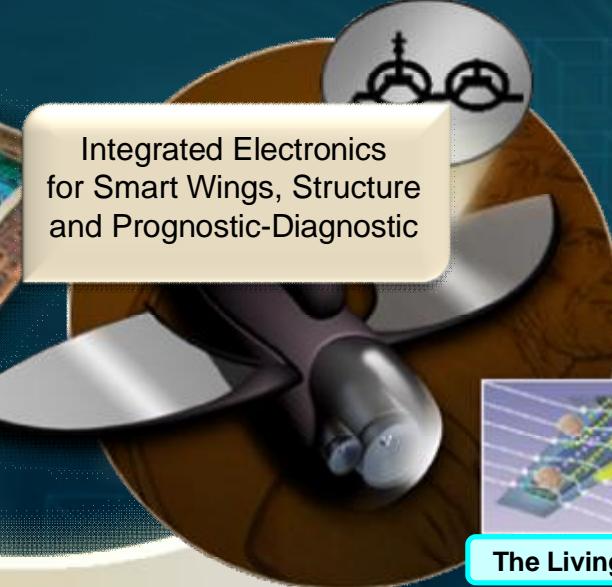
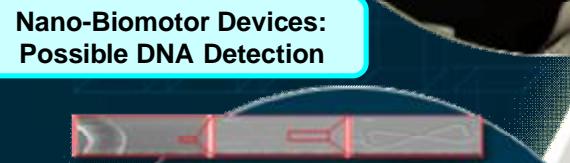


Flexible Electronics

Dr. John Pellegrino

Sensors and Electron Devices Directorate
U.S. Army Research Laboratory


Approved for Public Release


Future Flexible Electronics Defense and Security Applications


Fully Flexible Circuit
Boards and Packaging

Integrated Electronics
for Smart Wings, Structure
and Prognostic-Diagnostic

Nano-Biomotor Devices:
Possible DNA Detection

The Living Airframe

FUTURE FLEXIBLE ELECTRONICS

- Health Monitoring
Stress - fatigue
- Flexible Blast Dosimeters
- Chemical Biological
Radiation Sensors

