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Today’s Topics

Review history of firm failures
Consider Challenges of Advanced Biofuels
Current densification & logistics of Stover

On-going research using IGCC to produce
even more electricity for sale to grid
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Historical View: Crude OIll Prices and Use

U.S. Crude Oil Consumption and Refiners Acquisition Price Levels
($2005) Source: Energy Information Agency
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Other Troubling Attributes

oo small for acceptable process controls
Poor operator safely
Poor utilization of by-products

Insufficient capital to improve and control
process

Bankers were uninterested in financing
“stills on the hills.”
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Millions of Gallons

U.S. Ethanol Production by Year

(Source: Renewable Fuels Association)
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In the 1990’s

More favorable economies of scale were
realized.

Mandated markets- 1990 Clean Air Act
and state measures established a base.

Better business models emerged (LLCS)

Farmers were highly motivated to invest In
value-added enterprises.

State incentives put bankers at ease.

Rising crude oil prices helped industry
from 1993 on.
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Historical View: Crude OIll Prices and Use

U.S. Crude Oil Consumption and Refiners Acquisition Price Levels
($2005) Source: Energy Information Agency
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Since 2000

Crude Oll price increases continue

VEETC and tariff on imports protect domestic
producers.

MTBE Is banned by many states and loses
lability protection as an oxygenate.

Hurricane Katrina contributed to cheap corn,
nigher energy prices for late 2005-2006.

Publicity battles for industry
— Blamed for Food Costs Rises
— Indirect Land Use Change

— Unrecognized Value in Reducing Price of Gasoline
D.G. Tiffany June 23, 2009




Millions of Gallons
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Considering Advanced Biofuels
* Avoid “blend wall” by drop-in fuels
— Dimethyl ether
— Biobutanol
(Avoid issues with Reid Vapor Point)

At this time there are tougher technical
Issues with biochemical and
thermochemical ethanol production.

— R & D situations are not as well-suited to
farmer-investors as established processes.
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Technical and Economic Issues
* Pretreatments and organisms are often
Incompatible

o State of Technology estimates represent
“dream team” yields.

* Over-optimism for “cheap feedstocks.”
e Biomass feedstocks lack
— Market grades

— Opportunities to hedge
— Market middlemen for procurement
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Subsidies and Incentives Received for Producing Eth

Various Technologies

anol Using

$1.30
120 B
B Biomass Crop Assistance Program
$1.10
$1.00 [1Cellulosic Ethanol Credit
c
@)
= $0.90 OVolumetric Ethanol Excise Tax Credit
2 $0.80
o B Renewable Electricity Credit
% $0.70
E $0.60 ESmall Producer Payment
$ $0.50
0
< $0.40
©
0 $0.30
$0.20
$0.10 - H H
$0.00 ‘ ‘ I
Corn-NG & Corn-Coal: Corn-Stover:  Corn-Stover: Biochem- Biochem-
Electricity Proc. Heat Proc. Heat CHP +Grid Stover:CHP +  Switchgr: CHP
Grid + Grid

D.G. Tiffany U of Minnesota
6/01/2009

13



Advanced Biofuels Face

Competition from Corn

Corn dry-grind plants can be vastly
Improved w/ less tech. & operational risk.

Corn Crop Yield Learning Curve
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Project Objectives

Determine Technical Feasibility of Using Biomass to Provide
Process Heat and Electricity at Ethanol Plants

Determine Economic Sensitivity of Using Biomass with
Appropriate Technologies under Various Economic
Conditions |

R/

www.biomassCHPethanol.umn.edu
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Biomass Fuel for Dry-Grind Plants

 Reduce energy costs, Improve ROI--$$$
« Generate reliable power for the grid

 Improve Renewable Energy Ratio
— Defined as: Energy Out / Fossil Energy In

* Lower the overall greenhouse gas
emissions from ethanol production

D.G. Tiffany June 23, 2009 16
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B

as Fuels and 3 Levels of
Intensity of Use

3 Bio

« Corn Stover Combusted in Fluidized Bed
« DDGS Gasified in Fluidized Bed
e Syrup + Stover Combusted in Fluidized Bed

e Process Heat
« Combined Heat and Power (CHP)
e CHP + Sales of Power to the Grid

D.G. Tiffany June 23, 2009 17
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Corn Stover Combustion, Level 2: CHP
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Corn Stover Combustion, Level 3: CHP + Grid
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Integrated Gasification Combined Cycle
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Electricity Production and Use
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MJ of energy per energy content

of ethanol produced (MJ)

Energy Balance
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Fuel Energy Input Rate
190 ML/yr ethanol facility
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i Gross Electricity Generation (and Use)
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Bseline ROR’s for 50 MM Gallon Plant

1 Proc. Heat | #2cHP #B CHP + Grid | 50MM Gal
5.40% 5.97% 4.21%

Conventional Plant

Stover

6.25% 7.28% 5.79% DDGS

Rates of Return on Investment for 50 MM Gal. Dry- Grind Plants:
Conventional Plants versus those Using Stover or Sy rup + Stover or
DDGS at Various Intensities
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Use of Blmass at Ethanol Plants

Technically feasible__and fiscally prudent ,
especially when policies favoring low carbon fuel
standards are adopted.

Improves energy balance _and drastically
reduces the carbon footprint  of ethanol produced
from corn.

Each 1 Billion gallons of ethanol capacity can
]produce 300 MWe for the grid, probably 450 MWe
or IGCC.

Use of biomass as a fuel at ethanol plants can be a
bridge technology to other technologies for
biofuels production.

