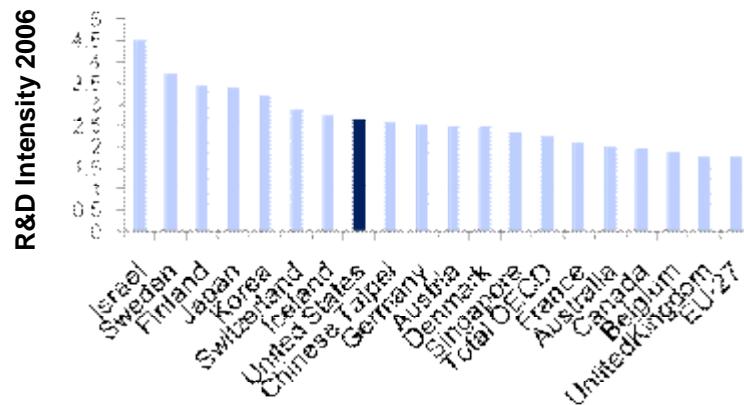
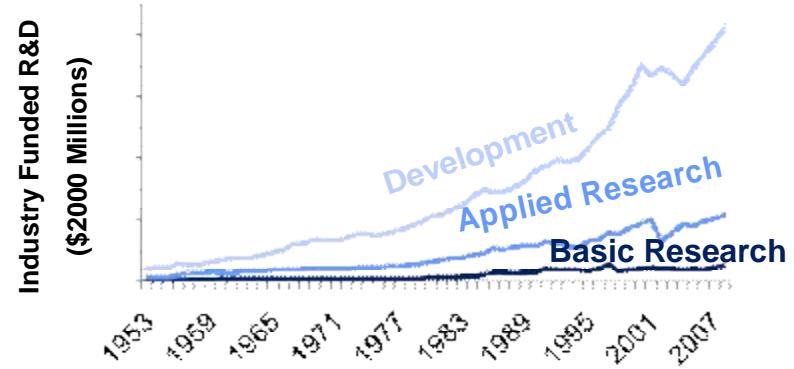


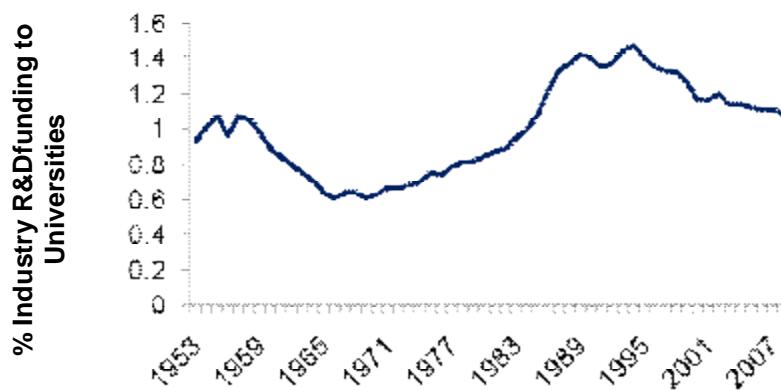
Enhancing Competitiveness and Speeding Innovation: Design and initial results of the NIST Rapid Innovation and Competitiveness Initiative


Marc G. Stanley
National Institute of Standards and Technology

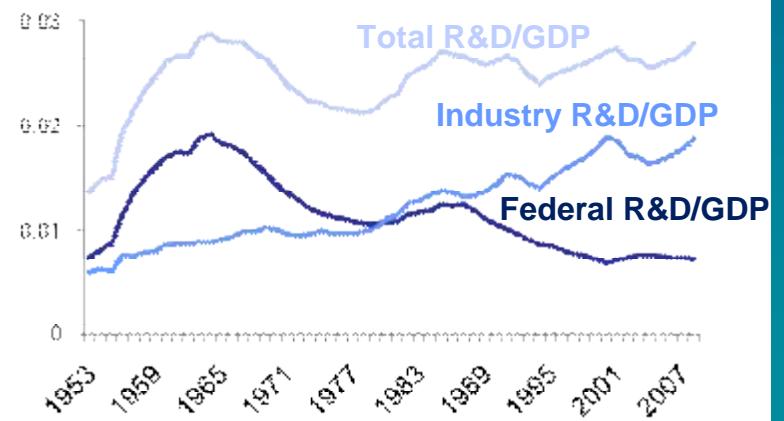
Problem: There are disturbing trends in R&D Investment