Soldier Health and
Environmental Monitoring

Distributed
Multi-Functional
Sensors

Decision
Support

Situational
Awareness

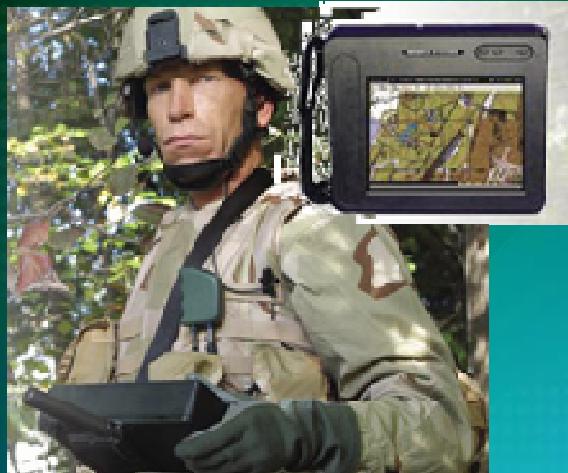
IMPACT ON THE SOLDIER

Medical

Prognostic
Diagnostic

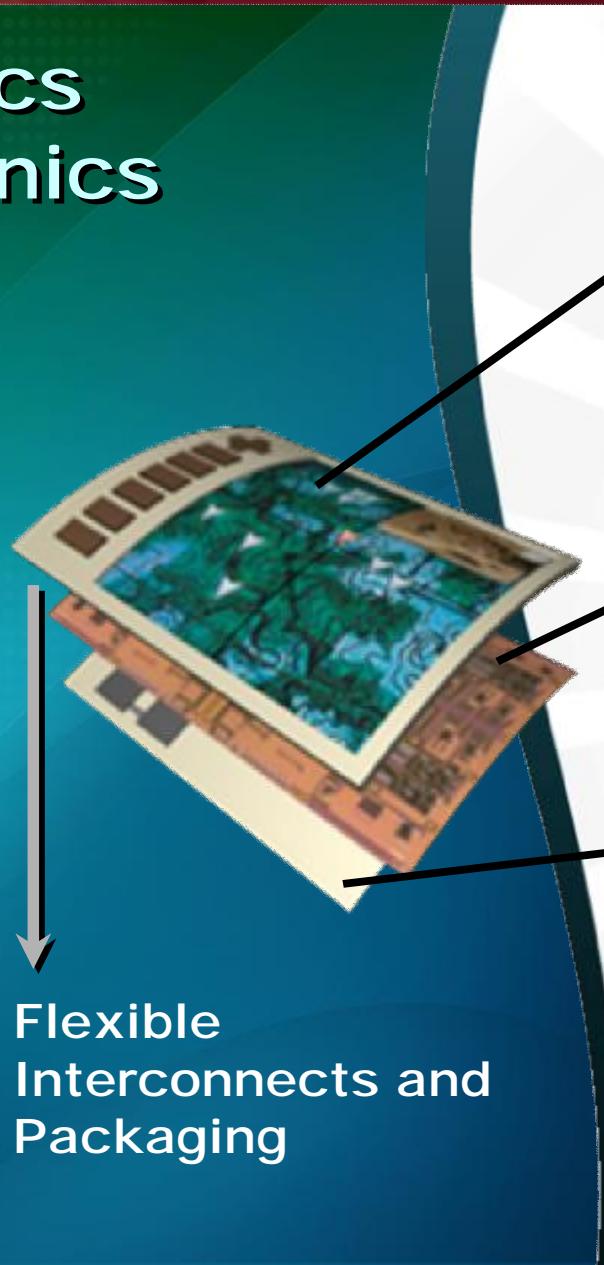
Defense
& Security
Medical

COMMERCIAL IMPACT
Needed for high volume products
Low Cost technology



Consumer
Electronics

Energy


Defense Electronics Consumer Electronics

Today's Army Hardware

Light-
weight,
rugged
concepts

Flexible
Display
Component

Flexible
Circuit
Boards

Power

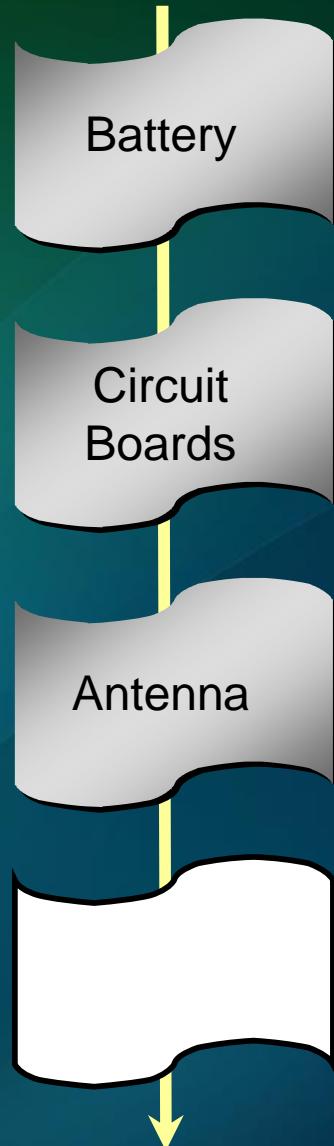
Flexible
Interconnects and
Packaging

Defense Electronics
Soldier Health Monitoring
Environmental Monitoring

Structural Monitoring

*Medical
Imaging and
Diagnostics*

Medical Sensors



Increasing Functionality
Flexible Displays, Electronics, Sensors

Large Area, Rugged Sensor Arrays and Grids Decision Support

Today's Army
Hardware

Energy Harvest-Storage
Solar, Battery, Super Capacitors

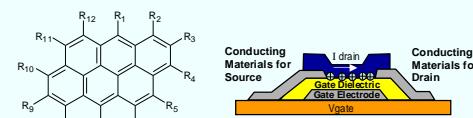
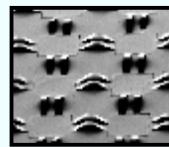
Flexible Electronics
Power management, distribution,
Communications

Communication Signals
Flexible antennas

**Large Area Sensors,
Lighting**

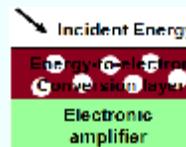
**Defense Electronics
Light Weight Sensors
Conformal Electronics**

**Today's Army
Hardware**

**SEDD Technology Investment Area
Micro Autonomous Systems and Technology**

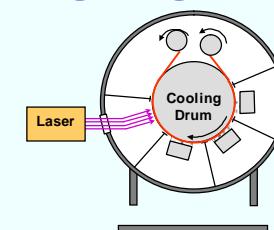
Focused, Coordinated Program Integrating the Building Blocks to Realize an Industry


MATERIALS AND DEVICES

Organic, Mixed oxides TFTs
Analog, Digital, Hybrid Si CMOS

IMAGING ARRAYS AND SENSOR

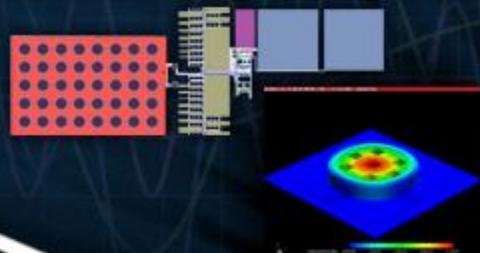
Hybrid-organic nano-particle
Bio-compatible materials



