 - Determining the effects of food composition parameters on the radiation doses needed to inactivate vegetative cells of microorganisms.
 - Characterizing the stability of biologically derived toxins and toxic chemicals during lactic acid fermentations of the type used to produce fermented dairy products;
 - Establishing partition coefficient values needed to develop solvent extraction methods for the separation of various biologically derived toxins and toxic chemicals from foods.

Four Primary Food Defense Research and Laboratory Needs

- Dose-responses relationships for oral ingestion via foods
 - Microorganisms
 - ◆ *Francisella tularensis*, *Yersinia pestis*, *Brucella* spp., *Burkholderia mallei*, *Burkholderia pseudomallei*, etc
 - Biologically derived toxins
 - ◆ Ricin, abrin, picrotoxin, etc.
 - Toxic chemicals
 - ◆ Organophosphate pesticides, nicotinic acid, fluoroacetic acid, tetramine, etc.

Methodological Challenges: Sample Size

- Detection systems going to smaller and smaller samples
- Our need is the opposite: How to take a bigger sample - #1 detection research priority
- Real world: Have approximately 20 minutes to examine cargo coming across the border

How to Take the Right Sample?

- Cannot assume homogeneous distribution in a production lot or even a single item
- Cannot assume that contaminant is on surface
- Cannot assume that contamination is geographically or temporally homogeneous
- Effective terrorism does not require all items be contaminated

Sampling as a Limitation

- Way around the problem is to take:
 - More samples
 - ◆ Cost limited
 - Larger samples
 - ◆ New technologies
 - Smarter samples
 - ◆ Effective screening technologies (e.g., FT-NIR)
 - ◆ Better intelligence

Modeling, Simulation, and Analysis Needs

- Critical need for economic modeling and estimates for response and recovery from an intentional food contamination event
 - Cost of human illness and death
 - Cost of decontamination
 - Cost of disposal of food or equipment
 - Cost of destruction of food manufacturing facility
 - Etc....

Modeling, Simulation, and Analysis Needs

- Critical need for elaboration on social science issues to have a better understanding of the psychological and sociological response from the public to an intentional food contamination event
 - Determination of the degree of the loss of confidence in the food supply
 - Determination of the desire/need for parents to not send their children to school
 - Determination of the desire/need for the public to remain at home and not go to work
 - Determination of the loss of productivity across other sectors due to people not reporting to work
 - Determination of the degree of loss of confidence in the U.S. government

Modeling, Simulation, and Analysis Needs

- Critical need to have a better understanding of the costs and benefits of preparedness and mitigation strategies.
- Critical need to understand the most effective places to apply countermeasures within the farm-to-table continuum. Dynamic models could assist the sector in determining what technology needs to be developed or implemented, is cost-effective, and provides sufficient benefits to justify the expenditure.

Summary

Research needs in the following areas:

- New Methods
- Prevention Technologies
- Agent Characteristics
- Dose-Response Relationships
- Sampling
- Modeling, Simulation, and Analysis

Questions??

LeeAnne Jackson

LeeAnne.Jackson@fda.hhs.gov

301-436-1593

