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Cohen, J. 2002. Future of population. In: Cooper & Layard,

What the Future Holds. MIT Press. Redrawn from Evans, 1998,

Feeding the Ten Billion, Cambridge Univ. Press.

Updated to 2008 by J. Fabina and S. Carpenter using data from FAO and IFA.
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Population Projections: MA Scenarios
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Global International Water Assessment

http

/lwww.grida.no/publications/vg/water2/

Cubic km per year Forecast Forecast Forecast

3 200

2 800 4

2400 4

2 000 -

1600 -

1200 -

00 -

400

Agriculture Domestic use Industry

0=

J||| J..ll\g...ll

1900 1225 1950 1875 2000 2025 1900 1925 1850 1975 2000 2025 1900 1925 1850 19v5 2000 2025

Bl esiraction B Extraction Bl Etraction
Consumption | Congurmption | Consumpticn

The grey band represents the difference between the amount of water extracted and that actually
consumed. Water may be extracted, used, recycled (or returned to rivers or aquifers) and reused
several times over. Consumptian is final use of water, after which it can no longer be reusad. That extractions have
increased at a much faster rate is an indication of how much more intensively we can now exploit water, Only a
fraction of water extracted is lost through evaporation.

Sourcs! Igor A, Shiklermanay, State Hy&nlgﬂal Ingtituta [SHI, 51 Patersburg) and United Matlons Educational Sclentific and
Cutural (%?gn.niaﬂtim (LIMESCCr, Paris), 19



River Fragmentation & Habitat for Aquatic Organisms

Global International Water Assessment
http://www.grida.no/publications/vg/water2/



Groundwater:

~25% of global water withdrawals; ~50% of the world’s potable water

1.5 to 2.8 B people drink groundwater , including more than half
the world’s megacities (>10M people)

Withdrawal / renewal ratio varies hugely among countries:
Lowest and Highest: 0.4% Brazil, 950% Saudi Arabia
High-population countries: China 6.5%, India 43%
U.S. 8.5%

Global average 5.8%

“Institutions for managing groundwater sustainably
have universally failed”.

Giordano, M. 2009. Annu. Rev. Environ. Resour. 34:153-78



Water Withdrawals / Renewable Water Supply Water Withdrawals / Renewable Water Supply
(average climate) (driest ~10% of years)
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Human-Driven Changes in Biogeochemical Cycles
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Falkowski et al. 2000, Science 290: 291-296; Bennett et al. 2001, BioScience 51: 227-234




Eutrophication & Harmful Algal Blooms

Red tide, Maine, USA



Maize grain yield (t/ha)

Fertilizer N (kg/ha)
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Total biophysical mitigation potentials (all practices, all GHGs: Mt CO2-eq.yr-1) for each
region by 2030, showing mean estimates (B1 scenario shown though the pattern is similar for
all SRES scenarios).
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Global GHG Offsets by Agriculture, % of Emissions:
5% at $20 / ton CO,-eq A
9% at $50 / ton CO,-eq
14% at $100 / ton CO,-eq
20% at full biophysical potential
Smith P et al. Phil. Trans. R. Soc. B 2008;363:789-813 “““‘”B}



Greenhouse Gases and Agriculture — Mitigation Options

Perennial crops, extended rotations, cover crops

Match N applications to crop uptake

Reduce tillage, retain crop residues

Manage irrigation to maximize C storage in soil

Adjust grazing rates to maximize C storage in soil

Manage ruminant diet & genetics to decrease CH, emission
Manage manure (digestors)

Etc.
Smith P et al. Phil. Trans. R. Soc. B 2008;363:789-813
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What Could We Do About It?

“Complete Accounting”: Include water, nutrients, carbon,
habitat and wild species in decision frameworks for
agriculture

Innovate a lot faster: Make local innovation a global trend.



Natural Capital and Ecosystem Services of an Agricultural Watershed

Local outputs, benefits, costs
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Changes in Land Cover, Ecosystem heterogeneity, Water infiltration & runoff,
Carbon storage, Nutrient flows, Soil fertility, Biota, etc.
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Ecosystem Services: Food & Fiber Production, Freshwater, Flood Regulation,
Nutrient Regulation, Carbon Sequestration, Recreation, Aesthetics, etc.

Carpenter, Matson & Turner, unpublished



Create a Global Pattern of Local Innovation

Increase production efficiency (production per unit fertilizer, land, water).
Increase diversity of crops and adaptability to changing conditions.
Increase human well-being per unit crop production.
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Terraced rice in China, from Dybas, 2009, BioScience 640-646.



CONCLUSIONS:

Key Connections: Water, Agriculture, Climate and Biota
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CONCLUSIONS

The future depends on inventing a new global agriculture:
High yield
Carbon-neutral or better
Does not overdraw water
Does not emit P and reactive N
Friendly to land and wild organisms
Resilient to changing conditions
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This requires new interdisciplinary work:
Agricultural sciences
Terrestrial & atmospheric environmental sciences
Economics

Institutional design
Etc.
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