ENERGY HARVESTING AND STORAGE

Flex-PV
Super Cap
Thin Battery

MANUFACTURING & PACKAGING



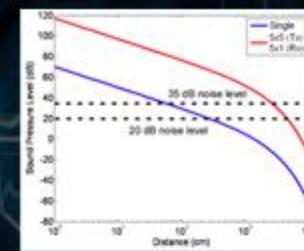
Multi-scale Modeling and Simulation


TFT Simulators
Sensor+TFT simulators

Future Flexible Electronics Early Technology Demonstrators

Blast dosimeter arrays elements to measure multiple frequencies

Army Medical Program


Organic medical
Sensor arrays

Flex-Si CMOS

ARL Program Manager

Acoustic transmitter array
Covert communications
up to 50m

ARL Coop
Agreement

PEN Substrate

MD

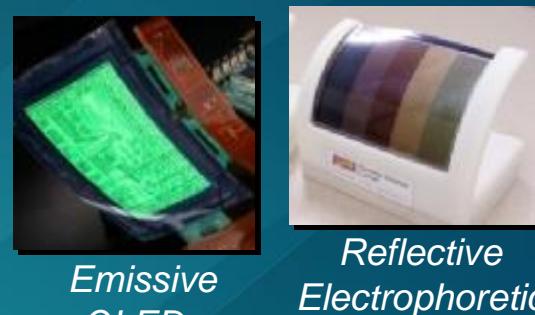
Large Area
Distributed Electronics

Flexible Displays

Neutron/gamma Detectors,
XRAY, IR large area
High sensitivity

PENNSTATE

(2) ARL SBIRs



Strategic Partnership: Army's Flexible Display Program

PEO – PMs – FCS
Army Technology
Transition Agreements

TRADOC Schools
Army Requirements

*Emissive
OLEDs*

*Reflective
Electrophoretic*

28 Industry Partners
Display Industry | Military LSIs

(9) SBIR Programs

FlexTech Alliance & Industry
Funded Programs

Academic Centers
Center for Advanced
Microelectronics
Manufacturing

University Programs
FlexTech Alliance
ARL Funding

Strategic Partnership: Developing Flexible Electronics

Government Agency Partners

Developing Customer-pull Technology Transition

PEO – PMs – FCS
Army Technology
Transition Agreements

TRADOC Schools
Army Requirements

Flexible Display Center at
Arizona State University

ARIZONA STATE UNIVERSITY

*Central-Focus
for Integration*

*Well Defined
Demonstrator Roadmap*

Self-formed Industry Teams and Funding

28 Industry Partners

Display Industry | Military LSIs

(9) SBIR Programs

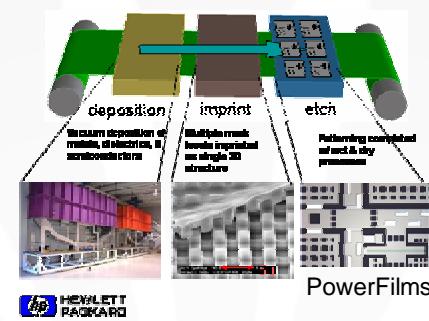
FlexTech Alliance & Industry
Funded Programs

Academic Centers
Center for Advanced
Microelectronics
Manufacturing

University Programs
FlexTech Alliance
Funding

Current High-Tech Manufacturing (CMOS, Displays);

- Highly optimized; low-profit margin
- “Restoring American Competitiveness” G. Pisano & W. Shih


Flexible Electronics Manufacturing;

- Applications with potential for high-profit margins
- Leverage optimized CMOS/display manufacturing (bond-debond)
- Imprint lithography in roll-to-roll

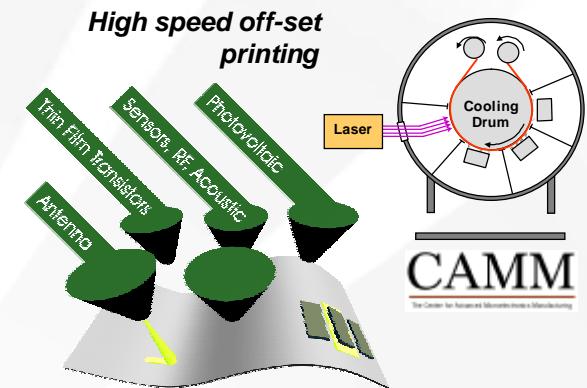

 ARL Coop
Agreement

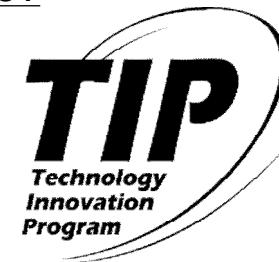
Plate-to-plate processing
ARL Cooperative Agreement
Flexible Display Center