R&D intensity is lagging while R&D Composition is changing

Need: Restore international innovation leadership


Source: OECD, Main Science and Technology Indicators

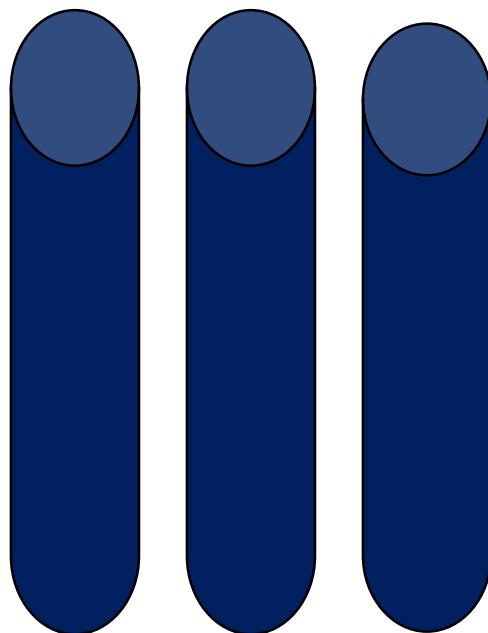
Need: Increase industry focus on breakthrough research


Source: National Science Foundation

Need: Long-range research targeting industry needs

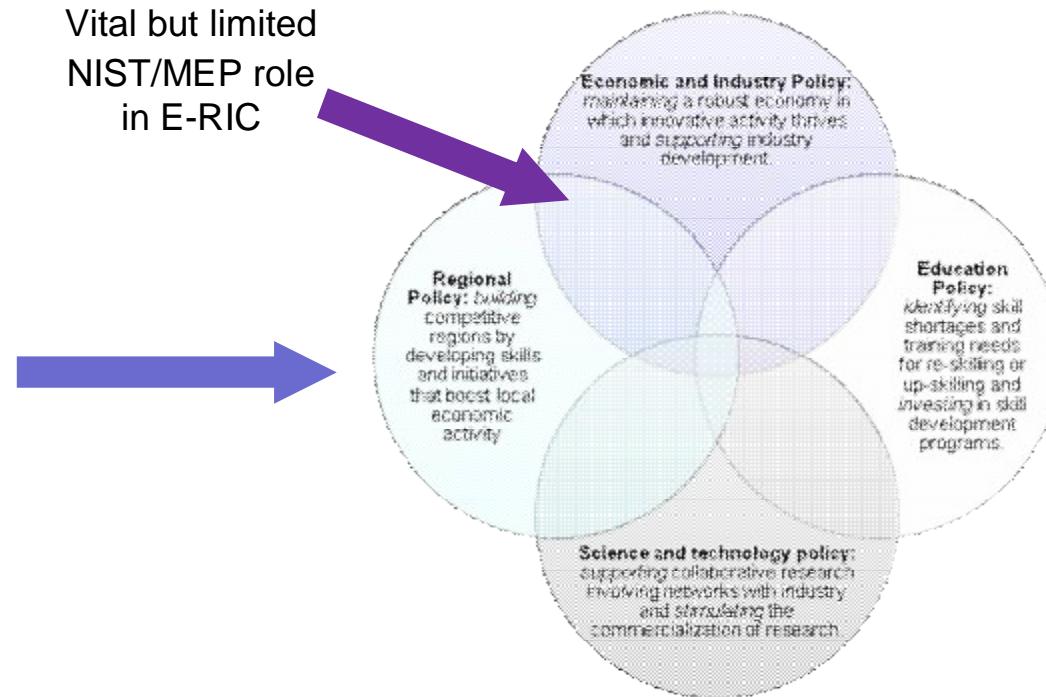
Source: National Science Foundation

Need: Increase the intensity of federal R&D efforts



Source: National Science Foundation

Our Approach Must Change


Unprecedented challenges require innovative solutions for creating jobs and promoting regional prosperity.

From Silos ...

Vital but limited
NIST/MEP role
in E-RIC

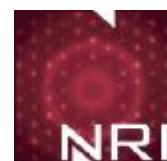
... to Collaboration.

However, NIST has another pilot cluster initiative that builds upon the scientific base and leverages NIST assets in all 4 key areas ...

The Rapid Innovation and Competitiveness (RIC) Initiative

A new public-private partnership for R&D investment

Goals:


- Increase the Nation's return on its scientific investment
- Collapse the timescale of technological innovation
- Stimulate the economy and enhance competitiveness

Approach:

- Coordination and Advanced Planning
 - Partners from **industry**, **academia**, and **government** develop a shared vision of an industry sector's research needs via a technology roadmap
- Research and Knowledge Transfer
 - **Industry** and **government** fund goal oriented basic research, measurement science research, and standards development based on the needs and priorities of the roadmap
 - Periodically re-evaluate the impact and priority of that research
 - Sponsor postdoctoral fellowships and personnel exchanges to facilitate tacit knowledge transfer
- Transition scientific findings to commercial products
 - Provide a framework that facilitates **regional government** and **venture-capital** support, enabling a clear path to commercialization