D.G. Tiffany June 23, 2009 27
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Stover Harvest, Densification
&Transport to Plant

Industrial —

Agricultural - Requires supply
One harvest per year throughout the year

D.G. Tiffany June 23, 2009 28
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« Major participation from Nalladurai Kaliyan and David
Schmidt occurred on the densification and logistics
aspects of this research.
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Total Cost

Truck
Transportation of
Compacted Corn

Stover

Payment to
Farmer

Tub Grinding/

Roll Press Nutrient
Compaction / Replacement
(N-P-K)

Local Storage
Cost/
Local Storage
Loss

Collection/
Transport to Local
Storage

$77/ton of corn stover delivered (MC = 15% w.Db.) ‘
B-G—Tffamy—3ome-23-2669 31
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History of Fertilizer Prices

Fertilizer Prices (Source: Meadowlands Cooperative June 10, 2009)
Prices per Ton of Product

Anhydrous Ammonia
Urea
Potash (K20)

Diammonium Phosphate 18-46-0

Price per |b. of Nitrogen Ammonia

Price per |b. of Nitrogen Urea

Price perlb. of K

Price perlb. of P205

Fall App. 2009

Analysis Jun-08 Jun-09
82-0-0 S 870.00 S 691.98
46-0-0 S 460.00 S 480.00
0-0-60 S 670.00 S 649.97
S 865.00 S 629.85
Prices per Ton of Major Nutrient
Anhydrous
S 0.5305 S 0.4219
S 0.5000 S 0.5217
Potash (K20) S 0.5583 S 0.5416
Diammonium
Phosphate S 0.9207 S 0.6642
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Life-CyossiI Energy Consumption

Truck
Transportation of
Compacted Corn

Stover

Tub Grinding/
Roll Press

_ Nutrient
Compaction

Replacement
< (N-P-K)

Local Storage
Loss

Collection/
Transport to Local
Storage

J

1017 MJ/dry tonne (i.e., 7% of dry corn stover energy) L
B-G—Tffarry—3umre-23-26609
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Life-CcIe GHG Emissions

Corn Stover Nutrient
Combustion Replacement
(N-P-K)
(CH41 NZO)

Collection/
Truck Transport to Local
Transportation of Storage

Compacted Corn
Stover

Tub Grinding/ Local Storage
Roll Press Loss
Compaction

102 kg of CO,e/dry tonne of corn stover

(includes combustion emission, but not SOC)
P-G—Fftery—3Iune-23—2669 34
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Lif-CcIe GHG Emissions
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7 g of CO,e/MJ of dry corn stover

(includes combustion emission, but not SOC)
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GG Eissions of Ethanol using
Corn Stover as a Fuel using BESS*

Convent.
Corn CHP c::; BIGCC
Ethanol
GHG . 52% 82% 92% 115%
Reduction
GHG
it ladsh 85%  116%  126%  149%
with CO,
Sequst.
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Amount of Biomass Required, %

Corn stover Syrup + stover
DDGS | Ethanol All corn Ethanol All corn
corn . corn .
acres acres
acres acres
Process heat 70% 27% 9% 9% 3%
CHP 80% 30% 10% 12% 4%
CHP + grid 100% 40% 13% 27% 9%

*Assumes 1/3 of corn acresgedak eshanse!l oo

www.biomassCHPethanol.umn.edu

UNIVERSITY OF MINNESOTA
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Wil Logistical Requirements be
too difficult? No!!!

 Heat and Power using Stover for 50
million gallons ethanol per year

« 400 to 500 tons per day of stover

— 16 to 20 truckloads (25 tons each) of
briquettes or pellets per day or

— 640 to 800 bales (1250 Ibs each) per day
e 60 truckloads of corn per day
o 20 truckloads of DDGS per day

D.G. Tiffany June 23, 2009
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Changes on the Land and in the Soll

D.G. Tiffany U of Minnesota

6/01/2009



Biomass Harvest Rates Must
Consider Maintenance of Relic Soll
Organic Carbon

iy _.|":|"i-- ¥ '.: -rl T i
-3 Ground Stirface?

* Preservation of relic £ @ SRS
soil organic carbon is  EESREEREREEES e
key issue associated T ¥
with biomass harvest

Doug Tiffany April 24, 2009




e Utilize Process Heat

: CHP Process Flow Diagram
before or after using to ‘

generate electricity- Traditional System CHP System
cuts GHG by 53%.

Requires greater
Investment,
coordination with
power utilities.

Source: Combine Heat and Power:
Effective Energy Solutions for a
Sustainable Future, ORNL.
http://www.osti.gov/bridge

ELECTRICITY °

'45% Efficiency Y Efficiency

CHP
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Growing Demand and Retirements
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DOE Goal: CHP Expansion from 9% to
20% of U.S. Capacity by 2030

Source: Combine Heat and Power: Effective Energy Solutions for a Sustainable Future, ORNL. http://www.osti.gov/bridge

Historical CHP Capacity and Growth Needed to Achieve 20% of Generation
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U.S. CO2 Emissions 2006-2030
and Effect of 20% CHP

Source: Combine Heat and Power: Effective Energy Solutions for a Sustainable Future, ORNL. http://www.osti.gov/bridge
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Summary

2nd Generation biofuels may suffer stigma as
poor investment from adverse publicity directed
toward corn dry-grind facilities.

Using biomass as a fuel producing CHP requires
Implementation of known technologies.

Plentiful amounts of biomass are at the plants or
nearby.

Logistics are not a deal-breaker, but expect
stover to cost about $80 per ton as a densified
product at the plant.

GHG emissions of the ethanol produced can be
vastly improved when CHP is implemented at
dry-grind plants.
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Thank you!

e tiffa002@umn.edu
(612) 625-6715
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