Imprint Lithography
ARL Cooperative Agreement

Printing-R2R
ARL Cooperative Agreements
Honeywell, HP ,
Plextronics, CAMM

Medical Imaging
and Diagnostics

- Emerging Flexible Electronics: *Displays, Electronics, Sensors, Energy*
- New concepts for Security and Defense:
 - Decision Support
 - Medical Monitoring
 - Distributed Sensors
 - Micro-Robots
- Enabling Large-Area, Rugged Novel Form-factor Applications


NIST and the Technology Innovation Program

An Early Investor in Flexible Electronics

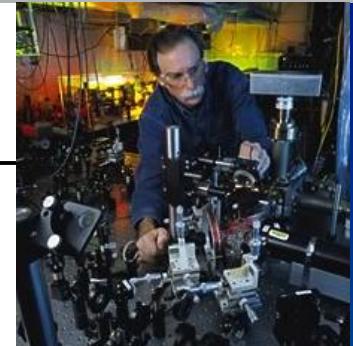
*Flexible Electronics for Security, Manufacturing, and Growth
in the United States*

The National Academies
September 24, 2010

Michael A. Schen, Ph.D.
Senior Scientific Advisor to the Director
Technology Innovation Program
Tel: (301) 975-6741 ♦ Email: michael.schen@nist.gov

National Institute of Standards and Technology • U.S. Department of Commerce

NIST Mission and Programs


To promote U.S. innovation and industrial competitiveness by advancing

- q measurement science,
- q standards, and
- q technology


in ways that enhance economic security and improve our quality of life

Major Programs

- § NIST Laboratories
- § Baldrige National Quality Program
- § Manufacturing Extension Partnership
- § Technology Innovation Program

© Geoffrey Wheeler

Courtesy Stoner Inc.

Courtesy Steuben

© Robert Rathe

NIST Provides Innovation Infrastructure

The “roads and bridges” of research that industrial and scientific communities need to develop and commercialize new technologies

- **Groundbreaking research tools that foster new fields**
- **Performance measures for accurate technology comparisons**
- **Standards to assure fairness in trade**
- **Public-private partnerships to accelerate technology**

Why Flexible / Printed Electronics and NIST?

- § Demonstrated sustainable industry leadership
- § A unique need for advancements in measurements and standards tools
- § Requires high-risk manufacturing innovation for which private capital is not readily available
- § A realizable opportunity to:
 - Generate new U.S. jobs in advanced materials, equipment, and a new generation of electronics manufacturing
 - Address a variety of critical national needs including energy efficiency and generation, national security, and healthcare
 - Compete globally

Copyright Robert Rathe

Credit: Orandi, NIST

Flexible / Printable Electronics at NIST

- § Laboratory metrology programs in materials, structure, processing and electronics
- § Technology Innovation Program (TIP) funding in Manufacturing
 - Advanced materials scale-up in the 2009 and 2010 competitions
 - Critical process advances in 2010
- § White papers by industry stakeholders
 - Societal challenges and technical gaps in flexible / printable electronics and impact areas

NIST's Toolkit for Transformative Innovation

Technological Readiness

Discovery / Proof of Principle

- Peer-reviewed journal articles
- Intellectual property

NIST Programs and Actions

NIST Laboratories

Construction Grant Program

- World-class measurements and science
- High impact publications
- New research science facilities

NIST Laboratories

Technology Innovation Program (and the former Advanced Technology Program)

- Multidisciplinary programs
- Public-Private Partnerships
- Alignment with roadmaps

Early Stage Innovation / Consortia

- Materials and Prototype Research
- Manufacturing Research
- FlexTech Alliance
- SEMATECH, NEMA -NGLIA

Rapid growth of an industry

- Industry-wide standard practices
- Transition to high-volume manufacturing
- Pervasive integration across industries

Mature industry

- Greater focus on efficiency
- Integrated network of stakeholders

NIST Laboratories

Technology Innovation Program Standards Services

- Measurement solutions; Tech transfer
- Public-Private Partnerships
- Lead standards development