Pilot Program with Nanoelectronics Research Initiative (NRI) Initiated in 2007

- For pilot, NIST sought public-private partnerships to accelerate the support of research and innovation in nanoelectronics, an emerging area that exploits unique properties of nanometer-scale materials
- Competition announced in Federal Register May 4, 2007
- NIST/NRI partnership announced September 13, 2007
 - The NRI is a collaborative effort between industry, government, and academia to support world-class research in nanoelectronics.
 - NRI is part of the Semiconductor Research Corporation (SRC), which is part of the Semiconductor Industry Association (SIA)
 - NRI goal: Demonstrate novel yet practical computing devices capable of replacing conventional chip technology by 2020
- Cooperative agreement, renewable for up to five years
- NIST provides \$2.76 million per year; six NRI partners match with at least 25% each
- Funds combined and competitively awarded for research at U.S. universities to meet industry's long term needs
- Starting FY2009 NIST has an additional \$1.5 million for related in-house research

a n o e l e c t r o n i c s
R E S E A R C H I N I T I A T I V E

[®]

NIST/NRI Funding

Strategic Planning and Evaluation

International Technology Roadmap for Semiconductors

POST-CMOS: NRI Defined 13 Research Vectors of primary importance for finding the next switch

\$2.75M
per
year
NIST

\$5M
per
year
Industry
Partners

\$15M
per
year
States

>\$200M /
over 5 years
States & Private

University-Based Research

- INDEX: Institute for Nanoelectronics Discovery and Exploration
- MIND: Midwest Institute for Nanoelectronics Discovery
- SWAN: South West Academy of Nanoelectronics
- WIN: Western Institute of Nanoelectronics