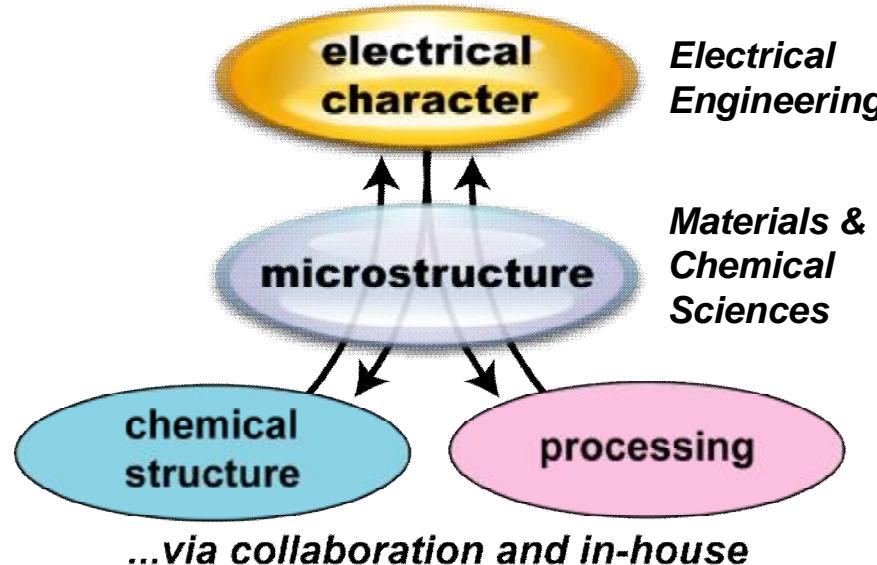
Manufacturing Extension Partnership Standards Services

- Standards and standard practices
- Calibrations services

A Technology and Market Snapshot: *Large Area, Flexibility, and Function*

- § Printed, organic, flexible electronics, including printing, electronics, materials and packaging → Pursued by over 3,000 organizations globally
- § Market estimate for printed and thin film electronics → \$ 1.9 Billion in 2010, \$55.1 Billion by 2020
- § Now predominately OLED / e-paper displays and photovoltaics. Soon thin film transistor circuits, sensors and batteries → 35% printed in 2010, and by 2020, 71% printed and 60% on flexible substrates

IDTechEx, Printed, Organic & Flexible Electronics Forecasts, Players & Opportunities 2010-2020, 2010.


Flexible and Printable Electronics are Poised to Have a Global, Disruptive and Transformational Impact

NIST Laboratories Flexible Electronics Program

Metrology to Enable the Realization of Flexible Electronics

- § To “provide the integrated measurement and standards tools needed to accelerate progress in flexible electronics”
- § Meets needs expressed by flexible electronics technology developers

Collaborations

Carnegie Mellon

Imperial College
London

PENN STATE

Berkeley
University of California

H.C. Starck

parc
PARC Research Center

VITEX
SYSTEMS

ASU
Arizona State
University

MIT
Massachusetts
Institute of
Technology

UK
University of
Kentucky

Queen Mary
University of London

NORTHWESTERN
UNIVERSITY

XEROX
The Document Company

IBM

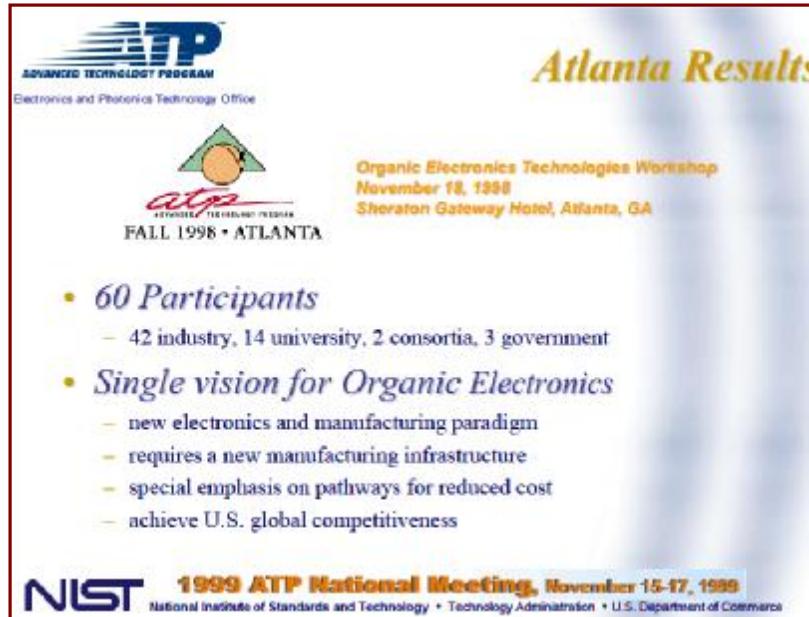
PLEXTRONICS

IPC

CORNING

National Institute of Standards and Technology • U.S. Department of Commerce

NIST Public Private Partnerships: *Innovation Accelerants in Flexible / Printable Electronics*


- § Former *Advanced Technology Program (ATP)*— an early funder
 - Funded Flexible Electronics projects from 2000 to 2007
 - Primarily vertically structured consortia
 - Focused principally on manufacturing prototyping and prototype systems innovation research
- § Today's *Technology Innovation Program*
 - 2009 Competition: *Accelerating the Incorporation of Materials Advances into Manufacturing Processes*
 - Awards in scale-up and manufacturing research for advanced functional inks and next generation electronic materials
 - 2010 Competition: *Manufacturing and Biomanufacturing: Materials Advances and Critical Processes*
 - *Proposals under evaluation, announcements in Fall 2010*

Early Dialog in Flexible / Printable Electronics: 1998 and 1999 ATP Workshops

Array of Functionality

- Conducting / Semiconducting
- Light Emitting / Transmitting
- Detecting / Sensing

The slide is titled "Atlanta Results" in yellow text. It features the ATP logo and the text "FALL 1998 • ATLANTA". Below this, it says "Organic Electronics Technologies Workshop November 18, 1998 Sheraton Gateway Hotel, Atlanta, GA". A bulleted list on the left includes:

- *60 Participants*
 - 42 industry, 14 university, 2 consortia, 3 government
- *Single vision for Organic Electronics*
 - new electronics and manufacturing paradigm
 - requires a new manufacturing infrastructure
 - special emphasis on pathways for reduced cost
 - achieve U.S. global competitiveness

Potential Applications

- Displays
- Optical Interconnection
- Disposable Electronics
- Lighting
- Electronics Manufacturing

What's Needed

- Manufacturing Processes and Equipment Infrastructure
- Improved Materials and Device Compatibility, Reliability and Performance
- Application-driven, Vertically Integrated Teams

National Institute of Standards and Technology • U.S. Department of Commerce

ATP's Contribution (2000 to 2007)

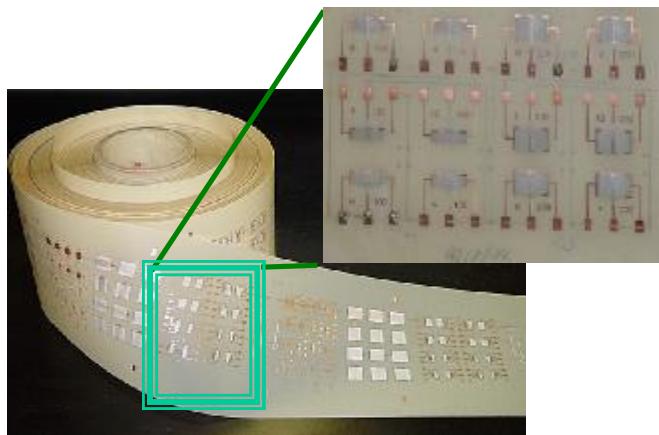
Predominately vertically aligned, multi-party Joint Ventures

- Key objectives

- Demonstrate the viability of various manufacturing approaches for flexible / printed circuits
- Further electronic devices and materials development
- Help create an early flexible / printable electronics capability

- Market drivers

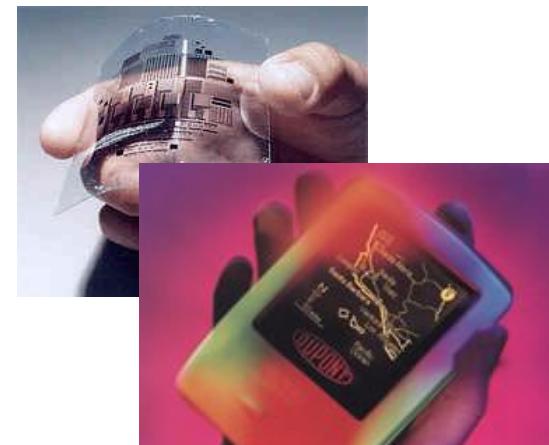
- Electronic displays, signage and circuits
- OLED solid state lighting
- Thin film PV


Early funding of carbon nanotube printable electronic inks

Flexible / Printed Circuits

Printed Organic ASICs: A Disruptive Technology

Motorola, Inc. / Dow Chemical Co. / Xerox XRCC / Xerox PARC
2000 to 2004



Develop novel organic electronic materials and processing technologies for the fabrication of ASIC's using relatively inexpensive printing technologies in lieu of semiconductor lithography.