Research Results

Business Start-up, Development, and Commercialization

Regional
Government
Contributions:
• Grants
• Tax
Incentives

Industry
Contributions
• VC Funds
• Direct
Investment

®

4 Centers, 35 Universities, 20 States

★ Notre Dame
Illinois-UC
Michigan

Purdue
Penn State
UT-Dallas

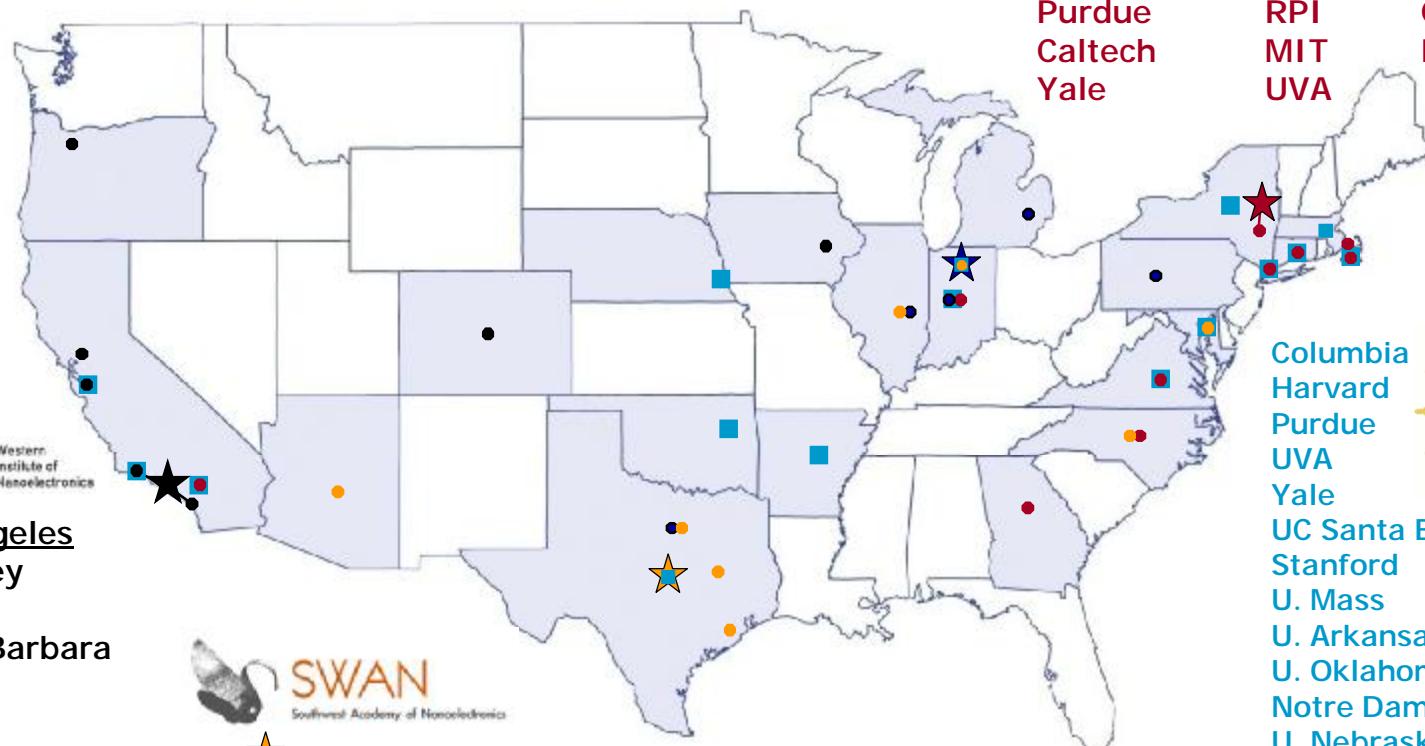
★ SUNY-Albany
Purdue
Caltech
Yale

GIT
RPI
MIT
UVA

Harvard
Columbia
NCSU

Western
Institute
of
Nanoelectronics

★ UC Los Angeles
UC Berkeley
UC Irvine
UC Santa Barbara
Stanford
U Denver
Portland State
U Iowa


★ UT-Austin
UT-Dallas
U. Maryland

Rice
ASU
NCSU

Texas A&M
Notre Dame
Illinois UC

Columbia
Harvard
Purdue
UVA
Yale
UC Santa Barbara
Stanford
U. Mass
U. Arkansas
U. Oklahoma
Notre Dame
U. Nebraska/Lincoln
U. Maryland
Cornell
UT Austin
Caltech

RIC Initiative

NIST/NRI Results

NIST/NRI Supports PI's from over 30 Universities to work at regional centers.

NIST/NRI interactions are currently supporting 128 graduate students and 24 post-docs through the four regional centers.

- WIN 38 PhD students, 6 post-docs
- INDEX 24 PhD students, 2 post-docs
- SWAN 26 PhD students, 11 post-docs
- MIND 40 PhD students, 5 post-docs

Number of Publications

From 10-1-2007 through 10-1-2009 the centers under the NRI/NIST partnership have generated 239 publications.

Number of patents

To date 13 patents applications have been filed based on the work of sponsored by the NRI.

Industry Support of NIST's Involvement

- "NIST joining NRI not only enabled the recent expansion of the program, but also was **instrumental to convincing the NRI industry members to extend their commitments for funding the program beyond 2008**, so this partnership has already resulted in increased support for the program."
-- Jeffrey Welser, Director of the Nanoelectronics Research Initiative:
- "There is tremendous interest in every part of the world to win the nanoelectronics race and reap the economic rewards that will go with it. For America to win, it will take radical collaboration between government, higher education and industry. The best example of this type of collaboration is the important work going on in the Nanoelectronics Research Initiative at more than 30 universities with funding and participation from NIST, IBM and other major semiconductor and research institutions."
-- John E. Kelly III, IBM Senior Vice President and Director of Research
- "The research results from this new initiative will enable the semiconductor industry to extend Moore's Law -- the 40-year-old prediction that the industry can double the amount of transistors it places on a computer chip every couple of years -- far beyond the year 2020 when the potential limits of the current industry technology may be approached."
-- Larry Sumney, President and CEO of the Semiconductor Research Corporation
- "The Nanoelectronics Research Initiative (NRI) and the regional research centers exemplify what can be done when industry, government and academia work together. This investment is likely to pay substantial dividends in the future. Leading-edge university research centers have proved to be powerful magnets for investment by technology companies and will help build the high-tech ecosystem for high-value jobs in the future."
-- George Scalise, President of the Semiconductor Industry Association
- "NRI experiment is working; we learned more about graphene for device applications in the last 2 years than we would normally learn in 5 or 10 years in the business-as-usual research model."
-- Industry member at INDEX review (9/08)

NIST Toolkit: Impacts across the technology lifecycle

Science and Technology Policy

Need Driven Basic Research (RIC)

Economic Benefit, National Priority, public good

Economic Benefit

Measurement Science and Standards Grants

Economic Benefit, National Priority, public good

Technology Proof of Concept

TIP: National Priorities and Public Good

Meas. Sci. & Stds. Technology Infrastructure (Labs)

Economic Benefit, National Priority, public good

Education Policy

Industrial Technology Fellowship Program

Economic Benefit, National Priority, public good

Regional Policy

Construction Grants Program

Economic Benefit, National Priority, public good

Economic and Industry Policy

Extension Programs

MEP: Economic Benefit

Basic

NIST

Applied R&D

Industry

Commercialization

NIST, State and Private Sector Partnership