Printed Organic Transistors on Plastic for Electronic Displays and Circuits

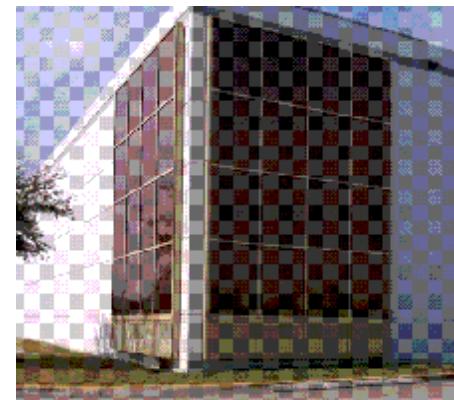
Sarnoff Corp. / DuPont / Lucent Technologies
2002 to 2005

Develop and demonstrate printable organic electronic materials and fabrication technologies for low-cost, high-volume production of thin film transistors (TFTs) and displays.

Solid State Lighting and Thin Film Photovoltaics

Roll-to-Roll Processing to Enable the Organic-Electronics Revolution

GE Global Research / Energy Conversion Devices, Inc.
2003 to 2007



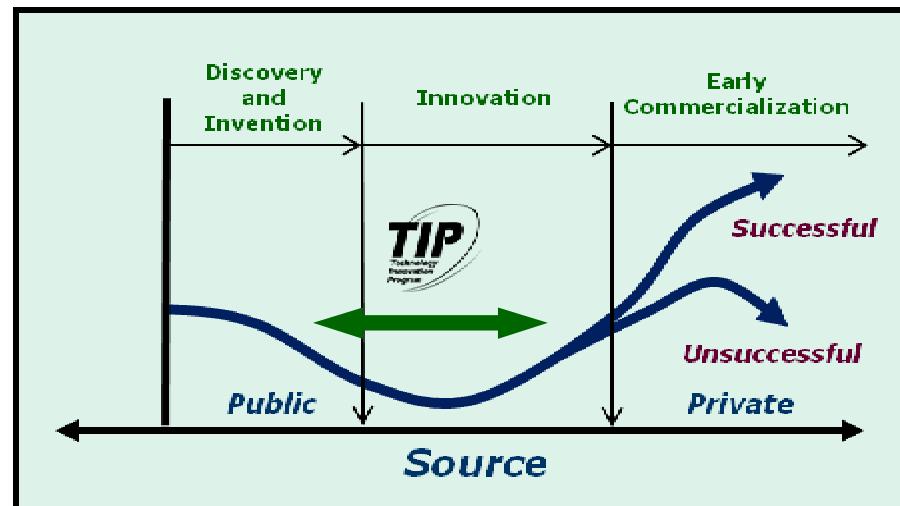
Revolutionize the electronics industry by developing low-cost roll-to-roll printing technologies for manufacturing large area organic electronic devices.

Transparent, Flexible Solar Modules Based on Bulk-Heterojunction Organic Photovoltaic Technology

Konarka Technologies / Cambridge Major Laboratories
2008 to 2013

Develop high-performance, transparent photovoltaic cells and modules that will help establish solar technology as a vital part of the renewable energy industry.

The Technology Innovation Program


Funding Transformational Research for Critical National Needs

www.nist.gov/tip

TIP's Mission

- § Assist United States businesses and institutions of higher education or other organizations, such as national laboratories and nonprofit research institutions
- § Support, promote, and accelerate innovation in the United States through high-risk, high-reward research
- § In areas of critical national need

America COMPETES Act, (PL 110-69)
August 9, 2007

Characteristics of TIP

Novel Purpose

- Address societal challenges not being addressed in areas of critical national need with benefits that extend significantly beyond proposers

Scientific & Technical Merit

- Fund High-risk, high-reward research

Transformational Results

- Select projects with a strong potential for advancing state-of-the-art and contributing to U.S. science and technology base

Rich Teaming

- Fund small- and medium-sized businesses, academia, national labs, nonprofit research institutions other organizations
- Large companies may participate in the project research but cannot receive government funding

TIP is an AGENT FOR THE ACCELERATION OF TECHNOLOGY INNOVATION, spurring the translation of discovery research with transformational potential into U.S. industry, through high-risk, high-reward innovation research

Current TIP Critical National Need and Interest Areas

Critical National Need Areas

- § **Civil Infrastructure***
- § **Manufacturing***

Other Interest Areas

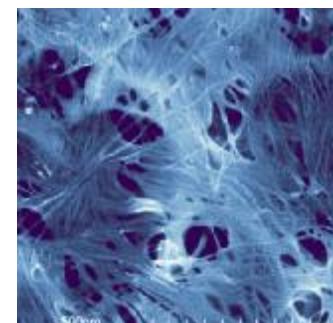
- § **Advanced Robotics**
- § **Complex Networks**
- § **Energy***
- § **Healthcare***
- § **Sustainability**
- § **Water**

Interest Areas subject to change as TIP focuses on the Nation's most pressing priorities!

* TIP White Paper available for public comment

National Institute of Standards and Technology • U.S. Department of Commerce

2009 TIP Awards in Manufacturing: *Flexible / Printable Electronics*


Goals

- Accelerate the availability of advanced materials for tomorrow's manufacturers
- Scale-up and modeling to support integration

Production of Low-Cost, High-Quality Metallic and Semiconducting Single Wall Carbon Nanotube Inks

Brewer Science, Inc. / Southwest Nanotechnologies, Inc. (2010 to 2013)

Develop technologies for the cost-effective production of high-purity, high-quality, metallic and semiconducting carbon nanotube 'inks' to enable commercial production of a wide variety of high-performing electronic devices for energy, flexible electronic and sensor applications.

Chasteck/Tallbott/NIST

Functionalized Nano Graphene for Next-Generation Nano-Enhanced Products

Angstrom Materials, LLC (2010 to 2013)

Develop processes for mass-producing chemically modified ("functionalized") nano graphene for next-generation products, particularly for the energy industries.

National Institute of Standards and Technology • U.S. Department of Commerce

How TIP, NIST and Flexible / Printable Electronics Intersect Today

A Rapidly Evolving Landscape

Early stage commercialization is underway

Represents a set of platform technologies that will enable a cost effective heterogeneous integration of functionality – e.g. circuits, sensing, display, energy generation, and beyond - within products

Industry participation and leadership exists, but can be expanded

- TIP white papers and proposals
- NIST Metrology research collaborations
- Pursuit of domestic and international standards

How TIP, NIST and Flexible / Printable Electronics Intersect Today (cont.'d)

Nanomanufacturing matters!

- Scale-up and commercialization of functional materials and inks are leveraging early U.S. nanotechnology investments
- May become a differentiator that enables high performance products and opens new markets

TIP is being used to accelerate supply chain innovation

NIST-wide advancements in measurement tools and standards for characterization, device development, and manufacture and control remain essential

NIST's Construction Grant Program (est. 2008)

For Tomorrow's Research Science Buildings

Program Goals and Objectives

- § To provide competitively awarded grants for the construction of new, or expansion of existing, research science buildings
- § Grants awarded to U. S. institutions of higher education and non-profit organizations for research facilities performing all applicable fields of science that complement NIST, NOAA, and/or NTIA programs

Artist rendering of the planned new Brockman Hall for Physics at Rice University. Courtesy of Rice University

Awards to Date

- § November 2008: Three awards, \$24 million
- § July 2009: Four awards, \$55.5 million
- § January 2010: Twelve Awards, \$123 million
- § Fall 2010: soon to be announced

Proposed center for Applied Energy Research Laboratory Expansion, University of Kentucky. Artist's rendering provided by BHDH Architecture

(www.nist.gov/director/ncgp)

NIST's Priorities: A *Roadmap for Aligning Partnerships in Flexible / Printable Electronics*

Strengthen and focus NIST's Laboratories and facilities to ensure U.S. leadership in measurement science and standards

- Improve NIST measurement and standards services
- Enhance the facilities and equipment that enable cutting-edge research
- Promote leadership at the frontiers of science and technology

Focus new NIST activities to address critical national priorities

- Energy ■ Environment ■ Healthcare
- Information Tech. ■ Manufacturing ■ Physical Infrastructure

Promote partnership mechanisms with industry and academia through extramural programs

- Technology Innovation Program
- Hollings Manufacturing Extension Partnership
- Baldrige National Quality Program

Expand collaboration to leverage NIST capabilities and advance innovation at regional and national levels

Concluding Thoughts: *What Flexible / Printable Electronics Means to the U.S.*

New high tech entrepreneurs, small businesses, and jobs are taking hold

- A new supply chain and manufacturing infrastructure
- Commercializers of advanced materials, inks, process technologies, and devices
- Offering novel products and innovation in critical national needs like national security, energy and healthcare

State and regional initiatives are underway to spur regional economic growth, innovation and commercialization

Improving the efficiency of innovation and translational research

- *within the private sector and between public and private sectors* - will accelerate U.S. job creation and strengthen U.S. global competitiveness in the field

Partnerships are key!

Thank you

Questions?